1. 数学勾股定理问题
设那条直角边为x、斜边就是(x+2)、然后勾股定理x^2+36=(x+2)^2解出来就好了
2. 浅谈如何在课堂教学中导入数学史 南京廖华
数学史在中学数学教学中十分重要,数学史的研究不仅可以提高教师的素质,它对数学教学也有很大的帮助,它可以激发学生对学习数学的兴趣,加深学生对数学知识的理解,有助于学生掌握数学思维方法,培养学生不畏艰险勇往直前的探索精神。此外,教师可以通过巧妙利用数学史名题教学、利用数学史进行新课引入、利用数学史设置课堂结束环节、利用数学史讲授知识系列、利用数学史开展探究式学习。
1引言
数学,是最能体现人类智慧的一门学科,也是人类文明赖以生存的学科,作为人类思维的表达形式,它反映了人民积极进取的意志、缜密周详的逻辑推理以及对完美境界的追求。中学数学是素质教育的重要组成部分,对培养学生分析解题能力、逻辑推理能力、空间想象能力等都非常重要。而数学史教育对中学数学教育的巨大影响力在近年来愈加为人所获知,越来越多的国家开始重视数学史的教学,我国也不例外,数学史教学已成为数学教学中不可或缺的一部分了,由中华人民共和国教育部门定制的《普通高中数学课程标准》于2003年正式出版,该条例明确地提出学生要“感受在人类历史文明进程中数学的力量,体会数学家们在探究新知的过程中严谨的科学态度和大无畏的探索精神,激发学生对学习数学的兴趣,提高学生对数学的理解感悟能力。”
中学数学老师所要必备的教学素质有很多,其中教师对数学史的扎实掌握是非常重要的一项。教师只有掌握一定的数学史知识,才能改进自身的教学不足,提高自身的数学素养,才能真正的把握到数学发展的脉络,向学生传授真正完整的知识。
2、数学史的内涵
要全面的了解一样事物,我们就要了解清楚事情的来龙去脉,要学会数学,我们就要追问数学的发展历程。 “研究这门学科的历史与现状我是们预测数学未来的适当途径。”引用法国著名数学家亨利·庞加莱的原话,也就是说如果我们只是一味的强调知识的掌握却不去了解清楚这些知识的发展历史,那么对这些学生来说,他们所学到的只是些数学的片段知识,并不能真正地认清数学这一学科,而数学史却可以给我们展示知识的总体面貌,让我们更好地地认清数学的过去、现在与未来。
作为一门研究该学科的产生发展及其规律的科学,数学史不仅仅是史料知识这么简单,它还可以追溯到数学的内涵、思维逻辑方式的衍化、发展历程,此外,它还研究数学发展对人类五千多年的文明所带来的影响以及其在人类历史上举足轻重的地位。有人单纯地认为数学史研究就是仅仅为了弄清楚有哪些知识在哪一年由哪个数学家提出的,人类目前为止知道了哪些知识、不知道那些知识,毋容置疑,这是数学史要研究的工作之一,也是最为基础的工作。但是,学习数学史更重要的目的是为了在教学工作中,让师生站在现代数学的成果上,从源头处清理该学科的发展方向和发展规律、并认清它的逻辑思维方式,从本质上更好地理解数学,学会数学。
3、数学史在中学数学教学中的作用
在新课标下改革的大潮下,中学数学课本相应地也增加了不少数学史方面的知识。那么,数学史在中学数学教学中究竟起着怎样的作用呢?作为一个即将踏出学校从事数学教学事业的准老师,我觉得具体有以下几点作用:
3.1数学史能激发学生对学习数学的兴趣
新课标强调教师在教学过程中不仅要重视过程与方法,还要重视学生的情感与态度,只有这样,学生才会对学习产生浓厚的兴趣。在很多学生看来,数学是一门枯燥无味的学科,它既不像语文那样语言优美,又不像英语那样在生活中实用性强,让很多人提不起兴趣来学习。但数学在人类文明上又是不可或缺的,它是一门逻辑性、抽象性很强的学科,如果纯粹的去讲数学知识不去重视培养数学兴趣,那么学生就只是被动的学习,学习主动性就会受到抑制,而数学史在激发学生 学习数学的兴趣就有很大的帮助了,把数学史渗透到数学课堂教学中来能让数学教学活跃起来,不仅有利于学习效果的深化,还可以激发和提高学生数学学习的兴趣。
在课堂一开始,根据教学内容讲叙相应数学家的故事,这样可以引起学生浓厚的兴趣,把心思从课间活动中转移到数学教学当中,这是创造最佳课堂情境,为课堂教学作铺垫的一种好的方法,不仅如此,在教师讲述数学典故的时候,学生的视野还得以开阔,这让他们知道原来这些看似乏味的知识背后却有一个如此一番故事,那么他们对所学的知识提起兴趣了。如在讲数列的前n项和时,在课堂开始开始的时候给学生讲高斯小学被罚算前一百位正整数和的故事,这样学生的心思很快就吸引到课堂来了。除此以外,教师在课堂中引入历史名题也起到引起学生兴趣的作用,许多历史名题的提出都与数学家的有关,学生在思考问题的时候就会不经意的想到这个问题许多大数学家思考过,就会感到一种挑战,自己现在思考的题目许多伟大的数学家也思考过,不知他们所遇到的困惑是否跟我的一样呢,即使想不出来学生也会对题目产生深厚的兴趣。
