導航:首頁 > 證書轉讓 > 三角恆等變換研究性學習成果

三角恆等變換研究性學習成果

發布時間:2021-07-26 22:37:44

Ⅰ 李善蘭的學術成就

李善蘭在數學研究方面的成就,主要有尖錐術、垛積術和素數論三項。尖錐術理論主要見於《方圓闡幽》、《弧矢啟秘》、《對數探源》三種著作,成書年代約為1845年,當時解析幾何與微積分學尚未傳入中國。李善蘭創立的「尖錐」概念,是一種處理代數問題的幾何模型,他對「尖錐曲線」的描述實質上相當於給出了直線、拋物線、立方拋物線等方程
創造的「尖錐求積術」。相當於冪函數的定積分公式和逐項積分法則。他用「分離元數法」獨立地得出了二項平方根的冪級數展開式結合「尖錐求積術」,得到了π的無窮級數表達式。各種三角函數和反三角函數的展開式,以及對數函數的展開式。
在使用微積分方法處理數學問題方面取得了創造性的成就。垛積術理論主要見於《垛積比類》,寫於1859~1867年間,這是有關高階等差級數的著作。李善蘭從研究中國傳統的垛積問題入手,獲得了一些相當於現代組合數學中的成果。例如,「三角垛有積求高開方廉隅表」和「乘方垛各廉表」實質上就是組合數學中著名的第一種斯特林數和歐拉數。馳名中外的「李善蘭恆等式」。
自20世紀30年代以來,受到國際數學界的普遍關注和贊賞。可以認為,《垛積比類》是早期組合論的傑作。素數論主要見於《考數根法》,發表於1872年,這是中國素數論方面最早的著作。在判別一個自然數是否為素數時,李善蘭證明了著名的費馬素數定理,並指出了它的逆定理不真。
李善蘭對經典力學在中國的傳播作出卓越的貢獻。他將英國人W.胡威立的《初等力學教程》(1833年第2版)筆譯(經艾約瑟口述)為中文,1859年由上海墨海書館以《重學》的書名出版,共20卷。這是第一本系統介紹力學的中譯本。
李善蘭在《重學》一書所寫的序言中。特別強調了動力學的內容:「推其暫如飛炮擊敵,動重學也;推其久如五星繞太陽、月繞地,動重學也。」「動重學之率凡三:曰力、曰質、曰速。力同,則質小者速大,質太者速小;質同,則力小者謎小,力大者速大。」「動重學所推者力生速。凡物不能自動,力加之而動,若動後不復加力,則以平速動;若動後恆加力,則以漸加速動。」「凡物旋動,必環重心,地動是也。二物相連而相繞,必環公重心,月地相攝而動是也。「李善蘭與偉烈亞力合譯英國天文學家J.F.赫歇耳(1792~1871)所著《天文學綱要》一書。中譯本名為《談天》,於1859年刊行。李善蘭執筆時作了刪略。該書不僅把近代天文學第一次系統地介紹到中國。而且引進了有關萬有引力的學說和天體力學的內容。有些力學專門術語的中文譯名,如攝動、章動等。最早見於《談天》。此後,李善蘭又著手翻譯I.牛頓的《自然哲學的數學原理》,雖然書沒譯完,譯稿後也遺失,但自李善蘭把牛頓力學介紹到中國後,西方近代科學的思想體系、觀點和方法,以及近代科學史上的若干成就才為中國學者所運新熟悉,同時也激起中國學者學習自然科學的熱情。
李善蘭在所著《火器真訣》中按照不計空氣阻力拋射體在平面或斜面上射程的公式,提出彈道學的圖解方法。這些結果雖然低於當時歐洲彈道學水平,但反映了自然科學由引進到消化的過程。

Ⅱ 求一篇 初一數學小論文

初一數學知識點歸納
第一單元 位置
1、能在具體的情景中,確定位置的方法,說出某一物體的位置。
2、用「數對」表示位置,對應列上的數字在前,行上的數字在後,記為(x,y)。
3、「數對」表示位置,易錯的是(x,0),(0,y)。
4、 認識方位,上北下南左西右東,兩個事物一個在另一個的方向。

第二單元 分數乘法
一、分數乘整數
1、意義:表示幾個相同分數相加。
2、計算方法:(1)、分母不變,分子和整數相乘。
(2)、當分母和整數可以約分時,要先約分。
二、分數乘分數
1、意義:就是一個分數的幾分之幾。
2、計算方法:(1)、分子乘分子,分母乘分母。。
(2)、分子和分母有能約分的要約分,再計算。
三、運算律的運用
1、整數乘法的運算律對於分數乘法同樣適用。
2、應用運算律簡便計算。
四、倒數
1、乘積是1的兩個數互為倒數。
2、求法:把數的分子和分母的位置顛倒。
3、1的倒數就是1本身,0沒有倒數。
五、解決問題
1、求一個數的幾分之幾。列式:標准量×幾分之幾
2、求一個數多(或少)幾分之幾。列式:標准量×(1±幾分之幾)
標准量土標准量×幾分之幾
3、求一個數占另一個數的幾分之幾。列式:幾分之幾
4、用畫線段圖分析分數乘法應用題的數量關系。

第三單元 分數除法
一、 類型
1、分數除以整數,表示把分數平均分成整數份。
2、分數除以分數,表示b/a中有多少個d/c。
3、整數除以分數,表示a中有多少個c/d。
二、計算方法:除以一個數等於乘這個數的倒數(0除外)。
三、分數除法的意義與整數除法相同,都是乘法的逆運算。
四、分數混合運算順序,簡便演算法。
五、 解決問題
1、甲數是乙數的幾分之幾。列式:甲/乙。
2、乙數的幾分之幾等於甲數。列式:甲數=乙數×幾分之幾。
乙數=甲數÷幾分之幾。
3、甲數比乙數多(或少)幾分之幾。
列式:甲數=乙數×(1土幾分之幾)
甲數=乙數土乙數×幾分之幾。
標准量:「比」字後面的為標准量。
4、若求長方形的長是寬的幾倍:就是求長和寬的比:長/寬。
若求長方形的寬是長的幾分之幾,就是求長和寬的比:長/寬。
六、 比的意義:用兩個數相除,又叫兩個數的比,符號「:」比的結果叫做比值。
1、在a:b中,a叫比的前項,b叫比的後項。
2、 比與除法和分數的關系。a:b=a÷b=a/b。
3、 求比值兩項的單位名稱要統一,比值是一個數,沒有單位。
4、 比的基本性質 a:b=am:bm
a:b=a÷m:b÷m
5、 比化成最簡整數比:
(1) 有分數,前項和後項都乘分母的最小公倍數。
(2) 無分數,前項和後項都除以最大公約數。
(3) 有小數,可先化為整數或分數。
6、解決問題 總量×被分份數/總份數=要求的量

