導航:首頁 > 工商服務 > 大數據促進公共服務案例

大數據促進公共服務案例

發布時間:2021-07-16 23:05:29

⑴ 大數據如何優化公共服務

大數據如何優化公共服務

公共服務領域採用大數據技術和大數據思維,既可以為政府進行公共服務決策和加強公共服務監管服務,可以為公共服務消費者在內的社會公眾提供個性化和精準化服務,也有助於公共服務提供者降低成本,從而更好地實現公共服務自身的經濟和社會特性並存的要求。但是,大數據不僅是一種海量的數據狀態及相應的數據處理技術,更是一種思維方式,是一場由技術變革推動的社會變革。在公共服務領域真正實現與大數據的融合,現實中還存在著多重挑戰。

公共服務提供主體運用大數據的意識差異大。從公共服務提供者的角度來看,雖然公共服務提供機構對於數據的重視程度較高,但是范圍更多地局限於對內部的數據認知。從總體來看,公共服務提供機構的管理人員並沒有意識到外部數據如互聯網數據與內部數據的結合所產生的價值,而是更多地把數據進行了存儲,沒有進行分析。這也加重了現有的數據孤島問題和數據閑置現象。以人口管理為例,掌握准確的基礎人口數據是人口管理的一大難點。涉及人口管理的有八九家部門,稅務部門有納稅人口數據,教育部門有在讀人口數據,公安局有戶籍人口數據,社保局有參保人口數據,等等。孤立的任何一個資料庫都不能全面展現一個地方的實有人口情況。

公共服務數據格式和採集標准不統一,導致數據可用性差。大數據預處理階段需要抽取數據並把數據轉化為方便處理的數據類型,對數據進行清洗和去噪,以提取有效的數據等操作。很多公共服務部門,每天都在產生大量的數據,但在數據的預處理階段不重視,不同部門的數據格式、採集標准也非常不同,很多數據是非結構化的,導致數據的可用性差,數據質量差,數據處理很不規范。如危險化學品的監管問題,在目前的監管格局下,危險化學品在生產、儲存、使用、經營、運輸的不同環節,除企業承擔主體責任外,由安監、交通、公安等部門分別承擔監管職責,這些主體對信息報備的寬嚴尺度不一。這樣的寬嚴不一,以及各監管部門、企業主體間存在的種種信息壁壘,大大影響了監管效能。

公共服務部門從業人員多元化,大數據專業人才缺乏。數據採集工作牽涉的絕不僅僅是數據問題,它與政府以及事業單位等的改革深刻關聯,勢必對基層人員的工作能力和責任感都提出更高的要求。數據的採集和分析是一個多專家合作的過程,這要求相關人員是復合型人才,既熟悉本單位業務和需求,具備相關專業知識和經驗,同時又要了解大數據技術,能夠綜合運用數學、數據分析、機器學習和自然語言處理等多方面知識。面對大數據,如果不會分析,數據就只是數據;如果錯誤分析,數據反而還會造成新的問題。

教育、醫療、社會保障、環境保護等公共服務領域,由於技術難度相對小,而且推廣意義大,可以起到「四兩撥千斤」的作用,應當率先突破大數據的應用障礙,政府部門應當而且也可以在這一方面發揮更大的作用。

科學規劃和合理配置網路資源,加強信息化的基礎設施建設。沒有信息化的基礎設施建設,就談不上信息化,更談不上大數據。2013年8月,澳大利亞政府信息管理辦公室(AGIMO)發布了公共服務大數據戰略。到2013年底,澳大利亞人可以享受到每秒1G的互聯網下載速度,而且安裝寬頻所需要的費用全部由政府免單,完全免費。對我國來講,這一項工作只有以政府部門為主,根據發展需求,科學規劃和合理配置網路地址、網路帶寬等網路資源,並且鼓勵大數據企業參與網路設施投資和電信服務運營。

與此同時,還應做好數據標准統一工作,為數據的採集、整合等提供支持。統一的標準是用好大數據的關鍵所在。應當加快研究建立健全大數據技術標准、分類標准和數據標准。針對行政記錄、商業記錄、互聯網信息的數據特點,研究分析不同數據口徑之間的銜接和數據源之間的整合,規范數據輸出格式,統一應用指標涵義、口徑等基本屬性,為大數據的公開、共享和充分利用奠定基礎。

政府搭建平台,推動公共服務部門與第三方數據平台合作,建設好社會基礎資料庫,助力提高公共服務效率和開展公共服務創新。公共服務部門可以考慮藉助如網路、阿里、騰訊等第三方數據平台解決數據採集難題,為包括政府各職能部門在內的各種社會主體提高公共服務效率和開展公共服務創新提供可能。另外,在政府信息公開不斷加強的基礎上,加大數據的開放和共享,建立起公共服務領域的數據聯盟。大數據越關聯就越有價值,越開放就越有價值。須盡快確立數據開放基本原則,政府帶頭開放公共領域的行政記錄等公共數據,鼓勵事業單位等非政府機構提供在公共服務過程中產生的數據,推動企業等開放其在生產經營、網路交易等過程中形成的數據。最終建立起公共服務領域的數據聯盟。