3.2数学史能加深学生对数学知识的理解
中学生的数学教材由于受一定的局限因素的限制,传授的知识虽然有一定的系统性,但学生对知识的来龙去脉还是不能有个清晰细致的理解,我们就可以利用数学史上人类认知的过程规律,对知识主干进行垂直梳理,使学生头脑中的知识脉络更加清晰,有利于学生对知识的深刻理解和记忆。数学史可以让学生更容易去接受新学的知识,在学生第一次接触代数,第一次面对用字母代替具体的数、时,他们常常会感到迷惑,不知为何要如此,这时教师若想改变这种状况,就可以在课堂上向学生讲述相关数学史料,帮助学生梳理、理解所学的的数学知识。数学的发展历史很长,而现今学生学习到的数学知识是间接学习所得,以前数学家所经历的困难正是学生现在经历的障碍,正因为这些知识产生的过程与学生间接学习的过程十分相似,数学史的讲授就可以帮助学生更好的理解数学知识。总的来说,数学知识是一环紧扣一环的,通过数学史对头脑中所学习的知识的梳理,学生可以更好地在脑海中建立各知识点间、各学科间以及学习与生活间的联系,为更为深刻地理解数学做好铺垫。
在数学历史上无理数的出现曾引发了第一次数学危机,在很长一段时间内人们在心理上都不愿意接受这一事实,学生在学习这个曾经引起动荡的无理数时并不容易,山西某中学曾做过调查,对于无理数相关知识,70%学生只是会做题目,对无理数的概念并没有深刻的理解,这势必对后面的学习造成一定的影响。查阅相关数学史料,我们就发现:在数学史上人们对无理数的发现和理解的过程是想到漫长的,在这个过程当中也犯了不少错误,这样我们就很好的了解学生在学习这一概念时遇到困难是不出奇的,这只是历史的“再现”。所以,在课堂上教师可对学生多讲一些无理数的发展史,这有利于帮助学生理解并接受这一知识。
3.3数学史有助于学生掌握数学思维方法
数学是一门特别的学科,它的特别在于数学有极其严密的思维逻辑形式。我们之所以要学习数学,就是希望通过在数学学习的过程中去锻炼我们的大脑,让我们形成精确缜密的逻辑思维方式和锻炼提高我们的创造能力。实施证明,数学史为这一教育目的的实现起到了不可磨灭的作用。现在中学数学教 材向学生呈现的更多的是系统性的、“天衣无缝”的知识,语言十分的简练,基本都是按定义、定理、证明、推理、例题练习等固定形式去编排,学生在学习过程中跟多的是单纯的去接受这些知识,而缺乏一种真正的数学思维过程,由于学生认知水平的局限,这样他们很容易产生不正确的观点想法,虽然能简速便捷地接受到大批的知识,却让学生轻易认为数学知识学习的过程就固定的是“定义——得出性质定理——做题”,事实是系统化了,却无法让学生清楚了解到知识是经过发现问题、提出假设、论证假设、得出结论并完善,逐步的、经过漫长过程成熟起来的,这不利于学生正确数学思维方法的形成。但是,数学史却可以做到这一点。数学史向学生呈现的不仅仅是明确的数学知识,而更多的是传授相应知识的创造过程,这就让学生对数学知识的产生有一个较为清晰的认识了。通过数学史我们可以认识到数学的本原与特质,从这一个层面上看,在数学史的引领之下,师生间可以创造出一种双向的、探索与研究的课堂气氛。
这样的例子有很多,例如,我们可以再讲数形结合思想时,可以先向学生说在几何学中有很多长期不能解决的问题,例如立方倍级、三等分任意角、化圆为方等问题,直到十七世纪后半叶,法国数学家笛卡儿以坐标为桥梁、在点与数之间、曲线与方程之间建立起对应的关系,用代数方法研究几何问题,从而创立了解释几何学,至今也得到广泛的应用。又如,牛顿和莱布尼兹在在古代数学家研究积分学的思想成果上,为解决许多科学的问题创办了微积分学。
3.4数学史有能培养学生不畏艰险勇往直前的探索精神
一般来说,学生学习的数学课本呈现给学生的都是系统的、现成的知识,并未能体现到数学家们前赴后继、劈荆斩刺地获得数学知识的艰辛,数学家所经历的艰辛而漫长的道路对学生来说似乎只是种形式。但数学这一学科之所以有今天的繁荣昌盛,全赖一代又一代的数学家不畏艰险勇往直前的去摸索、去奋战。通过学习数学史,学生可以明白到这一个道理,知道这些数学家是经过怎样的艰辛奋斗、怎样的排除万难、去把知识一点一滴的积累下来给后来者一个更完善的知识环境,他们就会发现目前学习数学所经历的困难是微不足道的,这样也就不会被学习过程中所遇到的挫折所打倒。此外,通过数学史学生也会发现从古到今不少著名数学家也犯过如今看来非常可笑的错误,数学家跟他们一样也会犯错,那么他们就能正确看待在学习数学过程中所犯过的错误,从而树立起学习数学的自信心。