第四單元 圓
一、 圓的認識,由曲線圍成,外形美,易滾動。
1、 圓心,用o表示。
2、 半徑,連接圓心和圓上任意一點的線段叫半徑,用r表示。
3、 直徑,通過圓心並且兩端都在圓上的線段叫直徑,用d表示。
4、 半徑和直徑的關系。
5、 軸對稱圖形及對稱軸,圓又無數條對稱軸,是直徑所在的直線。
二、 圓的周長
1、 圓周率,是周長與直徑的比,是無限不循環小數。
2、 公式:c=πd或c=2πr
3、 已知圓的周長求半徑和直徑。
三、 圓的面積
1、公式 S=πR2
2、已知圓的半徑、直徑或周長能分別求圓的面積。
3、環形面積公式 S=πR2-πr2
4、扇形、弧、圓心角。
5、在周長一定的情況下,圓的面積最大。
在面積一定的情況下,圓的周長最短。
6、 確定起跑線的位置。

第五單元 百分數
1、 百分數的寫法。百分號「%」
2、 百分數的意義:表示一個數是另一個數的百分之幾。
3、 百分數與分數的區別:分數既可以表示一個具體的數,又可以表示兩個數之間的關系。百分數表示一個數是另一個數的百分之幾,只表示兩個數的關系,不是具體的數,不能寫單位名稱。另外百分數的分子可以是小數和大於一百的數。
4、 百分數與分數、小數的互化。
百分數化為小數:去掉百分號,小數點向左移動兩位;
小數化為百分數:小數點向右移動兩位,添上百分號;
百分數化為分數:可先化為分母是一百的分數,能約分的要約分;
分數化為百分數:先把分數化為小數,再化為百分數。
5、解決問題
①、達標率,發芽率的公式。(甲占乙的百分之幾。)
達標率=達標的人數/總人數×100%
發芽率=發芽的數量/種子的總數×100%
②、甲比乙少(或多)百分之幾。確定單位「1」。
③、甲增加了百分之幾是多少?增加了多少?
6、折扣,表示十分之幾,也就是百分之幾十。
折扣問題求實求一個數的百分之幾是多少的問題。
7、納稅。
①、根據國家各種稅法的規定,按照一定的比率,把集體或個人的收入的一部分繳納給國家叫做納稅
②、繳納的稅款叫做應納稅額。按一定的比率納稅叫做稅率。
③、稅率=應納稅款/各種收入×100%
應納稅款=稅率×各種收入。
8、利率。
①、存款的好處。
②、利息=本金×利率×時間
③、取款=本金+利息-利息稅(本金+稅後利息)。

第六單元 統計
一、 扇形統計圖
1、 能反映部分量同總量之間的關系
2、 用整個圓表示總量,用各個扇形表示各部分數量占總量的百分之幾。
3、 利用扇形統計圖計算分析。
二、 合理存款
1、 教育儲蓄。
2、 國債利率
3、 設計存款方案
4、 合理存款

第七單元 數學廣角
雞兔同籠問題
利用解方程的方法解決問題。

初中數學基本方法
1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於r,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行於、不平行於;垂直於、不垂直於;等於、不等於;大(小)於、不大(小)於;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

8、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

9、幾何變換法

在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。

幾何變換包括:(1)平移;(2)旋轉;(3)對稱。

10、客觀性題的解題方法

選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。

要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。

(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。

初中數學總結
初中的數學主要是分代數和幾何兩大部分,兩者在中考中所佔的比例,代數略大於幾何(我不知道你是哪裡的人,反正在我們山東省濟南市的中考中是這樣的)。
代數主要有以下幾點:1,有理數的運算,主要講有理數的三級運算(加減乘除和乘方開方)在這里要注意數字和字母的符號意識,就是,不要受小學數字的影響,一看見字母就不會做題了。2,整式的三級運算,注意符號意識的培養,還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段。4,函數,會識別一次函數、二次函數、反比例函數的圖像,記住他們的特徵,要會根據條件來應用。尤其要注意二次函數,這是中考的重點和難點。應用題里會拿它來出一道難題的
幾何主要有以下幾點:1,識別各種平面圖形和立體圖形,這你應該非常熟悉。2,圖形的平移、旋轉和軸對稱,這個考察你的空間想像的能力,多做一些題。3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。

Ⅲ (Ⅰ)某同學在一次研究性學習中發現,以下五個式子的值都等於一個常數.sin213°+cos217°-sin13°cos17

(Ⅰ)(1)sin213°+cos217°-sin13°cos17°=

1?cos26°
2
+
1+cos34°
2
-sin13°cos17°=1+
1
2
(cos34°-cos26°)-sin13°cos17°
=1+
1
2
(-2)sin30°sin4°-
1
2
(sin30°-sin4°)=
3
4

(2)將該同學的發現推廣為三角恆等式為:sin2α+cos2(30°-α)-sinαcos(30°-α)=
3
4

證明:∵sin2α+cos2(30°-α)-sinαcos(30°-α)=
1?cos2α
2
+
1+cos(60°?2α)
2
-sinαcos(30°-α)
=1+
1
2
[cos(60°-2α)-cos2α]-sinαcos(30°-α)=1+
1
2
(-2)sin30°sin(30°-2α)-
1
2
[sin30°-sin(30°-2α)]=
3
4

∴sin2α+cos2(30°-α)-sinαcos(30°-α)=
3
4
成立.
(Ⅱ)設t=sinx+cosx=

Ⅳ 某同學在一次研究性學習中發現,以下五個式子的值都等於同一個常數。(1)sin 2 13°+cos 2 17°-sin13°

解:(1)選擇(2),計算如下:sin 2 15°+cos 2 15°-sin15°cos15°=1-


Ⅳ 某同學在一次研究性學習中發現,以下五個式子的值都等於同一個常數:①sin 2 13°+cos 2 17°-sin 13°

(1) (2)見解析

Ⅵ 求各種數學物理方面的定理、猜想、悖論,越多越好,只有名字也行,加上簡單的介紹最好。謝謝。

買那本華東師范大學出版社的《高中數學競賽多功能題典》,後面有重要的競賽的定理,概念 。1.平面幾何
幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的幾個特殊點:旁心、費馬點,歐拉線。
幾何不等式。
幾何極值問題。
幾何中的變換:對稱、平移、旋轉。
圓的冪和根軸。
面積方法,復數方法,向量方法,解析幾何方法。

2.代數
周期函數,帶絕對值的函數。
三角公式,三角恆等式,三角方程,三角不等式,反三角函數。
遞歸,遞歸數列及其性質,一階、二階線性常系數遞歸數列的通項公式。
第二數學歸納法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函數。
復數及其指數形式、三角形式,歐拉公式,棣莫弗定理,單位根。
多項式的除法定理、因式分解定理,多項式的相等,整系數多項式的有理根*,多項式的插值公式*。
n次多項式根的個數,根與系數的關系,實系數多項式虛根成對定理。
函數迭代,簡單的函數方程*

