導航:首頁 > 證書轉讓 > 20世紀的三大理論成果

20世紀的三大理論成果

發布時間:2021-01-31 09:19:29

1. 20世紀三大發現是什麼

1.量子學理論 2.相對論 3.DNA結構

1.馬克斯·普朗克(Max Planck)提出量子概念100多年了,在他關於熱輻射的經典論文中,普朗克假定振動系統的總能量不能連續改變,而是以不連續的能量子形式從一個值跳到另一個值。能量子的概念太激進了,普朗克後來將它擱置下來。隨後,愛因斯坦在1905年(這一年對他來說是非凡的一年)認識到光量子化的潛在意義。不過量子的觀念太離奇了,後來幾乎沒有根本性的進展。現代量子理論的創立則是嶄新的一代物理學家花了20多年時間建立的。

量子物理實際上包含兩個方面。一個是原子層次的物質理論:量子力學,正是它我們才能理解和操縱物質世界;另一個是量子場論,它在科學中起到一個完全不同的作用。

舊量子論

量子革命的導火線不是對物質的研究,而是輻射問題。具體的挑戰是理解黑體(即某種熱的物體)輻射的光譜。烤過火的人都很熟悉這樣一種現象:熱的物體發光,越熱發出的光越明亮。光譜的范圍很廣,當溫度升高時,光譜的峰值從紅線向黃線移動,然後又向藍線移動(這些不是我們能直接看見的)。

結合熱力學和電磁學的概念似乎可以對光譜的形狀作出解釋,不過所有的嘗試均以失敗告終。然而,普朗克假定振動電子輻射的光的能量是量子化的,從而得到一個表達式,與實驗符合得相當完美。但是他也充分認識到,理論本身是很荒唐的,就像他後來所說的那樣:「量子化只不過是一個走投無路的做法」。

普朗克將他的量子假設應用到輻射體表面振子的能量上,如果沒有新秀阿爾伯特·愛因斯坦(Albert Einstein),量子物理恐怕要至此結束。1905年,他毫不猶豫的斷定:如果振子的能量是量子化的,那麼產生光的電磁場的能量也應該是量子化的。盡管麥克斯韋理論以及一個多世紀的權威性實驗都表明光具有波動性,愛因斯坦的理論還是蘊含了光的粒子性行為。隨後十多年的光電效應實驗顯示僅當光的能量到達一些離散的量值時才能被吸收,這些能量就像是被一個個粒子攜帶著一樣。光的波粒二象性取決於你觀察問題的著眼點,這是始終貫穿於量子物理且令人頭痛的實例之一,它成為接下來20年中理論上的難題。

輻射難題促成了通往量子理論的第一步,物質悖論則促成了第二步。眾所周知,原子包含正負兩種電荷的粒子,異號電荷相互吸引。根據電磁理論,正負電荷彼此將螺旋式的靠近,輻射出光譜范圍寬廣的光,直到原子坍塌為止。

接著,又是一個新秀尼爾斯·玻爾(Niels Bohr)邁出了決定性的一步。1913年,玻爾提出了一個激進的假設:原子中的電子只能處於包含基態在內的定態上,電子在兩個定態之間躍遷而改變它的能量,同時輻射出一定波長的光,光的波長取決於定態之間的能量差。結合已知的定律和這一離奇的假設,玻爾掃清了原子穩定性的問題。玻爾的理論充滿了矛盾,但是為氫原子光譜提供了定量的描述。他認識到他的模型的成功之處和缺陷。憑借驚人的預見力,他聚集了一批物理學家創立了新的物理學。一代年輕的物理學家花了12年時間終於實現了他的夢想。

開始時,發展玻爾量子論(習慣上稱為舊量子論)的嘗試遭受了一次又一次的失敗。接著一系列的進展完全改變了思想的進程。

量子力學史

1923年路易·德布羅意(Louis de Broglie)在他的博士論文中提出光的粒子行為與粒子的波動行為應該是對應存在的。他將粒子的波長和動量聯系起來:動量越大,波長越短。這是一個引人入勝的想法,但沒有人知道粒子的波動性意味著什麼,也不知道它與原子結構有何聯系。然而德布羅意的假設是一個重要的前奏,很多事情就要發生了。

1924年夏天,出現了又一個前奏。薩地揚德拉·N·玻色(Satyendra N. Bose)提出了一種全新的方法來解釋普朗克輻射定律。他把光看作一種無(靜)質量的粒子(現稱為光子)組成的氣體,這種氣體不遵循經典的玻耳茲曼統計規律,而遵循一種建立在粒子不可區分的性質(即全同性)上的一種新的統計理論。愛因斯坦立即將玻色的推理應用於實際的有質量的氣體從而得到一種描述氣體中粒子數關於能量的分布規律,即著名的玻色-愛因斯坦分布。然而,在通常情況下新老理論將預測到原子氣體相同的行為。愛因斯坦在這方面再無興趣,因此這些結果也被擱置了10多年。然而,它的關鍵思想——粒子的全同性,是極其重要的。