以计算圆周率∏为例子,古今中外,许多的人都致力于∏的研究与计算。为了计算出圆周率的越来越好的近似值,无数的数学家为这个神秘的数贡献了一生的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算∏的世界纪录频频创新。德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,用古典的方法计算到圆的内接正262边形,在1609年得到了∏的35位精度值,以至于∏在德国被称为Ludolph数;英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。虽然后来又有了计算机,但人们对圆周率还是兴趣盎然,因为数学家们认为对∏的研究可以说明人类的认识是无穷无尽的。在教学圆周率的时候,向学生讲述适当的史料知识,这对培养学生不畏艰险勇往直前的探索精神是有积极意义的。历代数学家在困难面前劈荆斩刺、为数学的通天塔添砖加瓦,他们崇高的理想、坚定的信念、顽强的斗志、勇往直前的探索精神是教育学生最好的模范。
4如何在中学数学教学中渗透数学史
乔治.屈维廉说过:“历史并没有真正的科学价值,它的真正目的乃是教育别人。”作为一个准数学老师,我们不只是应该是去学会数学史,更应该是学会运用数学史。教师如果在数学课堂中,结合所教授的内容,有目的、有计划地融入数学史,不仅可以教学内容更加的丰富饱满,还可以对学生起到潜移默化的作用,使学生医生受益。那如何在中学数学教学中渗透数学史呢,下面给大家介绍几种常见的方法:
4.1巧妙利用数学史名题教学
数学史发展的历史长河中,数学历史名题对数学知识的补充、发展都起过重大的作用,如《孙子算经》里面的“鸡兔同笼”问题、古希腊的三大几何难题、哥德巴赫猜想等等,这些历史名题的提出一般都具有一定的现实背景并对实质性的数学方法有所揭示,这对学生理解数学内容和思想方法有极其巨大的帮助。
通过教师对具有开放性的历史名题的展示,一方面可以让学生理解到,数学这个领域是运动着的、是活跃的、未完成的,它不是一个静止的、封闭的系统。另一方面,学生还能够认识到数学正是在猜想、错误、中发展进行的,数学进步是对传统观念的革新,从而激发学生的思维,使他们感受到,抓住适当的、有价值的数学问题将是多么激动人心的事情。
例如,初等几何著名定理勾股定理的证明,这个定理以它的简洁性和应用的广泛性,吸引了很多人。由于年代久远,已经很难知道谁是第一个证明勾股定理的人了,但它的证明方法各式各样,高达三百多种,其中有赵爽证明法、美国总统加菲尔证明法、欧几里得证明方法、利用相似三角形证明方法等等。向学生讲述勾股地理证明的历史,可以使单调无趣的证明过程变得趣味盎然而又富有人性化,跟重要的是让学生觉得他们是在自己探索知识,从而让学生更加积极地参与其中,历史上这么多名人去证明勾股地理,现在自己也跟那些名人一样在研究同样的问题,这个问题就变得不一样了。即使历史上已有人用同样的方法做出过证明,但当学生独自去解决掉勾股定理的证明时,他心里面所产生的成就感和自豪感是其他成功的获得所不能比拟的,而这种成就感也会使学生从此对数学产生浓厚的兴趣。
4.2利用数学史进行新课引入
俗话说:“千里之行,始于足下”。好的开始是成功的一半,教师可以运用数学史来进行新课的导入,引发学生的注意力,把学生的思路从上一节课的知识中引导这一节课中,达到上课的最佳心理状态,从而提高学习的效率。在数学课堂的开端教师向学生适当地讲授一些数学知识产生的故事、传说不仅可以引起学生对知识点的直接兴趣,还可以让学生见识到知识的产生发展过程。当然,要做到这一点老师就要经过精心的设计,力求做到引人入胜,统摄全局,引起共鸣。
举个例子,在讲等比数列时,教师可以先向学生讲述古印度国王国王用麦子奖赏智者的故事:传说古代印度有个国王非常喜欢国际象棋,一天,一个智者与国王下棋并赢了国王,国王说可以满足他的一个要求,智者提出的要求就是要国王在棋盘的第1个格子里放上1颗麦粒,第2个格子放上2颗麦粒,第三个格子放4粒麦粒,如此类推,后一个格子里放的麦粒数都是前一个格子里放的麦粒的2倍(国际象棋棋盘有64个格子),希望国王把这些麦子赏赐给他.国王想这还不容易,就欣然同意了他的要求。经过计算,发明者要求的麦粒总数就是2的64次方减1,这个数字非常大。用这个故事引入等比数列新课,相信学生的注意力都会被吸引过来,而且还能培养学生学习数学的兴趣,机器学生对新知识的探究欲望,让学生情绪高涨,从而产生良好的课堂气氛。
4.3利用数学史设置课堂结束环节
一节课上得好不好,课堂的结束环节很重要。课堂结束这一环节主要是实现本节课的教学升华,辅助学生对知识点进行归纳整理、挖掘提炼,让他们理清教学过程的整体思路脉络,掌握知识的深处内涵。除此以外好的课堂结束环节还可以起到承上启下的作用,让学生对下节课的内容产生兴趣,为下一节课的顺利进行做铺垫。如果这个时候教师能好好利用数学史知识来结束本节课的内容,这样就不仅可以吸引学生的兴趣,还可以启发学生的想象力,探究数学知识的奥秘。不仅如此,由于每个学生学习的水平和需要都不尽相同,用数学史来作为课堂的结束环节,可以让不同基础的学生得到不同程度的发展,使扎实掌握好基础的学生继续深入探究,也给相对落后的学生启发。