3. 初等數論
同餘,歐幾里得除法,裴蜀定理,完全剩餘類,二次剩餘,不定方程和方程組,高斯函數[x],費馬小定理,格點及其性質,無窮遞降法,歐拉定理*,孫子定理*。

4.組合問題
圓排列,有重復元素的排列與組合,組合恆等式。
組合計數,組合幾何。
抽屜原理。
容斥原理。
極端原理。
圖論問題。
集合的劃分。
覆蓋。
平面凸集、凸包及應用*。

悖論的話
希帕索斯悖論與第一次數學危機

希帕索斯悖論的提出與勾股定理的發現密切相關。因此,我們從勾股定理談起。勾股定理是歐氏幾何中最著名的定理之一。天文學家開普勒曾稱其為歐氏幾何兩顆璀璨的明珠之一。它在數學與人類的實踐活動中有著極其廣泛的應用,同時也是人類最早認識到的平面幾何定理之一。在我國,最早的一部天文數學著作《周髀算經》中就已有了關於這一定理的初步認識。不過,在我國對於勾股定理的證明卻是較遲的事情。一直到三國時期的趙爽才用面積割補給出它的第一種證明。

在國外,最早給出這一定理證明的是古希臘的畢達哥拉斯。因而國外一般稱之為「畢達哥拉斯定理」。並且據說畢達哥拉斯在完成這一定理證明後欣喜若狂,而殺牛百隻以示慶賀。因此這一定理還又獲得了一個帶神秘色彩的稱號:「百牛定理」。

畢達哥拉斯

畢達哥拉斯是公元前五世紀古希臘的著名數學家與哲學家。他曾創立了一個合政治、學術、宗教三位一體的神秘主義派別:畢達哥拉斯學派。由畢達哥拉斯提出的著名命題「萬物皆數」是該學派的哲學基石。而「一切數均可表成整數或整數之比」則是這一學派的數學信仰。然而,具有戲劇性的是由畢達哥拉斯建立的畢達哥拉斯定理卻成了畢達哥拉斯學派數學信仰的「掘墓人」。畢達哥拉斯定理提出後,其學派中的一個成員希帕索斯考慮了一個問題:邊長為1的正方形其對角線長度是多少呢?他發現這一長度既不能用整數,也不能用分數表示,而只能用一個新數來表示。希帕索斯的發現導致了數學史上第一個無理數√2 的誕生。小小√2的出現,卻在當時的數學界掀起了一場巨大風暴。它直接動搖了畢達哥拉斯學派的數學信仰,使畢達哥拉斯學派為之大為恐慌。實際上,這一偉大發現不但是對畢達哥拉斯學派的致命打擊。對於當時所有古希臘人的觀念這都是一個極大的沖擊。這一結論的悖論性表現在它與常識的沖突上:任何量,在任何精確度的范圍內都可以表示成有理數。這不但在希臘當時是人們普遍接受的信仰,就是在今天,測量技術已經高度發展時,這個斷言也毫無例外是正確的!可是為我們的經驗所確信的,完全符合常識的論斷居然被小小的√2的存在而推翻了!這應該是多麼違反常識,多麼荒謬的事!它簡直把以前所知道的事情根本推翻了。更糟糕的是,面對這一荒謬人們竟然毫無辦法。這就在當時直接導致了人們認識上的危機,從而導致了西方數學史上一場大的風波,史稱「第一次數學危機」。

歐多克索斯

二百年後,大約在公元前370年,才華橫溢的歐多克索斯建立起一套完整的比例論。他本人的著作已失傳,他的成果被保存在歐幾里德《幾何原本》一書第五篇中。歐多克索斯的巧妙方法可以避開無理數這一「邏輯上的丑聞」,並保留住與之相關的一些結論,從而解決了由無理數出現而引起的數學危機。但歐多克索斯的解決方式,是藉助幾何方法,通過避免直接出現無理數而實現的。這就生硬地把數和量肢解開來。在這種解決方案下,對無理數的使用只有在幾何中是允許的,合法的,在代數中就是非法的,不合邏輯的。或者說無理數只被當作是附在幾何量上的單純符號,而不被當作真正的數。一直到18世紀,當數學家證明了基本常數如圓周率是無理數時,擁護無理數存在的人才多起來。到十九世紀下半葉,現在意義上的實數理論建立起來後,無理數本質被徹底搞清,無理數在數學園地中才真正紮下了根。無理數在數學中合法地位的確立,一方面使人類對數的認識從有理數拓展到實數,另一方面也真正徹底、圓滿地解決了第一次數學危機。

貝克萊悖論與第二次數學危機

第二次數學危機導源於微積分工具的使用。伴隨著人們科學理論與實踐認識的提高,十七世紀幾乎在同一時期,微積分這一銳利無比的數學工具為牛頓、萊布尼茲各自獨立發現。這一工具一問世,就顯示出它的非凡威力。許許多多疑難問題運用這一工具後變得易如翻掌。但是不管是牛頓,還是萊布尼茲所創立的微積分理論都是不嚴格的。兩人的理論都建立在無窮小分析之上,但他們對作為基本概念的無窮小量的理解與運用卻是混亂的。因而,從微積分誕生時就遭到了一些人的反對與攻擊。其中攻擊最猛烈的是英國大主教貝克萊。

貝克萊主教

1734年,貝克萊以「渺小的哲學家」之名出版了一本標題很長的書《分析學家;或一篇致一位不信神數學家的論文,其中審查一下近代分析學的對象、原則及論斷是不是比宗教的神秘、信仰的要點有更清晰的表達,或更明顯的推理》。在這本書中,貝克萊對牛頓的理論進行了攻擊。例如他指責牛頓,為計算比如說 x2 的導數,先將 x 取一個不為0的增量 Δx ,由 (x + Δx)2 - x2 ,得到 2xΔx + (Δx2) ,後再被 Δx 除,得到 2x + Δx ,最後突然令 Δx = 0 ,求得導數為 2x 。這是「依靠雙重錯誤得到了不科學卻正確的結果」。因為無窮小量在牛頓的理論中一會兒說是零,一會兒又說不是零。因此,貝克萊嘲笑無窮小量是「已死量的幽靈」。貝克萊的攻擊雖說出自維護神學的目的,但卻真正抓住了牛頓理論中的缺陷,是切中要害的。

數學史上把貝克萊的問題稱之為「貝克萊悖論」。籠統地說,貝克萊悖論可以表述為「無窮小量究竟是否為0」的問題:就無窮小量在當時實際應用而言,它必須既是0,又不是0。但從形式邏輯而言,這無疑是一個矛盾。這一問題的提出在當時的數學界引起了一定的混亂,由此導致了第二次數學危機的產生。

牛頓與萊布尼茲

針對貝克萊的攻擊,牛頓與萊布尼茲都曾試圖通過完善自己的理論來解決,但都沒有獲得完全成功。這使數學家們陷入了尷尬境地。一方面微積分在應用中大獲成功,另一方面其自身卻存在著邏輯矛盾,即貝克萊悖論。這種情況下對微積分的取捨上到底何去何從呢?