突然,一系列事件紛至沓來,最後導致一場科學革命。從1925年元月到1928年元月:

·沃爾夫剛·泡利(Wolfgang Pauli)提出了不相容原理,為周期表奠定了理論基礎。

·韋納·海森堡(Werner Heisenberg)、馬克斯·玻恩(Max Born)和帕斯庫爾·約當(Pascual Jordan)提出了量子力學的第一個版本,矩陣力學。人們終於放棄了通過系統的方法整理可觀察的光譜線來理解原子中電子的運動這一歷史目標。

·埃爾溫·薛定諤(Erwin Schrodinger)提出了量子力學的第二種形式,波動力學。在波動力學中,體系的狀態用薛定諤方程的解——波函數來描述。矩陣力學和波動力學貌似矛盾,實質上是等價的。

·電子被證明遵循一種新的統計規律,費米-狄拉克統計。人們進一步認識到所有的粒子要麼遵循費米-狄拉克統計,要麼遵循玻色-愛因斯坦統計,這兩類粒子的基本屬性很不相同。

·海森堡闡明測不準原理。

·保爾·A·M·狄拉克(Paul A. M. Dirac)提出了相對論性的波動方程用來描述電子,解釋了電子的自旋並且預測了反物質。

·狄拉克提出電磁場的量子描述,建立了量子場論的基礎。

·玻爾提出互補原理(一個哲學原理),試圖解釋量子理論中一些明顯的矛盾,特別是波粒二象性。

量子理論的主要創立者都是年輕人。1925年,泡利25歲,海森堡和恩里克·費米(Enrico Fermi)24歲,狄拉克和約當23歲。薛定諤是一個大器晚成者,36歲。玻恩和玻爾年齡稍大一些,值得一提的是他們的貢獻大多是闡釋性的。愛因斯坦的反應反襯出量子力學這一智力成果深刻而激進的屬性:他拒絕自己發明的導致量子理論的許多關鍵的觀念,他關於玻色-愛因斯坦統計的論文是他對理論物理的最後一項貢獻,也是對物理學的最後一項重要貢獻。

創立量子力學需要新一代物理學家並不令人驚訝,開爾文爵士在祝賀玻爾1913年關於氫原子的論文的一封書信中表述了其中的原因。他說,玻爾的論文中有很多真理是他所不能理解的。開爾文認為基本的新物理學必將出自無拘無束的頭腦。

1928年,革命結束,量子力學的基礎本質上已經建立好了。後來,Abraham Pais以軼事的方式記錄了這場以狂熱的節奏發生的革命。其中有一段是這樣的:1925年,Samuel Goudsmit和George Uhlenbeck就提出了電子自旋的概念,玻爾對此深表懷疑。10月玻爾乘火車前往荷蘭的萊頓參加亨德里克·A·洛倫茲(Hendrik A. Lorentz)的50歲生日慶典,泡利在德國的漢堡碰到玻爾並探詢玻爾對電子自旋可能性的看法;玻爾用他那著名的低調評價的語言回答說,自旋這一提議是「非常,非常有趣的」。後來,愛因斯坦和Paul Ehrenfest在萊頓碰到了玻爾並討論了自旋。玻爾說明了自己的反對意見,但是愛因斯坦展示了自旋的一種方式並使玻爾成為自旋的支持者。在玻爾的返程中,遇到了更多的討論者。當火車經過德國的哥挺根時,海森堡和約當接站並詢問他的意見,泡利也特意從漢堡格趕到柏林接站。玻爾告訴他們自旋的發現是一重大進步。

量子力學的創建觸發了科學的淘金熱。早期的成果有:1927年海森堡得到了氦原子薛定諤方程的近似解,建立了原子結構理論的基礎;John Slater,Douglas Rayner Hartree,和Vladimir Fock隨後又提出了原子結構的一般計算技巧;Fritz London和Walter Heitler解決了氫分子的結構,在此基礎上,Linus Pauling建立了理論化學;Arnold Sommerfeld和泡利建立了金屬電子理論的基礎,Felix Bloch創立了能帶結構理論;海森堡解釋了鐵磁性的起因。1928年George Gamow解釋了α放射性衰變的隨機本性之謎,他表明α衰變是由量子力學的隧道效應引起的。隨後幾年中,Hans Bethe建立了核物理的基礎並解釋了恆星的能量來源。隨著這些進展,原子物理、分子物理、固體物理和核物理進入了現代物理的時代。