譬如这样,陈景润的老师在“整数的性质”这堂课结束的时候跟学生说:“在自然科学当中数学处于皇后的地位,皇后头上的皇冠就是数论。而哥德巴赫猜想,则是这顶皇冠上最璀璨夺目的明珠,为了这了明珠许多数学家倾尽了毕生心血,不知将来在座各位谁能把这颗明珠摘下来呢?”就是这位老师在课堂结束的时候用了数学史的知识做结束环节,记起来学生的探究的种子,后来就有了这个世界上攻克“哥德巴赫猜想”的第一个人。
4.4利用数学史讲授知识系列
每一系列的数学知识都是经过漫长的历史演变逐渐发展形成的,其中每个环节的知识的获得都是以一代代人无数的精力和挫折为代价的,数学教学应做到历史与逻辑的统一,寻找恰当的时机让学生像当年的数学家一样经历和体验数学创造的必要性和创造的基本方法。在数学教学过程中,教师可以把学生学习过的知识当成一个环节,各个环节用历史发生的时间和事件串连成一个知识体系,向学生系统地论述各环节知识产生的过程和发展,在教学进度的允许下,教师可以开展适当的专题性学习,适当向学生介绍一些数学史知识,如知识的背景、知识的影响力和现实生活中的实际应用等等,把学生头脑中的数学知识进行梳理,让这些知识形成一个相对清晰完整的系统,这样会起到1+1﹥2的效果了。
以数的发展历史为例子,在生产活动中,人们为了计量物品的个数,产生出自然数这一概念,在对物品的分割中产生了分数,为了表示有相反意义的量时引入了正负数,在对连续的量进行度量时,又引入了无理数,从负数不能开方出发引入了虚数,并把实数扩展到复数。于是就形成了数的理论发展概况:自然数——整数——有理数——无理数——实数——复数,让学生一目了然,对培养学生知识是变化发展的观点十分有利。
4.5利用数学史开展探究式学习
数学知识的活动都是经过观察、实验、交流、分析、综合、推理、总结得出来的,但我们的教科书上鲜少反映这一漫长而复杂的过程,教师可以以数学史为载体,对某一概念形成的几个关键特征进行分析,在学习该概念时,思考学习者可能会感到一定的困难,他们只理解到概念的表面意思,对概念的深层意思却并不理解,但如果配合学生认知规律去给学生讲解数学概念的发展历程,并对这一数学概念进行拆开理解,再进行知识的序列化重构,然后在这样的基础上实施教学,让学习者在教师的引领作用下,重现数学家们在概念形成所经历的几个关键的探究活动过程,同时教师进行适当指导,让学生经历思维的原过程,不仅能丰富学生学习内容还能增加学生对数学史的兴趣,在探索交流的氛围中获得知识,通过喜欢数学史进而喜欢数学。
在探究性学习中,数学史还有一个非常普遍的作用,就是创建探究性学习的情景,而创设的请进要考虑到各方面的因素,创设的情景要有吸引性、真实性、切合学生的生活实际,又要考虑到知识产生发展的规律性和顺序性。那么运用数学史来进行探究性活动情景的创设就再适合不过了,这样既有利于探究性学习的开展又起到对学生的文化熏陶作用。例如,教师在教授“等可能性事件”知识的时候,可以向学生讲述当年今日在数学界所发生的事情,这一系列的数学事件都发生在这一天,这仅仅是一种巧合还是一种正常现象呢?
5小结
综上所述,数学史不仅是在学生对学习数学兴趣的激发,数学知识的理解和数学思维方法的掌握有所帮助以外,它对培养学生不畏艰险勇往直前的探索精神的过程中所起的作用不应忽视,在数学教学中利用数学史资源促进教育教学更是有必要的,如果运用的好,它可以使数学课更加的生动而富有感染力。理论应该是为实践而服务的,我们可以通过各种方法去渗透数学史,其中包括:巧妙利用数学史名题教学、利用数学史进行新课引入、利用数学史设置课堂结束环节、利用数学史讲授知识系列、利用数学史开展探究式学习。
3. 古代文人不学数学,现代文人要学,为什么,谈看法。
没悬赏,那就随便说两句
古代文人不学数学,因为那时候的中国数学还不发达,对他们的文学创作和平常生活没有什么太大的用处。而且古代生活相对而言比较单调、简单,人的心思只能在一门学科上专注。另外,古代中国轻视科学,缺乏西方人的理性精神、科学精神和民主精神,崇尚文学艺术和政治权术。
现代文人学也是相对的,只在基础教育阶段学得多,因为现在的数学主要是西方数学,是所有学科,尤其是理工科的基础学科,对日常生活有实际用处,加上国家越发的重视科学,所以大家都要学数学,培养科技人才,促进科技发展。
中国古代数学发展史
数学在中国历史久矣.在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想.2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似.