「向前進,向前進,你就會獲得信念!」達朗貝爾吹起奮勇向前的號角,在此號角的鼓舞下,十八世紀的數學家們開始不顧基礎的不嚴格,論證的不嚴密,而是更多依賴於直觀去開創新的數學領地。於是一套套新方法、新結論以及新分支紛紛涌現出來。經過一個多世紀的漫漫征程,幾代數學家,包括達朗貝爾、拉格朗日、貝努力家族、拉普拉斯以及集眾家之大成的歐拉等人的努力,數量驚人前所未有的處女地被開墾出來,微積分理論獲得了空前豐富。18世紀有時甚至被稱為「分析的世紀」。然而,與此同時十八世紀粗糙的,不嚴密的工作也導致謬誤越來越多的局面,不諧和音的刺耳開始震動了數學家們的神經。下面僅舉一無窮級數為例。

無窮級數S=1-1+1-1+1………到底等於什麼?

當時人們認為一方面S=(1-1)+(1-1)+………=0;另一方面,S=1+(1-1)+(1-1)+………=1,那麼豈非0=1?這一矛盾竟使傅立葉那樣的數學家困惑不解,甚至連被後人稱之為數學家之英雄的歐拉在此也犯下難以饒恕的錯誤。他在得到

1 + x + x2 + x3 + ..... = 1/(1- x)

後,令 x = -1,得出

S=1-1+1-1+1………=1/2!

由此一例,即不難看出當時數學中出現的混亂局面了。問題的嚴重性在於當時分析中任何一個比較細致的問題,如級數、積分的收斂性、微分積分的換序、高階微分的使用以及微分方程解的存在性……都幾乎無人過問。尤其到十九世紀初,傅立葉理論直接導致了數學邏輯基礎問題的徹底暴露。這樣,消除不諧和音,把分析重新建立在邏輯基礎之上就成為數學家們迫在眉睫的任務。到十九世紀,批判、系統化和嚴密論證的必要時期降臨了。

柯西

使分析基礎嚴密化的工作由法國著名數學家柯西邁出了第一大步。柯西於1821年開始出版了幾本具有劃時代意義的書與論文。其中給出了分析學一系列基本概念的嚴格定義。如他開始用不等式來刻畫極限,使無窮的運算化為一系列不等式的推導。這就是所謂極限概念的「算術化」。後來,德國數學家魏爾斯特拉斯給出更為完善的我們目前所使用的「ε-δ 」方法。另外,在柯西的努力下,連續、導數、微分、積分、無窮級數的和等概念也建立在了較堅實的基礎上。不過,在當時情況下,由於實數的嚴格理論未建立起來,所以柯西的極限理論還不可能完善。

柯西之後,魏爾斯特拉斯、戴德金、康托爾各自經過自己獨立深入的研究,都將分析基礎歸結為實數理論,並於七十年代各自建立了自己完整的實數體系。魏爾斯特拉斯的理論可歸結為遞增有界數列極限存在原理;戴德金建立了有名的戴德金分割;康托爾提出用有理「基本序列」來定義無理數。1892年,另一個數學家創用「區間套原理」來建立實數理論。由此,沿柯西開辟的道路,建立起來的嚴謹的極限理論與實數理論,完成了分析學的邏輯奠基工作。數學分析的無矛盾性問題歸納為實數論的無矛盾性,從而使微積分學這座人類數學史上空前雄偉的大廈建在了牢固可靠的基礎之上。重建微積分學基礎,這項重要而困難的工作就這樣經過許多傑出學者的努力而勝利完成了。微積分學堅實牢固基礎的建立,結束了數學中暫時的混亂局面,同時也宣布了第二次數學危機的徹底解決。

羅素悖論與第三次數學危機

十九世紀下半葉,康托爾創立了著名的集合論,在集合論剛產生時,曾遭到許多人的猛烈攻擊。但不久這一開創性成果就為廣大數學家所接受了,並且獲得廣泛而高度的贊譽。數學家們發現,從自然數與康托爾集合論出發可建立起整個數學大廈。因而集合論成為現代數學的基石。「一切數學成果可建立在集合論基礎上」這一發現使數學家們為之陶醉。1900年,國際數學家大會上,法國著名數學家龐加萊就曾興高采烈地宣稱:「………藉助集合論概念,我們可以建造整個數學大廈……今天,我們可以說絕對的嚴格性已經達到了……」

康托爾

可是,好景不長。1903年,一個震驚數學界的消息傳出:集合論是有漏洞的!這就是英國數學家羅素提出的著名的羅素悖論。

羅素構造了一個集合S:S由一切不是自身元素的集合所組成。然後羅素問:S是否屬於S呢?根據排中律,一個元素或者屬於某個集合,或者不屬於某個集合。因此,對於一個給定的集合,問是否屬於它自己是有意義的。但對這個看似合理的問題的回答卻會陷入兩難境地。如果S屬於S,根據S的定義,S就不屬於S;反之,如果S不屬於S,同樣根據定義,S就屬於S。無論如何都是矛盾的。

羅素

其實,在羅素之前集合論中就已經發現了悖論。如1897年,布拉利和福爾蒂提出了最大序數悖論。1899年,康托爾自己發現了最大基數悖論。但是,由於這兩個悖論都涉及集合中的許多復雜理論,所以只是在數學界揭起了一點小漣漪,未能引起大的注意。羅素悖論則不同。它非常淺顯易懂,而且所涉及的只是集合論中最基本的東西。所以,羅素悖論一提出就在當時的數學界與邏輯學界內引起了極大震動。如G.弗雷格在收到羅素介紹這一悖論的信後傷心地說:「一個科學家所遇到的最不合心意的事莫過於是在他的工作即將結束時,其基礎崩潰了。羅素先生的一封信正好把我置於這個境地。」戴德金也因此推遲了他的《什麼是數的本質和作用》一文的再版。可以說,這一悖論就象在平靜的數學水面上投下了一塊巨石,而它所引起的巨大反響則導致了第三次數學危機。