2 相對論是關於時空和引力的基本理論,主要由愛因斯坦(Albert Einstein)創立,分為狹義相對論(特殊相對論)和廣義相對論(一般相對論)。相對論的基本假設是相對性原理,即物理定律與參照系的選擇無關。狹義相對論和廣義相對論的區別是,前者討論的是勻速直線運動的參照系(慣系參照系)之間的物理定律,後者則推廣到具有加速度的參照系中(非慣性系),並在等效原理的假設下,廣泛應用於引力場中。相對論和量子力學是現代物理學的兩大基本支柱。奠定了經典物理學基礎的經典力學,不適用於高速運動的物體和微觀領域。相對論解決了高速運動問題;量子力學解決了微觀亞原子條件下的問題。相對論顛覆了人類對宇宙和自然的「常識性」觀念,提出了「時間和空間的相對性」、「四維時空」、「彎曲空間」等全新的概念。
狹義相對論最著名的推論是質能公式,它可以用來計算核反應過程中所釋放的能量,並導致了原子彈的誕生。而廣義相對論所預言的引力透鏡和黑洞,也相繼被天文觀測所證實。

3.DNA(為英文Deoxyribonucleic acid的縮寫),又稱脫氧核糖核酸,是染色體的主要化學成分,同時也是組成基因的材料。有時被稱為「遺傳微粒」,因為在繁殖過程中,父代把它們自己DNA的一部分復制傳遞到子代中,從而完成性狀的傳播。原核細胞的擬核是一個長DNA分子。真核細胞核中有不止一個染色體,每條染色體上含有一個或兩個DNA。不過它們一般都比原核細胞中的DNA分子大而且和蛋白質結合在一起。DNA分子的功能是貯存決定物種性狀的幾乎所有蛋白質和RNA分子的全部遺傳信息;編碼和設計生物有機體在一定的時空中有序地轉錄基因和表達蛋白完成定向發育的所有程序;初步確定了生物獨有的性狀和個性以及和環境相互作用時所有的應激反應.除染色體DNA外,有極少量結構不同的DNA存在於真核細胞的線粒體和葉綠體中。DNA病毒的遺傳物質也是DNA,極少數為RNA.

2. 19和20世紀之交三大科學成果

一、量子力學。以普朗克、愛因斯坦和珀爾為代表。
1900年,普朗克創立了量子論,提出能量並非無限可分、能量的變化是不連續的新觀念。1905年,愛因斯坦提出了光量子論,揭示了光的「波粒二象性」。1913年,玻爾把量子化概念引進原子結構理論。1923年,德布羅意提出物質波理論。1925年,海森伯和薛定諤分別建立矩陣力學和波動力學。1928年,26歲的狄拉克提出電磁場中相對論性電子運動方程和最初形式的量子場論,使包括矩陣力和波動力學在內的量子力學取得了重大的進展。
二、相對論。愛因斯坦的主要成就。
1905年,20世紀最偉大的科學天才愛因斯坦在他26歲時創立了狹義相對論,提出了不同於經典物理學的嶄新的時空觀和質(m)能(E)相當關系式E=mc2(此處光速C=3×108米/秒),在理論上為原子能的應用開辟了道路。
1915年,愛因斯坦又創立了廣義相對論,深刻揭示了時間、空間和物質、運動之間的內在聯系——空間和時間是隨著物質分布和運動速度的變化而變化的。它成為了現代物理學的基礎理論之一。
三、能量守恆和轉化定律 。以朗道耳特和曼萊為代表
能量守恆和轉化定律,是19世紀自然科學的一塊重要理論基石。能量守恆的意義首要的是建立物質運動變化過程中的某種物理量間的等量關系。對此,我們無需知道物質間實際的相互作用過程,也無需知道物質運動變化過程中的能量間的轉化途徑,只要建立和物質運動狀態相對應的能量與物理量間的關系,就可以對物質運動變化過程中得初狀態和終狀態間建立一種等量關系,這樣便於對物質運動變化過程的量求解。

3. 20世紀的三大發現是什麼

.量子學理論 2.相對論 3.DNA結構

1.馬克斯·普朗克(Max Planck)提出量子概念100多年了,在他關於熱輻射的經典論文中,普朗克假定振動系統的總能量不能連續改變,而是以不連續的能量子形式從一個值跳到另一個值。能量子的概念太激進了,普朗克後來將它擱置下來。隨後,愛因斯坦在1905年(這一年對他來說是非凡的一年)認識到光量子化的潛在意義。不過量子的觀念太離奇了,後來幾乎沒有根本性的進展。現代量子理論的創立則是嶄新的一代物理學家花了20多年時間建立的。