算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算.中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的.
但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间.《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的.《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日.”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”.
《九章算术》在中国古代数学发展过程中占有非常重要的地位.它经过许多人整理而成,大约成书于东汉时期.全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等.在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同.注重实际应用是《九章算术》的一个显著特点.该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲.
《九章算术》标志以筹算为基础的中国古代数学体系的正式形成.
中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物.
赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释.在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法.用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献.三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造.其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”.他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础.在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”.另外,《海岛算经》也是刘徽编撰的一部数学论著.
南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世.
祖冲之、祖暅父子的工作在这一时期最具代表性.他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步.根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果.②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献.
隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关.在当时的算学馆《算经十书》成为专用教材对学生讲授.《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作.所以当时的数学教育制度对继承古代数学经典是有积极意义的.
公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式.
从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作.中国古代数学以宋、元数学为最高境界.在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的.
贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的.遗憾的是贾宪的《黄帝九章算法细草》书稿已佚.
秦九韶是南宋时期杰出的数学家.1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程).16世纪意大利人菲尔洛才提出三次方程的解法.另外,秦九韶还对一次同余式理论进行过研究.
李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义.尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论.
公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式.
公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式.
14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势.
明代珠算开始普及于中国.1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作.但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一.
由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国.数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成).徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作.邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作.此外在数学方面鲜有较大成就取得,中国古代数学自此便衰落了.
4. 中国有名的数学家有哪些
成为第86位粉丝
古代中国著名数学家:
(1)祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。
(2)徐光启(1562.4.24-1633.11.8),字子先,号玄扈,天主教圣名保禄,汉族,上海县法华汇(今上海市)人,明代著名科学家、政治家。官至崇祯朝礼部尚书兼文渊阁大学士、内阁次辅。
(3)杨辉,字谦光,汉族,钱塘(今浙江杭州)人,南宋杰出的数学家和数学教育家,生平履历不详。曾担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带。他在总结民间乘除捷算法、“垛积术”、纵横图以及数学教育方面,均做出了重大的贡献。
(4)刘徽(约225年—约295年),汉族,山东滨州邹平市 [1] 人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。
(5)赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。
近代现代中国世界著名数学家:
(1)华罗庚(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。
(2)胡明复,数学家。中国以攻读数学在国外获得博士学位的第一人。参与创建了中国最早的综合性科学团体中国科学社和最早的综合性科学杂志——《科学》。1927年6月12日,在无锡溺水身亡。
(3)冯祖荀(1880-1940),数学教育家。中国现代数学教育的早期代表人物之一。1911年以后,多次担任北京大学数学系主任,对在中国传播现代数学知识有重要贡献。
(4)姜立夫(1890—1978),数学家,数学教育家。南开大学数学系的创始人。曾任中央研究院数学所所长。对中国现代数学教学与研究的发展有重要贡献。
(5)陈建功(1893年9月8日—1971年4月1日),字业成,浙江绍兴人,数学家、数学教育家,中国函数论研究的开拓者之一。毕生从事数学教育和研究,在函数论,特别是三角级数方面卓有成就,创立了具有特色的函数论学派(陈苏学派),享有国际声誉。
(4)赵爽与崇学教育纠纷扩展阅读
'数学家是指一些对数学有深入了解的人士,将其所学知识运用于其工作上(特别是解决数学问题)。数学家专注于数、数据、集合、结构、空间、变化。
专注于解决纯数学领域以外的问题的数学家称为应用数学家,他们运用他们的特殊知识与专业的方法解决许多在科学领域的显著问题。因为专注于广泛领域的问题、理论系统、定点结构。应用数学家经常研究与制定数学模型。
早期的数学家或者自身家庭富足,或者依附于对研究有兴趣的富豪权贵,研究数学更多是出于爱好。而在现代逐渐形成了数学家这个职业。他们的工作包括,在各级学校教授数学课程,指导研究生,在具体的领域进行研究,发表论文和报告。
1阅读
举报/反馈
5. 在数学史上较为著名人物
中国的:
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
秦九韶(约1202--1261),字道古,四川安岳人。其最重要数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
赵爽,三国时期东吴的数学家。曾注《周髀算经》,所作的《周髀算经注》。
华罗庚,中国现代数学家。曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。
陈景润,数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学。 1979年初完成论文《算术级数中的最小素数》,将最小素发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作。数从原有的80推进到 16 ,受到国际数学界好评。
国外的:斐波那契、费马、欧拉、牛顿、赫罗斯萨威、笛卡儿、索菲·热尔曼、蒙日、拉格朗日、毕达哥拉斯、卡丹、塔塔利亚、开普勒、欧几里德、阿基米德
不多做介绍了
6. 谁有爆笑笑话
在洗枣
阿呆到女友家见客厅没人,便喊道:你在哪?女友:在洗枣,家里没人,快来帮我!阿呆害羞不语。女友不耐烦:还不快来!在干嘛呢?阿呆:我在脱衣服
士象都过河
甲:以前我老和你爸爸下棋。 乙:我怎么不知道? 甲:有一回我们俩下棋,我还剩一士,你爸爸还剩一象。。。 乙:那不和棋了吗? 甲:是啊,依着我也是和棋,可你爸爸不干,非得接着下不可? 乙:啊??说什么 笑话 呢?那怎么可能下呀! 甲:呵呵,你爸爸有主意。 乙:士象都过河!