危機產生後,數學家紛紛提出自己的解決方案。人們希望能夠通過對康托爾的集合論進行改造,通過對集合定義加以限制來排除悖論,這就需要建立新的原則。「這些原則必須足夠狹窄,以保證排除一切矛盾;另一方面又必須充分廣闊,使康托爾集合論中一切有價值的內容得以保存下來。」1908年,策梅羅在自己這一原則基礎上提出第一個公理化集合論體系,後來經其他數學家改進,稱為ZF系統。這一公理化集合系統很大程度上彌補了康托爾樸素集合論的缺陷。除ZF系統外,集合論的公理系統還有多種,如諾伊曼等人提出的NBG系統等。公理化集合系統的建立,成功排除了集合論中出現的悖論,從而比較圓滿地解決了第三次數學危機。但在另一方面,羅素悖論對數學而言有著更為深刻的影響。它使得數學基礎問題第一次以最迫切的需要的姿態擺到數學家面前,導致了數學家對數學基礎的研究。而這方面的進一步發展又極其深刻地影響了整個數學。如圍繞著數學基礎之爭,形成了現代數學史上著名的三大數學流派,而各派的工作又都促進了數學的大發展等等。

以上簡單介紹了數學史上由於數學悖論而導致的三次數學危機與度過,從中我們不難看到數學悖論在推動數學發展中的巨大作用。有人說:「提出問題就是解決問題的一半」,而數學悖論提出的正是讓數學家無法迴避的問題。它對數學家說:「解決我,不然我將吞掉你的體系!」正如希爾伯特在《論無限》一文中所指出的那樣:「必須承認,在這些悖論面前,我們目前所處的情況是不能長期忍受下去的。人們試想:在數學這個號稱可靠性和真理性的模範里,每一個人所學的、教的和應用的那些概念結構和推理方法竟會導致不合理的結果。如果甚至於數學思考也失靈的話,那麼應該到哪裡去尋找可靠性和真理性呢?」悖論的出現逼迫數學家投入最大的熱情去解決它。而在解決悖論的過程中,各種理論應運而生了:第一次數學危機促成了公理幾何與邏輯的誕生;第二次數學危機促成了分析基礎理論的完善與集合論的創立;第三次數學危機促成了數理邏輯的發展與一批現代數學的產生。數學由此獲得了蓬勃發展,這或許就是數學悖論重要意義之所在吧。

悖論一覽

1. 理發師悖論(羅素悖論):某村只有一人理發,且該村的人都需要理發,理發師規定,給且只給村中不自己理發的人理發。試問:理發師給不給自己理發?

如果理發師給自己理發,則違背了自己的約定;如果理發師不給自己理發,那麼按照他的規定,又應該給自己理發。這樣,理發師陷入了兩難的境地。

2. 芝諾悖論——阿基里斯與烏龜:公元前5世紀,芝諾用他的無窮、連續以及部分和的知識,引發出以下著名的悖論:他提出讓阿基里斯與烏龜之間舉行一場賽跑,並讓烏龜在阿基里斯前頭1000米開始。假定阿基里斯能夠跑得比烏龜快10倍。比賽開始,當阿基里斯跑了1000米時,烏龜仍前於他100米;當阿基里斯跑了下一個100米時,烏龜依然前於他10米……所以,阿基里斯永遠追不上烏龜。

3. 說謊者悖論:公元前6世紀,古希臘克里特島的哲學家伊壁門尼德斯有如此斷言:「所有克里特人所說的每一句話都是謊話。」

如果這句話是真的,那麼也就是說,克里特人伊壁門尼德斯說了一句真話,但是卻與他的真話——所有克里特人所說的每一句話都是謊話——相悖;如果這句話不是真的,也就是說克里特人伊壁門尼德斯說了一句謊話,則真話應是:所有克里特人所說的每一句話都是真話,兩者又相悖。

所以怎樣也難以自圓其說,這就是著名的說謊者悖論。

公元前4世紀,希臘哲學家又提出了一個悖論:「我現在正在說的這句話是假的。」同上,這又是難以自圓其說!

說謊者悖論至今仍困擾著數學家和邏輯學家。說謊者悖論有許多形式。如:我預言:「你下面要講的話是『不』,對不對?用『是』或『不是』來回答。」

又如,「我的下一句話是錯(對)的,我的上一句話是對(錯)的」。

4. 跟無限相關的悖論:

{1,2,3,4,5,…}是自然數集:

{1,4,9,16,25,…}是自然數平方的數集。

這兩個數集能夠很容易構成一一對應,那麼,在每個集合中有一樣多的元素嗎?

5. 伽利略悖論:我們都知道整體大於部分。由線段BC上的點往頂點A連線,每一條線都會與線段DE(D點在AB上,E點在AC上)相交,因此可得DE與BC一樣長,與圖矛盾。為什麼?

6. 預料不到的考試的悖論:一位老師宣布說,在下一星期的五天內(星期一到星期五)的某一天將進行一場考試,但他又告訴班上的同學:「你們無法知道是哪一天,只有到了考試那天的早上八點鍾才通知你們下午一點鍾考。」

你能說出為什麼這場考試無法進行嗎?

7. 電梯悖論:在一幢摩天大樓里,有一架電梯是由電腦控制運行的,它每層樓都停,且停留的時間都相同。然而,辦公室靠近頂層的王先生說:「每當我要下樓的時候,都要等很久。停下的電梯總是要上樓,很少有下樓的。真奇怪!」李小姐對電梯也很不滿意,她在接近底層的辦公室上班,每天中午都要到頂樓的餐廳吃飯。她說:「不論我什麼時候要上樓,停下來的電梯總是要下樓,很少有上樓的。真讓人煩死了!」

這究竟是怎麼回事?電梯明明在每層停留的時間都相同,可為什麼會讓接近頂樓和底層的人等得不耐煩?

8. 硬幣悖論:兩枚硬幣平放在一起,頂上的硬幣繞下方的硬幣轉動半圈,結果硬幣中圖案的位置與開始時一樣;然而,按常理,繞過圓周半圈的硬幣的圖案應是朝下的才對!你能解釋為什麼嗎?

9. 谷堆悖論:顯然,1粒穀子不是堆;

如果1粒穀子不是堆,那麼2粒穀子也不是堆;

如果2粒穀子不是堆,那麼3粒穀子也不是堆;

……

如果99999粒穀子不是堆,那麼100000粒穀子也不是堆;

……

10. 寶塔悖論:如果從一磚塔中抽取一塊磚,它不會塌;抽兩塊磚,它也不會塌;……抽第N塊磚時,塔塌了。現在換一個地方開始抽磚,同第一次不一樣的是,抽第M塊磚是,塔塌了。再換一個地方,塔塌時少了L塊磚。以此類推,每換一個地方,塔塌時少的磚塊數都不盡相同。那麼到底抽多少塊磚塔才會塌呢?

累死我拉!!
希望可以幫到你~~
新年快樂!!

Ⅶ 某同學在一次研究性學習中發現,以下五個式子的值都等於同一個常數:① ;② ;③ ;④ ;⑤ .(1)

(1) .