量子物理實際上包含兩個方面。一個是原子層次的物質理論:量子力學,正是它我們才能理解和操縱物質世界;另一個是量子場論,它在科學中起到一個完全不同的作用。

舊量子論

量子革命的導火線不是對物質的研究,而是輻射問題。具體的挑戰是理解黑體(即某種熱的物體)輻射的光譜。烤過火的人都很熟悉這樣一種現象:熱的物體發光,越熱發出的光越明亮。光譜的范圍很廣,當溫度升高時,光譜的峰值從紅線向黃線移動,然後又向藍線移動(這些不是我們能直接看見的)。

結合熱力學和電磁學的概念似乎可以對光譜的形狀作出解釋,不過所有的嘗試均以失敗告終。然而,普朗克假定振動電子輻射的光的能量是量子化的,從而得到一個表達式,與實驗符合得相當完美。但是他也充分認識到,理論本身是很荒唐的,就像他後來所說的那樣:「量子化只不過是一個走投無路的做法」。

普朗克將他的量子假設應用到輻射體表面振子的能量上,如果沒有新秀阿爾伯特·愛因斯坦(Albert Einstein),量子物理恐怕要至此結束。1905年,他毫不猶豫的斷定:如果振子的能量是量子化的,那麼產生光的電磁場的能量也應該是量子化的。盡管麥克斯韋理論以及一個多世紀的權威性實驗都表明光具有波動性,愛因斯坦的理論還是蘊含了光的粒子性行為。隨後十多年的光電效應實驗顯示僅當光的能量到達一些離散的量值時才能被吸收,這些能量就像是被一個個粒子攜帶著一樣。光的波粒二象性取決於你觀察問題的著眼點,這是始終貫穿於量子物理且令人頭痛的實例之一,它成為接下來20年中理論上的難題。

輻射難題促成了通往量子理論的第一步,物質悖論則促成了第二步。眾所周知,原子包含正負兩種電荷的粒子,異號電荷相互吸引。根據電磁理論,正負電荷彼此將螺旋式的靠近,輻射出光譜范圍寬廣的光,直到原子坍塌為止。

接著,又是一個新秀尼爾斯·玻爾(Niels Bohr)邁出了決定性的一步。1913年,玻爾提出了一個激進的假設:原子中的電子只能處於包含基態在內的定態上,電子在兩個定態之間躍遷而改變它的能量,同時輻射出一定波長的光,光的波長取決於定態之間的能量差。結合已知的定律和這一離奇的假設,玻爾掃清了原子穩定性的問題。玻爾的理論充滿了矛盾,但是為氫原子光譜提供了定量的描述。他認識到他的模型的成功之處和缺陷。憑借驚人的預見力,他聚集了一批物理學家創立了新的物理學。一代年輕的物理學家花了12年時間終於實現了他的夢想。

開始時,發展玻爾量子論(習慣上稱為舊量子論)的嘗試遭受了一次又一次的失敗。接著一系列的進展完全改變了思想的進程。

量子力學史

1923年路易·德布羅意(Louis de Broglie)在他的博士論文中提出光的粒子行為與粒子的波動行為應該是對應存在的。他將粒子的波長和動量聯系起來:動量越大,波長越短。這是一個引人入勝的想法,但沒有人知道粒子的波動性意味著什麼,也不知道它與原子結構有何聯系。然而德布羅意的假設是一個重要的前奏,很多事情就要發生了。

1924年夏天,出現了又一個前奏。薩地揚德拉·N·玻色(Satyendra N. Bose)提出了一種全新的方法來解釋普朗克輻射定律。他把光看作一種無(靜)質量的粒子(現稱為光子)組成的氣體,這種氣體不遵循經典的玻耳茲曼統計規律,而遵循一種建立在粒子不可區分的性質(即全同性)上的一種新的統計理論。愛因斯坦立即將玻色的推理應用於實際的有質量的氣體從而得到一種描述氣體中粒子數關於能量的分布規律,即著名的玻色-愛因斯坦分布。然而,在通常情況下新老理論將預測到原子氣體相同的行為。愛因斯坦在這方面再無興趣,因此這些結果也被擱置了10多年。然而,它的關鍵思想——粒子的全同性,是極其重要的。

突然,一系列事件紛至沓來,最後導致一場科學革命。從1925年元月到1928年元月:

·沃爾夫剛·泡利(Wolfgang Pauli)提出了不相容原理,為周期表奠定了理論基礎。

·韋納·海森堡(Werner Heisenberg)、馬克斯·玻恩(Max Born)和帕斯庫爾·約當(Pascual Jordan)提出了量子力學的第一個版本,矩陣力學。人們終於放棄了通過系統的方法整理可觀察的光譜線來理解原子中電子的運動這一歷史目標。

·埃爾溫·薛定諤(Erwin Schrodinger)提出了量子力學的第二種形式,波動力學。在波動力學中,體系的狀態用薛定諤方程的解——波函數來描述。矩陣力學和波動力學貌似矛盾,實質上是等價的。

·電子被證明遵循一種新的統計規律,費米-狄拉克統計。人們進一步認識到所有的粒子要麼遵循費米-狄拉克統計,要麼遵循玻色-愛因斯坦統計,這兩類粒子的基本屬性很不相同。

·海森堡闡明測不準原理。

·保爾·A·M·狄拉克(Paul A. M. Dirac)提出了相對論性的波動方程用來描述電子,解釋了電子的自旋並且預測了反物質。

·狄拉克提出電磁場的量子描述,建立了量子場論的基礎。

·玻爾提出互補原理(一個哲學原理),試圖解釋量子理論中一些明顯的矛盾,特別是波粒二象性。

量子理論的主要創立者都是年輕人。1925年,泡利25歲,海森堡和恩里克·費米(Enrico Fermi)24歲,狄拉克和約當23歲。薛定諤是一個大器晚成者,36歲。玻恩和玻爾年齡稍大一些,值得一提的是他們的貢獻大多是闡釋性的。愛因斯坦的反應反襯出量子力學這一智力成果深刻而激進的屬性:他拒絕自己發明的導致量子理論的許多關鍵的觀念,他關於玻色-愛因斯坦統計的論文是他對理論物理的最後一項貢獻,也是對物理學的最後一項重要貢獻。

創立量子力學需要新一代物理學家並不令人驚訝,開爾文爵士在祝賀玻爾1913年關於氫原子的論文的一封書信中表述了其中的原因。他說,玻爾的論文中有很多真理是他所不能理解的。開爾文認為基本的新物理學必將出自無拘無束的頭腦。

1928年,革命結束,量子力學的基礎本質上已經建立好了。後來,Abraham Pais以軼事的方式記錄了這場以狂熱的節奏發生的革命。其中有一段是這樣的:1925年,Samuel Goudsmit和George Uhlenbeck就提出了電子自旋的概念,玻爾對此深表懷疑。10月玻爾乘火車前往荷蘭的萊頓參加亨德里克·A·洛倫茲(Hendrik A. Lorentz)的50歲生日慶典,泡利在德國的漢堡碰到玻爾並探詢玻爾對電子自旋可能性的看法;玻爾用他那著名的低調評價的語言回答說,自旋這一提議是「非常,非常有趣的」。後來,愛因斯坦和Paul Ehrenfest在萊頓碰到了玻爾並討論了自旋。玻爾說明了自己的反對意見,但是愛因斯坦展示了自旋的一種方式並使玻爾成為自旋的支持者。在玻爾的返程中,遇到了更多的討論者。當火車經過德國的哥挺根時,海森堡和約當接站並詢問他的意見,泡利也特意從漢堡格趕到柏林接站。玻爾告訴他們自旋的發現是一重大進步。

量子力學的創建觸發了科學的淘金熱。早期的成果有:1927年海森堡得到了氦原子薛定諤方程的近似解,建立了原子結構理論的基礎;John Slater,Douglas Rayner Hartree,和Vladimir Fock隨後又提出了原子結構的一般計算技巧;Fritz London和Walter Heitler解決了氫分子的結構,在此基礎上,Linus Pauling建立了理論化學;Arnold Sommerfeld和泡利建立了金屬電子理論的基礎,Felix Bloch創立了能帶結構理論;海森堡解釋了鐵磁性的起因。1928年George Gamow解釋了α放射性衰變的隨機本性之謎,他表明α衰變是由量子力學的隧道效應引起的。隨後幾年中,Hans Bethe建立了核物理的基礎並解釋了恆星的能量來源。隨著這些進展,原子物理、分子物理、固體物理和核物理進入了現代物理的時代。