人生是杯具-完整版
1.0版:人生是杯具。
2.0版:我的人生就像茶几,上面摆满了杯具。
3.0版:人生像茶几,上面摆满了杯具;人生又像茶杯,本身就是个杯具;人生更像茶叶,终究要被浸泡在杯具之中。
4.0版:人生就像牙缸,你可以把它看成杯具,也可以看成洗具。
捎点衣服和钱
真实 笑话 。。来源生活。。 有同学回家。。我想让他帮我捎点东西。。。 于是便发短信: 给我烧点衣服和钱。
我相机!
一位打扮性感的美女从的士下来的时候,把照相机丢在了后座上。 司机见状,赶忙把头伸出窗外,冲着美女大喊道:小姐,你相机! 美女脸一红,扭过头来骂道:你他妈还像鸭呢! 司机一听,生气的开着车走了。 这时,美女突然想到相机还在车上,于是追着车大喊:师傅,我相机
饭店小姐的幽默
如何看待房市?
和一MM相亲,茶馆里相对而坐,了解过双方的工作、教育、家庭、爱好后,交谈陷入困境, 开始扯些 冷笑话 ,随后聊到了社会经济话题。 我:你是如何看待房市的? MM:(愣了一下,低头沉默了一会儿)还是不要过于频繁比较好
记者? 妓者?
pol.ice:干什么的,这么晚在街上游荡! 小姐: 妓者! pol.ice肃然起敬,一阵崇拜! pol.ice:哪个报社的? 小姐:晚抱! pol.ice:哪个晚报的? 小姐:和男晚抱! pol.ice:河南晚报不错! 小姐:这事只有晚上敢搞! pol.ice:晚上赶稿确实辛苦!要多注意身体! 小姐:... ...
乘8路公交车
有一位黄先生,他儿子叫黄军,他经常带儿子乘8路公交车,所以经常有这样搞笑的镜头:黄先生带着儿子走向车站,看见远处公交站台驶进一辆8路车,立刻对身边的儿子大喊:黄军,快跑,8路来啦!
3G的市场氛围
TD-SCDMA翻译成中文就是:头大-市场低迷啊; WCDMA翻译成中文就是:我才低迷啊; CDMA2000翻译成中文就是:才低迷啊,2000年就低迷了。
你幸福吗?
学生在火车站问人:你幸福吗?,见人就问。 有人说幸福,有人说不。 后来问到一个农民.. 学生:你幸福吗? 农民看了学生几眼,无辜的说道: 俺姓王
政治犯
班主任张老师怒气冲冲地走进教室,厉声说道:你们叫我语文张,我忍了;新来的政治老师范老师,你们为什么叫她政治犯(范)呢?
两个大炸弹
【本笑话谐意,非谐音】 今天早上XXX市XXX公安分局接到群众110举报电话,说在天桥下有两个大炸弹,XXX分局民警与排弹专家一起奔赴现场,在桥梁下发现一个红色布袋。 专家与民警小心翼翼的拆开布袋,里面还有几层报纸包裹,民警一层层拆开,最后发现果然是两个大炸弹:4
南方吃饭的确贵
北方男人到南方吃饭!! 男:馍馍多少钱? 女:摸摸五十. 男:下面呢? 女:一百. 男愤然:水饺呢? 女:睡觉二百. 男惊叫:一碗二百? 女:一晚四百.
赵爽,死了。
赵爽,死了。 他的家人在家里放声大哭:爽啊!爽啊! 他们的邻居看到了后就问他们发生什么事情了。 他们说:爽死了,爽死了。
小时侯把English读为...
小时侯把English 读为应给利息的同学当了行长 读为阴沟里洗的成了小菜贩子 读为因果联系的成了哲学家 读为硬改历史的成了政治家 读为英国里去的成了海外华侨 读成应该累死 的成了打工一簇... ...