Ⅷ 某同學在一次研究性學習中發現,以下五個式子的值都等於同一個常數.(1)sin213°+cos217°-sin13°cos1

選擇(2),計算如下:
sin215°+cos215°-sin15°cos15°=1-

1
2
sin30°=
3
4
,故 這個常數為
3
4

(Ⅱ)根據(Ⅰ)的計算結果,將該同學的發現推廣,得到三角恆等式sin2α+cos2(30°-α)-sinαcos(30°-α)=
3
4

證明:(方法一)sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(

Ⅸ 要搞一個有關高中數學的課題

數學研究性學習課題

1、銀行存款利息和利稅的調查
2、氣象學中的數學應用問題
3、如何開發解題智慧
4、多面體歐拉定理的發現
5、購房貸款決策問題
6、有關房子粉刷的預算
7、日常生活中的悖論問題
8、關於數學知識在物理上的應用探索
9、投資人壽保險和投資銀行的分析比較
10、黃金數的廣泛應用
11、編程中的優化演算法問題
12、餘弦定理在日常生活中的應用
13、證券投資中的數學
14、環境規劃與數學
15、如何計算一份試卷的難度與區分度
16、數學的發展歷史
17、以「養老金」問題談起
18、中國體育彩票中的數學問題
19、「開放型題」及其思維對策
20、解答應用題的思維方法
21、高中數學的學習活動——解題分析 A)從嘗試到嚴謹、B)從一個到一類
22、高中數學的學習活動——解題後的反思——開發解題智慧
23、中國電腦福利彩票中的數學問題
24、各鎮中學生生活情況
25、城鎮/農村飲食構成及優化設計
26、如何安置軍事偵察衛星
27、給人與人的關系(友情)評分
28、丈量成功大廈
29、尋找人的情緒變化規律
30、如何存款最合算
31、哪家超市最便宜
32、數學中的黃金分割
33、通訊網路收費調查統計
34、數學中的最優化問題
35、水庫的來水量如何計算
36、計算器對運算能力影響
37、數學靈感的培養
38、如何提高數學課堂效率
39、二次函數圖象特點應用
40、統計月降水量
41、如何合理抽稅
42、市區車輛構成
43、計程車車費的合理定價
44、衣服的價格、質地、品牌,左右消費者觀念多少?
45、購房貸款決策問題
研究性學習的問題與課題 (來自《數學百草園》,作者葉挺彪)
《 立幾部分 》

問題1
平幾中證點共線、線共點往往較難,通常出現在競賽中。而立幾中的這類問題卻是非簡單,主要的依據僅僅是平面的基本性質:兩個平面的公共點共線。可否將平幾問題的這類問題進行升維處理。即把它轉化為立幾問世題加以解答。

問題2
用運變化的觀點對待數學問題,將會發現問題的實質及問題之間的聯系,但對於立幾中的這方面還顯得不夠,可以通過整理、收集這方面的材料加以綜合研究。

問題3 作為降維處理的一個例子:可考慮異面直線距離的幾種轉化,如轉化為線面距、點線距、面面距等。

問題4
異面直線的距離是:異面直線上兩動點的連線中最短的線段長度。所以可以用函數的觀點來解決。即建立一個兩動點的距離函數,利用求函數的最小值達到目的。

問題5
立幾中的許多問題可化歸為確定點在平面內的射影位置。如點面距、點線距、體積等。於是確定點在平面內的射影顯得非常重要,試給出一種通用方法進行確定。

問題6
作二面角的平面角是立幾中的難點,常用方法有:定義法、三垂線法、垂面法。其實質是以點定位,即當點在二面角的棱上時用定義法、當點在一個半平面內時用三垂線法、當點在空間時時用垂面法。問題似乎已解決。但對於較復雜的圖形,由於點的個數較多,以哪個點作為定位點就難以決定。試給出以線定位來作二面角的平面角的方法及步驟。

問題7
等積變換在立幾中大顯上內身手,而非等積變換是它的一般情形,作用更大,卻被人們所忽視。利用非等積變換能解決求體積、求距離、證明位置關系等問題。試利用類比平幾的相應方法探索之。

問題8 將三垂線定理進行推廣與引伸,即所謂三面角的正、餘弦定理及其特例直三面角的正、餘弦定理。以開闊眼界。

《解幾部分 》

問題9
對於數學的公式,我們應當做到三會:即正用、變用和逆用。如解幾中有許多公式如兩點距離、點到直線距離公式,定比分點、斜率公式等,考慮其逆用,就可得到構造法證題,試研究解幾中的各種公式逆用,以充實構造法證明。

問題10
我們對待任何問題(包括解決數學問題)往往用自己的審美意識去審視,以調節自己的行動計劃。在解幾中探索與搜集以美的啟迪思維的題材,加以整理與綜合研究。

問題11 整理解幾中常常被人忽視和特例而使問題的解決不完整的有素材,如用點斜式而忽視斜率存在,截距式而忽視截距為零等。

問題12 利用角參數與距離參數的相互轉化以實現命題的演變,達到以點帶面,觸類旁通的目的。

問題13 將與中點有關的問題及解決方法進行推廣,使之適用於定比分點的相應問題與方法。

問題14 研究求軌跡問題中的坐標轉移法與參數法的相互聯系。

問題15 關於斜率為 1的特殊直線的對稱問題的簡捷解法中,概括出適用范圍更加廣闊的解題策略。

問題16
解決橢圓問題不如圓容易,能否使問題化歸,即橢圓問題的圓化處理,進而研究圓錐曲線(包括其退化情形如兩條相交線,平行線等)的圓化處理。

問題17 整理與焦半徑有關的問題,並將之「純代數化」,進而研究其「純代數解法」,從中探索新方法。

問題18 把點差法解中點弦問題進行推廣,使之能解決「定比分點弦」問題。

問題19 求軌跡問題中,純粹性的簡捷判別。

問題20 在定比分點公式、弦長公式、點到直線的距離公式的推導過程中隱含著「射影思想」,擴大這思想在解幾中的地位或功能。

問題21 對平移變換的解題功能進行綜述。

問題22
與中點弦有關的圓錐曲線中的參數范圍確定問題,往往需要建立不等式進行求解,各種方法中以點在曲線內部條件為隹。試將這方法推廣到定比分點弦的情形。

《函數部分 》

問題23 空集是一切集合的子集,但在解決關集合問題時,常常忽略這一事實。試整理這方面的各類問題。

問題24 整理求定義域的規則及類型(特別是復合函數的類型)。

問題25
求函數的值域、單調區間、最小正周期等有關問題時,往往希望將自變數在一個地方出現,所以變數集中的原則就提供了解題的方向,試研究所有與變數集中原則有關的類型(如配方法、帶余除法等)。

問題26 總結求函數值域的有關方法,探索判別式法的一般情形——實根分布的條件用於求值域。

問題27 利用條件最值的幾何背景進行命題演變,與命題分類。

問題28
回顧解指數、對數方程(不等式)的化歸實質(利用外層函數的單調性去掉兩邊的外層函數的符號),我們稱之為「給函數更衣」,於是我們可以隨心所欲地將方程(不等式)進行演變。你能利用這一點編擬一些好題嗎。

問題29 探求「反函數是它本身」的所有函數。從而可解決一類含抽象函數的方程,概括所有這種方程的類型。

問題30 在原點有定義的奇函數,其隱含條件是f(0)=0,試以這一事實編擬、演變命題。

問題31 把兩面鏡子相對而立,若你處於其中,將看到許多肖像位置呈現出周期性,你能把這一事實數學化嗎?若把軸對稱改為中心對稱又怎麼結論?