2 相對論是關於時空和引力的基本理論,主要由愛因斯坦(Albert Einstein)創立,分為狹義相對論(特殊相對論)和廣義相對論(一般相對論)。相對論的基本假設是相對性原理,即物理定律與參照系的選擇無關。狹義相對論和廣義相對論的區別是,前者討論的是勻速直線運動的參照系(慣系參照系)之間的物理定律,後者則推廣到具有加速度的參照系中(非慣性系),並在等效原理的假設下,廣泛應用於引力場中。相對論和量子力學是現代物理學的兩大基本支柱。奠定了經典物理學基礎的經典力學,不適用於高速運動的物體和微觀領域。相對論解決了高速運動問題;量子力學解決了微觀亞原子條件下的問題。相對論顛覆了人類對宇宙和自然的「常識性」觀念,提出了「時間和空間的相對性」、「四維時空」、「彎曲空間」等全新的概念。
狹義相對論最著名的推論是質能公式,它可以用來計算核反應過程中所釋放的能量,並導致了原子彈的誕生。而廣義相對論所預言的引力透鏡和黑洞,也相繼被天文觀測所證實。

3.DNA(為英文Deoxyribonucleic acid的縮寫),又稱脫氧核糖核酸,是染色體的主要化學成分,同時也是組成基因的材料。有時被稱為「遺傳微粒」,因為在繁殖過程中,父代把它們自己DNA的一部分復制傳遞到子代中,從而完成性狀的傳播。原核細胞的擬核是一個長DNA分子。真核細胞核中有不止一個染色體,每條染色體上含有一個或兩個DNA。不過它們一般都比原核細胞中的DNA分子大而且和蛋白質結合在一起。DNA分子的功能是貯存決定物種性狀的幾乎所有蛋白質和RNA分子的全部遺傳信息;編碼和設計生物有機體在一定的時空中有序地轉錄基因和表達蛋白完成定向發育的所有程序;初步確定了生物獨有的性狀和個性以及和環境相互作用時所有的應激反應.除染色體DNA外,有極少量結構不同的DNA存在於真核細胞的線粒體和葉綠體中。DNA病毒的遺傳物質也是DNA,極少數為RNA.

4. 20世紀有哪些科學成果

20世紀的科學成果

1、相對論
1905年,20世紀最偉大的科學天才愛因斯坦在他26歲時創立了狹義相對論,在理論上為原子能的應用開辟了道路.
1915年,愛因斯坦又創立了廣義相對論,深刻揭示了時間、空間和物質、運動之間的內在聯系.它成為現代物理學的基礎理論之一
2、量子力學
1900年,普朗克創立了量子論,提出能量並非無限可分、能量的變化是不連續的新觀念.
20年代末量子力學的建立,是繼1905年—1915年相對論建立後對經典物理學的又一次革命性突破,它成功地揭示了微觀物質世界的基本規律,加速了原子物理學和固態物理學的發展,為核物理學和粒子物理學准備了理論基礎.因此,量子力學可以說是20世紀最多產的科學理論,迄今仍具有強大的生命力.20世紀中後期5大科學成就
30年代以來,物質基本結構、規范場、宇宙大爆炸、遺傳物質分子雙螺旋結構、大地構造板塊學說以及資訊理論、控制論、系統論等理論的創建,使人類的視野進一步拓展到更為宇觀、宏觀和微觀的領域,成為人類文明進步的巨大推動力.
3、DNA分子雙螺旋模型
1953年4月25日,英國《自然》雜志刊登了25歲的沃森和37歲的克里克合作研究的成果————DNA 雙螺旋結構的分子模型,這一成就後來被譽為20世紀生物學方面最偉大的發現,也被認為是分子生物學誕生的標志.
4、大地板塊構造學說
1912年,魏格納提出大陸漂移說.大陸漂移說經過半個多世紀的發展,1968年,勒比雄等提出了全球大地板塊構造學說,建造了全球被分為歐亞、美洲、非洲、太平洋、澳洲、南極六大板塊和若干小板塊的結構模型,得到了越來越多的科學驗證,特別是海洋地質學的有力支持.
5核能與核技術
原子核的裂變和聚變反應將產生和釋放出遠大於機械能、化學能等產生的能量.核能的和平利用,為人類提供了一個既安全又清潔、取之不盡而用之不竭的能源寶庫.
1942年,美國建成了世界上第一座原子反應堆.60年代以後,核電站進入實用階段,發展至今已成為一種重要能源,約佔全球發電總量的1/5.
核技術還廣泛應用於農業、醫療、材料、考古和環保等領域.
6航天和空間技術
1903—1914年,齊奧爾科夫斯基提出以火箭為動力的航行理論,奠定了航天學的基礎.1926年,戈達德成功發射了世界上第一枚液體燃料的火箭.
1957年,蘇聯用洲際導彈的火箭裝置發射了世界上第一顆人造地球衛星,「空間時代」從此開始.1969年,美國「阿波羅」11號飛船登月,人類在月球上留下了第一個腳印.1971年,蘇聯建造空間站,人類首次在太空中有了活動基地.1981年,美國發射太空梭成功,從此人類可以自由進出太空.
自50年代後期起,人類開始對月球和太陽系各大行星,以及遙遠的行星際空間進行探測,至今已發射了100多顆空間探測器.
7信息技術
信息技術是20世紀發展最快的技術領域.它對人類社會、經濟、政治、文化等產生了全方位的巨大而深遠的影響.
1906年,三極電子管的發明使遠程無線電通信成為可能.1947年,第一隻晶體管的誕生為電子電路集成化和數字化提供了重要的基礎.1945年電子計算機問世.
隨著大規模集成電路的出現,計算機向巨型化和微型化兩極發展.
8激光技術
1917年,愛因斯坦在研究光輻射的過程中,提出了「受激輻射」的概念,奠定了激光的理論基礎.1958年激光被發現.1960年美國製成了世界上第一台紅寶石激光器.
1977年原子激光器問世
9生物技術
基因重組技術(又稱基因工程)是20世紀下半葉蓬勃興起和發展的現代生物技術的最前沿領域.DNA的重組能創造性地利用生物資源,實現人類改造生物的遺傳特徵、產生人類所需要的生物類型的意願.80年代以來,已獲得上百種轉基因動植物,對農業發展具有重要意義.轉基因葯物的研製和生產則將為人類的健康帶來新的福音.
除基因工程外,生物技術(即生物工程)還包括細胞工程、酶工程、發酵工程和蛋白質工程等領域.1978年首例試管嬰兒路易斯誕生、1996年克隆羊多莉的出現都是細胞工程的傑作;加酶洗衣粉和嫩肉粉等則是酶工程的產品;現代發酵工業始於青黴素的生產,現已大規模利用發酵工程生產抗生素等.至於根據需要對天然蛋白質的基因進行改造,生產出新的、自然界原本不存在的優質蛋白質,更是日益受到重視,被譽為第二代基因工程.
10互聯網
互聯網在億萬網民的學習、研究、交流、貿易,娛樂等方面創造了嶄新的工作和生活方式.