7. 中国有哪些著名的数学家
1、华罗庚
华罗庚(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。
他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。
2、冯祖荀
冯祖荀(1880-1940),数学教育家。中国现代数学教育的早期代表人物之一。1911年以后,多次担任北京大学数学系主任,对在中国传播现代数学知识有重要贡献。
在日本留学期间,冯祖荀和当时由北京赴日留学的若干学生发起成立了“北京大学留日学生编译社”,该社“以讲求实学输入文明供政界之研究增国民之知识为宗旨”,选择编译的题材“亦必以纯正精确可适用于中国为主”。
该社出版《学海》杂志,于1908年发刊,总发行所为上海商务印书馆。该刊分甲乙两编,乙编涉及理工农医各科,首期首篇即是冯祖荀译的《物质及以脱论》,《学海》是我国最早的科技译刊之一。
3、熊庆来
熊庆来主要从事函数论方面的研究工作,定义了一个“无穷级函数”,国际上称为“熊氏无穷数”。熊庆来在“函数理论”领域造诣很深。1932年他代表中国第一次出席了瑞士苏黎世国际数学家大会。
1934年,他的论文《关于无穷级整函数与亚纯函数》发表,并以此获得法国国家博士学位,成为第一个获此学位的中国人。这篇论文中,熊庆来所定义的“无穷级函数”,国际上称为“熊氏无穷数”,被载入了世界数学史册,奠定了他在国际数学界的地位。
4、林家翘
林家翘(1916.7.7-2013.1.13),美国国籍,生于中国北京市,原籍福建福州,力学和数学家,天体物理学家,现代应用数学学派的领路人。林家翘致力于通过数学的应用来推动自然科学的发展。
他不仅在流体力学、天体物理等方向上取得了举世公认的成就,而且为应用数学概念的传播不遗余力,0世纪40年代开始的流体力学流动稳定性和湍流理论方面的工作,带动了整整一代人在这一领域的研究探索。
从20世纪60年代开始,进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际学术界所公认,他在应用数学领域作出了多方面的重要贡献,特别是发展了WKBJ方法。
5、陈景润
陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。
1949年至1953年就读于厦门大学数学系,1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。
1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员,中国科学院原数学研究所研究员。1992年任《数学学报》主编。
8. 3位中国数学家和2位数学家
华罗庚
“数学,如音乐一样,以奇才辈出而著称,这些人即便没有受过正规的教育也才华横溢。虽然华罗庚谦虚地避免使用奇才这个词,但它却恰当地描述了这位杰出的中国数学家。” --G·B·Kolata
华罗庚是一个传奇式的人物,是一个自学成才的数学家。
他1910年11月12日出生于江苏省金坛县一个城市贫民的家庭,1985年6月12日,中国数学届陨灭一颗巨星-华罗庚在日本讲学时不幸因心肌梗塞逝世了。
华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于1957年荣获我国科学一等奖。他研究的成果被国际数学界命名为“华氏定理”,“布劳威尔-加当-华定理”。华罗庚一生精勤不倦,奋斗不息,著作很多,研究领域很广。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。
吴文俊
数学家。1919年5月12日生于上海市。1940年毕业于上海交通大学。1947年赴法国留学。在巴黎法国国家科学研究中心进行数学研究,1949年获法国国家科学博士学位。1951年回国。1957年被聘选为中国科学院院士(学部委员)。历任北京大学数学系教授,中国科学院数学研究所研究员及副所长,中国科学院系统科学研究所研究员及副所长、名誉所长、数学机械化研究中心主任。曾任中国数学会理事长、名誉理事长,中国科学院数学物理学部副主任、主任等职。 吴文俊主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人,为中国数学研究和科学事业的发展作出了重要贡献。1952年刊印出版的博士论文《球纤维示性类》是对球纤维理论基本问题的重要贡献。从40年代起示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这方面成果曾获1956年度国家自然科学奖(中国科学院自然科学奖金)一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为“吴方法”),实现了初等几何与微分几何定理的机器证明,居于世界领先地位。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获1978年全国数学大会重大成果奖和1980年中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面,以及代数几何、中国数学史、对策论等研究中也作出了重要贡献
杨乐
数学家。1939年11月10日生于江苏南通。1956年考入北京大学数学系,1962年毕业,同年考取中国科学院数学研究所研究生,1966年研究生毕业后留所工作。曾任中国科学院数学研究所所长、中国数学会秘书长、理事长。现任中国科学院数学研究所研究员、学术委员会主任。1980年当选为中国科学院院士(学部委员)。 杨乐在函数模分布论、辐角分布论、正规族等领域,以其众多极富创造性的重要贡献,20年来一直站在世界最前列,是国际上的领头数学家之一。 一、对整函数、亚纯函数的亏值、亏量函数进行了深入研究 与张广厚合作在亚纯函数的亏值数目与Borel方向数目间首次建立了密切联系;在引进亏函数后,给出有穷下级亚纯函数总亏量的估计,从而证明了其亏函数是可数的;给出亚纯函数结合于导数的总亏量的估计,彻底解决了著名学者D.Drasin70年代提出的3个问题。 二、对正规族作了系统研究,获得了一些新的重要的正规定则 杨乐建立了正规族与不动点之间的联系正规族与微分多项式之间的联系,解决了著名学者W.K.Hayman提出的一个正规族问题等。 三、对整函数和亚纯函数的辐角分布进行了系统、深入的研究 杨乐研究在亚纯函数涉及的导数的辐角分布时,获得了一种新型的奇异方向;对辐角分布与重值间的关系得到了深入的结果;完全刻划了亚纯函数Borel方向的分布规律;与Hayman合作解决了Littlewood的一个猜想。 杨乐的上述各项重要研究成果受到国内外同行的高度评价与许多引用,他所得到的亏量关系,被国外学者称为“杨乐亏量关系‘等。
外国的数学家我想介绍欧拉和高斯
1欧拉
欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身"。
欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。
欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"
欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学。由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了。
1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。
沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。
欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题。
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师。" 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"。
欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等
2高斯
高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。
在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。
在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。
罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。
7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。
在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。
当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。
高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:"你已经超过了我,我没有什么东西可以教你了。"接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。
1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。
布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。
1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时—虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。
1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。"
慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。
为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。
高斯的学术地位,历来为人们推崇得很高。他有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的三位(或四位)数学家之一"(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。
高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18—19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。
虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。
1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。
高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。
9. 辛集教育名人介绍的影响作文
我的经历和记忆中,共青团是很神圣的,是思想先进、积极进取、文化素养深厚、业务技能精湛、对人民对社会满怀责任感的激情洋溢的青年人的集合体,那时候流行“大熔炉”的说法,在这个熔炉中,能更好地实现自己的人生理想和社会价值,能得到更好的锻炼、培养。所以,一接触到团组织,我是满怀崇敬和追求的。 1983年下半年,我刚升入初中,班主任齐记锁老师对我和班上另两名同学印象特别好,因为我们学习认真、成绩好,团结帮助同学,交给我们做的卫生、值日等等劳动,我们都认真进行,一丝不苟。这和我们从小的经历、家庭环境、所受的教育是分不开的。所以,我们三个在齐老师眼里是好学生,他主动和我们谈心,引导我们加入共青团组织。 当时我激情澎湃,现在依然能回忆起来。我感觉对于我这是莫大的荣誉和信任。我从小就是老师同学公认的遵守纪律、学习刻苦、帮助同学、主动做好人好事的标准好学生,所以在小学第一批加入了少先队,获得了全校唯一的束鹿县(今辛集市)优秀少先队员证章,每年的三好学生都有我。所以,一入初中,这种被老师认可的延续,成为我学习和做人的动力。我表达了一定不辜负老师期望和信任,为同学们做好表率的决心。 老师也为了使我们对同学作出好榜样,一天动员我们三人清扫学校院子里的落叶。我毫无怨言,非常卖力气。另一位同学也做得很好,还有一位同学没有参加,也不知道什么原因。齐老师很不高兴,觉得不参加怎么能为同学们作出好榜样呢?于是取消了其候选人资格。我当时也不理解那位同学,也为其惋惜。因为我们这么多年来一直是知心的朋友。 终于我们两个通过了老师和同学们的公认,齐老师在全班同学面前为我们佩戴了团徽,并要求我们天天戴着它,“戴着它,你就会感到自己应该比同学们做得更好,发挥好先锋模范和示范带动作用”。我们也感到确实责任重大、非常神圣。所以更加严格地自我要求,做好人做好事,这种品质一直坚持到今天,我相信也会一直坚持到生命的终点。 到我初中毕业的时候,入团的标准已经大大松动了,为了在初中考高中过程中体现所有的应届同学都很追求进步,最后,学校全部初三同学都加入了共青团,就像现在很多小学一年级的同学,全部戴上了红领巾一样。在我很想不通,觉得是对团组织的一种亵渎或者说不负责任。一个严肃地组织,既不应该把优秀的追求进步的青年拒之门外,但是也不能敞开口子照单全收啊。不然的话,会有什么样的社会影响啊。但是我能做的,只是做好自己该做的事情。 高中很平和,照样交团费,照样开展少量的团的活动,我也不是团干部,也没有什么创见。那时候作为农村的孩子们,在位于乡村的、师资力量极弱的高中,大家的心思都在于努力学习,考取大学。 到了大学,学习压力小了,团的活动也多了。学校有校团委,系里有系团委,系辅导员兼任系团委书记、副书记。每个班也健全了团组织,我们班赵爽是团委书记,从大城市出来的,比我们见识多多了。班上分了三个团小组,赵爽给我做工作,希望我担任一小组组长,我觉得这也是信任,也是舞台,非常爽快地答应了。例行的各项工作,我都努力配合她。后来周学华担任班上团委书记。1991年,全校表彰了一批优秀团员,我还有幸被评为“校优秀团员”,得到了证书,参加了表彰大会,也是非常兴奋,非常受鼓舞。 在大学,校团委也有一些活动,比如社会实践,经济论文征文,演讲比赛,辩论赛,等等,我也参加过一些。感觉全校的校友们真是意气风发的一个群体。 我平时更热衷于科研活动,撰写经济论文、带领同学们开展社会实践和调研、为同学们介绍科研心得、为系里的学生科研活动开展献计献策,这些我所理解的“社会活动”以及在团的活动中的良好表现,使我赢得了系党总支和学生党员们、同学们的信任和好评,终于在大学毕业的前夕,我由共青团员转为预备党员。作为共青团员的旅程结束了,但是1983年——1993年这十年间作为团员的经历,是我人生中难忘的,也是我的价值观、人生观定型的十年。 青年团作为党的后备军,在新时期更有加强自身建设、成为团结、凝聚、引领广大青年的坚强组织和精神家园的必要性。尤其在当前青少年思想、处境等等现实问题越来越复杂化的情况下,在我们党所确立的奋斗目标也大且任务艰巨需要调动包括青年在内的一切积极因素的形势下。这种必要性大大增强了。我们河北省的团省委和各级团委积极投入到“三下乡”活动、“大学生暑期社会实践活动”、“大学生志愿者”活动等等中来