問題32
對於含參數的方程(不等式),若已知解的情況確定參數的取值范圍,我們通常用函數思想及數形結合思想進行分離參數,試概括問題的類型,總結分離參數法。

問題33 改變含參數的方程(不等式)的主元與參數的地位進行命題的演變。探索換主元的功能。

《三角部分 》

問題34 數形結合是數學中的重要的思想方法之一,而單位圓中的三角函數線卻被人們所遺忘,試探它在解決三角問題中的數形結合功能。

問題35 概括sinx+cosx=a時相應x的取值范圍,及問題條件中涉及這一條件時的所隱含的結論。

問題36 整理三角代換的的類型,及其能解決的哪幾類問題。

問題37 三角最值的構造證法中,型如 ,可轉化成:1)動點(ccosx.asinx)與定點(-d,-b)連線的斜率;2)或先化為
從而轉化為動點(cosx.sinx)與定點 連線斜率等,考慮各種構造法的背景的聯系,能否以此聯系用於解決幾何問題。

問題38 一個三角公式不僅能正用,還需會逆用與變用,試將後者整理之。

問題39 概括三角恆等式證明中的一次弦式、高次弦式和切式證明的常用方法。

問題40
三角形的形狀判定中,對於含邊角混合關系的條件,利用正、餘弦定理總有兩種轉化,即轉化為角關系或邊關系,探索其中一種對另一種解法的啟示功能。

《不等式部分 》

問題41
一個數學命題若從正面入手分類情況較多,運算量較大,甚至無法求解,此時不妨考慮其反面進行求解得解集,然後再取其補集即得原命題的解。我們把它稱為「補集法」,試整理常見的類型的補集法。

問題42 概括使用均值不等式求最值問題中的「湊」的技巧 ,及拆項、添項的技巧。

問題43 觀察式子的結構特徵,如分析式子中的指數、系數等啟示證題的的方向。

問題44 探求一此著名不等式(如柯西不等式、排序不等式等)和多種證法,尋找其背景以加深對不等式的理解。

問題45 整理常用的一此代換(三角代換、均值代換等),探索它在命題轉化中的功能。

問題46 考慮均值不等式的變用,及改變之後的不等式的背景意義。

問題47 分母為多項式的輪換對稱不等式,由於難以參於通分,證明往往較難。探求一種代換,將分母為多項式的轉化為單項式。

問題48 探索絕對值不等式和物理模擬法

如果還有什麼相關的課題,請各位同行提出

Ⅹ 求高中數學研究課題

高中數學研究性學習課題選題參考

作者:德化一中數學組

數學研究性學習課題

1、銀行存款利息和利稅的調查
2、氣象學中的數學應用問題
3、如何開發解題智慧
4、多面體歐拉定理的發現
5、購房貸款決策問題
6、有關房子粉刷的預算
7、日常生活中的悖論問題
8、關於數學知識在物理上的應用探索
9、投資人壽保險和投資銀行的分析比較
10、黃金數的廣泛應用
11、編程中的優化演算法問題
12、餘弦定理在日常生活中的應用
13、證券投資中的數學
14、環境規劃與數學
15、如何計算一份試卷的難度與區分度
16、數學的發展歷史
17、以「養老金」問題談起
18、中國體育彩票中的數學問題
19、「開放型題」及其思維對策
20、解答應用題的思維方法
21、高中數學的學習活動——解題分析 A)從嘗試到嚴謹、B)從一個到一類
22、高中數學的學習活動——解題後的反思——開發解題智慧
23、中國電腦福利彩票中的數學問題
24、各鎮中學生生活情況
25、城鎮/農村飲食構成及優化設計
26、如何安置軍事偵察衛星
27、給人與人的關系(友情)評分
28、丈量成功大廈
29、尋找人的情緒變化規律
30、如何存款最合算
31、哪家超市最便宜
32、數學中的黃金分割
33、通訊網路收費調查統計
34、數學中的最優化問題
35、水庫的來水量如何計算
36、計算器對運算能力影響
37、數學靈感的培養
38、如何提高數學課堂效率
39、二次函數圖象特點應用
40、統計月降水量
41、如何合理抽稅
42、市區車輛構成
43、計程車車費的合理定價
44、衣服的價格、質地、品牌,左右消費者觀念多少?
45、購房貸款決策問題
研究性學習的問題與課題 (來自《數學百草園》,作者葉挺彪)
《 立幾部分 》

問題1
平幾中證點共線、線共點往往較難,通常出現在競賽中。而立幾中的這類問題卻是非簡單,主要的依據僅僅是平面的基本性質:兩個平面的公共點共線。可否將平幾問題的這類問題進行升維處理。即把它轉化為立幾問世題加以解答。

問題2
用運變化的觀點對待數學問題,將會發現問題的實質及問題之間的聯系,但對於立幾中的這方面還顯得不夠,可以通過整理、收集這方面的材料加以綜合研究。

問題3 作為降維處理的一個例子:可考慮異面直線距離的幾種轉化,如轉化為線面距、點線距、面面距等。

問題4
異面直線的距離是:異面直線上兩動點的連線中最短的線段長度。所以可以用函數的觀點來解決。即建立一個兩動點的距離函數,利用求函數的最小值達到目的。

問題5
立幾中的許多問題可化歸為確定點在平面內的射影位置。如點面距、點線距、體積等。於是確定點在平面內的射影顯得非常重要,試給出一種通用方法進行確定。

問題6
作二面角的平面角是立幾中的難點,常用方法有:定義法、三垂線法、垂面法。其實質是以點定位,即當點在二面角的棱上時用定義法、當點在一個半平面內時用三垂線法、當點在空間時時用垂面法。問題似乎已解決。但對於較復雜的圖形,由於點的個數較多,以哪個點作為定位點就難以決定。試給出以線定位來作二面角的平面角的方法及步驟。

問題7
等積變換在立幾中大顯上內身手,而非等積變換是它的一般情形,作用更大,卻被人們所忽視。利用非等積變換能解決求體積、求距離、證明位置關系等問題。試利用類比平幾的相應方法探索之。

問題8 將三垂線定理進行推廣與引伸,即所謂三面角的正、餘弦定理及其特例直三面角的正、餘弦定理。以開闊眼界。

《解幾部分 》

問題9
對於數學的公式,我們應當做到三會:即正用、變用和逆用。如解幾中有許多公式如兩點距離、點到直線距離公式,定比分點、斜率公式等,考慮其逆用,就可得到構造法證題,試研究解幾中的各種公式逆用,以充實構造法證明。