5. 歷史題 毛澤東思想、鄧小平理論。這三大理論成果相同點

首先,孫中山復是資產階級制領導人,三民主義里不具有馬克思無產階級的思想。 1錯。
其次,三民主義,沒有明確提出反帝,沒有強調民權的普遍性,只是一個大綱,難以真正實施,所以4錯。

相對,毛澤東思想指導下,取得了新民主主義革命的勝利,鄧小平思想指導下,改革開放取得成功,所以 1 . 3 是符合歷史的。

6. 20世紀取得的偉大科學成果有哪些

1、光量子論的建立和發展

光量子論,光子的靜止質量都不會超過10的負54次方千克,這一結果是之前已知的光子質量上限的1/20。1923年康普頓成功地用光量子概念解釋了X光被物質散射時波長變化的康普頓效應,從而光量子概念被廣泛接受和應用,1926年正式命名為光子。

量子電動力學確立後,確認光子是傳遞電磁相互作用的媒介粒子。帶電粒子通過發射或吸收光子而相互作用,正反帶電粒子對可湮沒轉化為光子,它們也可以在電磁場中產生。

2、對撞機

歐洲核子中心於1981年將一台能量為 400GeV的質子同步加速器改建成質子-反質子對撞機,並於1983年取得了極其重要的實驗成果,發現了粒子。

與同步加速器極為相似,對撞機呈環形,沿環安放著磁鐵系統、高頻系統、真空系統以及探測和校正系統等。此外,它沿圓環還有兩個或兩個以上專供對撞用的特殊長直線節,探測儀器就被安置在長直線節內的對撞點附近的空間中。

3、1905年狹義相對論發表

狹義相對論是阿爾伯特·愛因斯坦在1905年發表的題為 《論動體的電動力學》一文中提出的區別於牛頓時空觀的新的平直時空理論。狹義相對論不僅包括如時間膨脹等一系列推論,而且還包括麥克斯韋-赫茲方程變換等。狹義相對論需要使用引入張量的數學工具。

狹義相對論是對牛頓時空理論的拓展,理解狹義相對論就必須理解四維時空。其數學形式為閔可夫斯基幾何空間。現在對於物理理論新的分類標准,是以其理論是否是決定論來劃分經典與非經典的物理學,非量子理論都可以叫經典或古典理論。在此意義上,狹義相對論仍然是一種經典的理論。

4、激光技術

激光是20世紀60年代的新光源。由於激光具有方向性好、亮度高、單色性好等特點而得到廣泛應用。激光加工是激光應用最有發展前途的領域之一,現在已開發出20多種激光加工技術。

激光具有單色性好、方向性強、亮度高等特點。現已發現的激光工作物質有幾千種,波長范圍從軟X射線到遠紅外。 激光技術的核心是激光器,激光器的種類很多,可按工作物質、激勵方式、運轉方式、工作波長等不同方法分類。

5、飛機試飛成功

1903年12月17日,萊特兄弟製造的第一架飛機「飛行者1號」 在美國北卡萊納州試飛成功。

萊特兄弟繼續對飛機進行改進,於1904年和1905年分別造出了「飛行者2號」和「飛行者3號」,1905年10月5日韋伯駕駛的飛行者3號持續飛行了38分鍾,航程達39公里。也就是說,「飛行者3號」實際上已經具有了實用效能。

萊特兄弟確信一個飛行器的時代已經來臨。之後的幾年,他們一面改進飛機性能,一面在世界各國做飛行表演,向人們顯示人類飛行之夢已經成真。

7. 二十世紀以來,中國重大思想理論成果都有哪些

20世紀以來中國重大思想理論成果主要包括:三民主義、毛澤東思想、鄧小平理專論和「屬三個代表」重要思想。三民主義集中反映了資產階級在政治上和經濟上的利益和要求,反映了中國人民要求民族獨立和民主權利和共同願望,是比較完整的資產階級民主革命綱領。它指導資產階級推翻了中國君主專制統治,但沒有明確提出反對帝國主義的要求,也沒有徹底的土地綱領,因此,它不可能指導資產階級革命派取得革命的勝利。毛澤東思想指導無產階級取得了新民主主義革命和社會主義革命的勝利。鄧小平理論指導中國共產黨人找到了建設有中國特色的社會主義道路。「三個代表」重要思想是馬克思主義中國化的最新理論成果。毛澤東思想、鄧小平理論、「三個代表」重要思想是一脈相承的統一的科學體系。

8. 20世紀的三大科學技術成就:A.人工智慧 B.原子能技術 C.空間技術 D.時間技術 選哪三個

人工智慧,原子能技術,空間技術。

AI即人工智慧,是計算機科學的一個分支,企回圖了解智能的實質,並答生產出一種新的能以人類智能相似的方式做出反應的智能機器,包括機器人、語言識別、圖像識別、自然語言處理等。

人工智慧通常表現為類似人類的機器,可以用復雜的身份和個性來思考,推理甚至感受。從本質上講,人工智慧指的是機器能夠以與人類相同的復雜性做出復雜決策的能力,需要高技能的事情,因為取決於考慮大量的變數,並借鑒積累的知識和經驗的銀行。

(8)20世紀的三大理論成果擴展閱讀:

注意事項:

科技是經濟增長的發動機,是提高綜合國力的主要驅動力。促進科技成果轉化、加速科技成果產業化,已經成為世界各國科技政策的新趨勢。科技成果轉化的途徑,主要有直接和間接兩種轉化方式,並且這兩種方式也並非涇渭分明,經常是相互包含的。

科技成果的間接轉化主要是通過各類中介機構來開展的。機構類型和活動方式多種多樣。在體制上,有官辦的、民辦的,也有官民合辦的,在功能上,有大型多功能的機構(如既充當科技中介機構,又從事具體項目的開發等),也有小型單一功能的組織。

9. 20世紀中國發生了三次歷史性巨變,指導中國人不斷前進的三大理論成果相繼誕生。這三大理論成果都:①具有

A

與20世紀的三大理論成果相關的資料

熱點內容
王者達摩大發明家 瀏覽:904
金庸為什麼不要版權 瀏覽:305
蘭州經濟糾紛律師 瀏覽:994
沈陽盛唐雍景糾紛 瀏覽:973
工商局生態市建設工作總結 瀏覽:757
侵權責任法第87條的規定 瀏覽:553
招商地塊南側公共服務項目批前公示 瀏覽:208
盤錦公交投訴電話 瀏覽:607
馬鞍山到宿遷汽車時間 瀏覽:215
公共衛生服務的工作目標 瀏覽:813
知識產權服務制度 瀏覽:726
警察管詐騙叫民事糾紛 瀏覽:650
馬鞍山胡駿 瀏覽:110
推動基層公共服務一門式全覆蓋試點工作調研 瀏覽:680
山東省基本公共衛生服務項目實施方案 瀏覽:349
投訴制凝 瀏覽:932
黑警投訴 瀏覽:95
國培預期研修成果 瀏覽:151
知識產權專利培訓心得 瀏覽:974
工商登記需要提供什麼資料 瀏覽:683
© Arrange www.jhzxd.com 2006-2021
溫馨提示:資料來源於互聯網,僅供參考