問題10
我們對待任何問題(包括解決數學問題)往往用自己的審美意識去審視,以調節自己的行動計劃。在解幾中探索與搜集以美的啟迪思維的題材,加以整理與綜合研究。

問題11 整理解幾中常常被人忽視和特例而使問題的解決不完整的有素材,如用點斜式而忽視斜率存在,截距式而忽視截距為零等。

問題12 利用角參數與距離參數的相互轉化以實現命題的演變,達到以點帶面,觸類旁通的目的。

問題13 將與中點有關的問題及解決方法進行推廣,使之適用於定比分點的相應問題與方法。

問題14 研究求軌跡問題中的坐標轉移法與參數法的相互聯系。

問題15 關於斜率為 1的特殊直線的對稱問題的簡捷解法中,概括出適用范圍更加廣闊的解題策略。

問題16
解決橢圓問題不如圓容易,能否使問題化歸,即橢圓問題的圓化處理,進而研究圓錐曲線(包括其退化情形如兩條相交線,平行線等)的圓化處理。

問題17 整理與焦半徑有關的問題,並將之「純代數化」,進而研究其「純代數解法」,從中探索新方法。

問題18 把點差法解中點弦問題進行推廣,使之能解決「定比分點弦」問題。

問題19 求軌跡問題中,純粹性的簡捷判別。

問題20 在定比分點公式、弦長公式、點到直線的距離公式的推導過程中隱含著「射影思想」,擴大這思想在解幾中的地位或功能。

問題21 對平移變換的解題功能進行綜述。

問題22
與中點弦有關的圓錐曲線中的參數范圍確定問題,往往需要建立不等式進行求解,各種方法中以點在曲線內部條件為隹。試將這方法推廣到定比分點弦的情形。

《函數部分 》

問題23 空集是一切集合的子集,但在解決關集合問題時,常常忽略這一事實。試整理這方面的各類問題。

問題24 整理求定義域的規則及類型(特別是復合函數的類型)。

問題25
求函數的值域、單調區間、最小正周期等有關問題時,往往希望將自變數在一個地方出現,所以變數集中的原則就提供了解題的方向,試研究所有與變數集中原則有關的類型(如配方法、帶余除法等)。

問題26 總結求函數值域的有關方法,探索判別式法的一般情形——實根分布的條件用於求值域。

問題27 利用條件最值的幾何背景進行命題演變,與命題分類。

問題28
回顧解指數、對數方程(不等式)的化歸實質(利用外層函數的單調性去掉兩邊的外層函數的符號),我們稱之為「給函數更衣」,於是我們可以隨心所欲地將方程(不等式)進行演變。你能利用這一點編擬一些好題嗎。

問題29 探求「反函數是它本身」的所有函數。從而可解決一類含抽象函數的方程,概括所有這種方程的類型。

問題30 在原點有定義的奇函數,其隱含條件是f(0)=0,試以這一事實編擬、演變命題。

問題31 把兩面鏡子相對而立,若你處於其中,將看到許多肖像位置呈現出周期性,你能把這一事實數學化嗎?若把軸對稱改為中心對稱又怎麼結論?

問題32
對於含參數的方程(不等式),若已知解的情況確定參數的取值范圍,我們通常用函數思想及數形結合思想進行分離參數,試概括問題的類型,總結分離參數法。

問題33 改變含參數的方程(不等式)的主元與參數的地位進行命題的演變。探索換主元的功能。

《三角部分 》

問題34 數形結合是數學中的重要的思想方法之一,而單位圓中的三角函數線卻被人們所遺忘,試探它在解決三角問題中的數形結合功能。

問題35 概括sinx+cosx=a時相應x的取值范圍,及問題條件中涉及這一條件時的所隱含的結論。

問題36 整理三角代換的的類型,及其能解決的哪幾類問題。

問題37 三角最值的構造證法中,型如 ,可轉化成:1)動點(ccosx.asinx)與定點(-d,-b)連線的斜率;2)或先化為
從而轉化為動點(cosx.sinx)與定點 連線斜率等,考慮各種構造法的背景的聯系,能否以此聯系用於解決幾何問題。

問題38 一個三角公式不僅能正用,還需會逆用與變用,試將後者整理之。

問題39 概括三角恆等式證明中的一次弦式、高次弦式和切式證明的常用方法。

問題40
三角形的形狀判定中,對於含邊角混合關系的條件,利用正、餘弦定理總有兩種轉化,即轉化為角關系或邊關系,探索其中一種對另一種解法的啟示功能。

《不等式部分 》

問題41
一個數學命題若從正面入手分類情況較多,運算量較大,甚至無法求解,此時不妨考慮其反面進行求解得解集,然後再取其補集即得原命題的解。我們把它稱為「補集法」,試整理常見的類型的補集法。

問題42 概括使用均值不等式求最值問題中的「湊」的技巧 ,及拆項、添項的技巧。

問題43 觀察式子的結構特徵,如分析式子中的指數、系數等啟示證題的的方向。

問題44 探求一此著名不等式(如柯西不等式、排序不等式等)和多種證法,尋找其背景以加深對不等式的理解。

問題45 整理常用的一此代換(三角代換、均值代換等),探索它在命題轉化中的功能。

問題46 考慮均值不等式的變用,及改變之後的不等式的背景意義。

問題47 分母為多項式的輪換對稱不等式,由於難以參於通分,證明往往較難。探求一種代換,將分母為多項式的轉化為單項式。

問題48 探索絕對值不等式和物理模擬法

如果還有什麼相關的課題,請各位同行提出。

與三角恆等變換研究性學習成果相關的資料

熱點內容
學校矛盾糾紛排查化解方案 瀏覽:752
衛生院公共衛生服務績效考核總結 瀏覽:490
郴州學府世家糾紛 瀏覽:197
馬鞍山ok論壇怎麼刪除帖子 瀏覽:242
馬鞍山恆生陽光集團 瀏覽:235
麻城工商局領導成員 瀏覽:52
鄉級公共衛生服務績效考核方案 瀏覽:310
樂聚投訴 瀏覽:523
輪子什麼時候發明 瀏覽:151
馬鞍山陶世宏 瀏覽:16
馬鞍山茂 瀏覽:5
通遼工商局咨詢電話 瀏覽:304
誰發明的糍粑 瀏覽:430
國家公共文化服務示範區 瀏覽:646
pdf設置有效期 瀏覽:634
廣告詞版權登記 瀏覽:796
基本公共衛生服務考核方案 瀏覽:660
公共服務平台建設領導小組 瀏覽:165
人類創造了那些機器人 瀏覽:933
公共文化服務保障法何時實施 瀏覽:169
© Arrange www.jhzxd.com 2006-2021
溫馨提示:資料來源於互聯網,僅供參考