按照「抓兩頭,帶中間」的思路做好大數據人才的培訓和儲備工作。大數據的核心說到底是「人」。相應的人才培訓和儲備工作要抓好兩頭。一頭是基層。由於公共服務領域中相當多的數據是從基層採集的,因此需要加強基層基礎建設,要求公共服務部門要有完整的原始記錄和台賬,確保原始數據採集的准確性。而且也要求基層工作人員理解統一的數據平台、統一的軟體操作、統一的指標含義。隨著採集數據標準的逐步統一,採集數據的各個部門還需要相應地修改原來的流程、採集方式、人力配置等等。政府有關部門應當制定適當的激勵和約束機制,保障基層工作人員的素質和能力跟得上新形勢的要求。另一頭是高端。數據分析對國內高校人才培養也提出了新的要求。大數據人才的培養更多地集中在研究生階段,從政府有關管理部門的角度來看,應該按照國務院簡政放權、放管結合、優化服務的要求,放寬對高校專業設置的審批,真正落實高校管理自主權。鼓勵並積極創造條件推動高校以及企業在大數據人才的培養方面進行探索。

以上是小編為大家分享的關於大數據如何優化公共服務的相關內容,更多信息可以關注環球青藤分享更多干貨

⑵ 什麼是大數據,大數據的典型案例有哪些

隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:

「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。

⑶ 如何應用大數據提升地方政府的公共服務水平的論文

如何應用大數據提升地方政府的公共服務水平的正文和資料都是有的

⑷ 大數據案例

亞馬遜在大數據這塊領域當屬三大巨頭之一,舉個例子吧

亞馬遜在客人購物的時候,購物頁面總是充滿了推薦物品,TA為客戶推薦的產品絕不是一個巧合。亞馬遜的推薦引擎完全是基於客戶在過去一段時間的購買行為所做的:客戶的購物車中所收藏的商品、客戶喜歡的商品、其它用戶瀏覽或購買的商品。利用大數據技術對以上數據進行分析,為每位客戶定製了專屬的個人主頁。
因為利用該策略,公司在其第三財政季度期間銷售增長27%,達到了131.8億美元,而去年同期的銷售額則為96億美元。

如果你還需要進一步了解,可以去前瞻產業研究院看看,裡面有挺多資料的

⑸ 大數據的應用案例以及未來發展趨勢

趕超發達國家的重要機遇
半個世紀以來,隨著計算機技術全面融入社會生活,信息爆炸已經積累到了一個開始引發變革的程度,不僅使世界充斥著比以往更多的信息,而且其增長速度也在加快。信息爆炸的學科如天文學和基因學,創造出來大數據這個概念,如今,這個概念幾乎應用到了所有人類智力與發展的領域中。21世紀是數據信息大發展的時代,移動互聯、社交網路、電子商務等極大拓展了互聯網的邊界和應用范圍,各種數據正在迅速膨脹並變大。互聯網(社交、搜索、電商)、移動互聯網(微博)、物聯網(感測器、智慧地球)、車聯網、GPS、醫學影像、安全監控、金融(銀行、股市、保險)、電信(通話、簡訊)都在瘋狂產生著數據,大數據時代已經到來。
當前全球和我國大數據都呈現了井噴式爆發性增長,大數據已經滲透到各個行業和業務職能領域,成為重要的生產因素,大數據的演進與生產力的提高有著直接的關系。其發展特點,一是數據量呈現指數級增長。二是不同行業的大數據內容和開發應用特點各有不同,如證券、投資服務以及銀行等金融服務領域擁有最高的平均數字化數據存儲量,通信和媒體公司、公共事業公司以及政府等組織也有規模顯著的數字化數據存儲,這些行業更加具有通過大數據來創造價值的潛力。三是可以預見到大數據高速增長的現有趨勢將繼續推動數據增長,例如在各部門和地區之間,企業正在加快收集數據的步伐,推動了傳統的事務資料庫的增長;醫療衛生等面向消費者的行業中,多媒體的廣泛使用刺激了大數據的增長;社交媒體的廣泛普及以及物聯網中應用的不斷創新都進一步推動了大數據不斷增長……這些相互交叉的動力刺激了數據的增長,並將繼續推動數據池的迅速擴張。
發展大數據及其相關服務業將成為新興經濟體特別是我國在戰略性新興產業領域發揮後發優勢趕超發達國家的重要機遇。只要條件具備,發展中經濟體能夠利用大數據發揮巨大的潛力。例如,亞洲地區移動手機用戶最多,終端設備最多,其中中國設備數量最多,個人位置數據在亞洲已經領先。此外,在IT資產方面,盡管一些新興市場組織落後於發達市場,但發展中經濟體可以用最新技術跳躍式前進。大數據的應用不僅僅是商務,通過用戶行為分析實現精準管理、科學決策和人性化服務是大數據的典型應用,大數據在各行各業特別是公共服務領域具有廣闊的應用前景,包括消費行業、金融服務、食品安全、醫療衛生、軍事、交通環保、電子商務、氣象等。發展大數據產業機遇可貴潛力巨大。從經濟和產業發展維度看大數據及相關產業發展的潛力,我國獨特的位勢和經濟社會高速穩定發展,給大數據及其應用帶來了巨大的發展空間。大數據在我國各領域和不同行業的應用潛力巨大、機遇重大。大數據的核心技術進展和大數據應用有可能帶來我國新興戰略性產業發展的新機遇。
信息服務業發展的重要推力
研究表明,大數據是繼傳統IT之後下一個提高生產率的技術前沿和信息服務業發展的重要推動力。大數據的使用將成為未來提高競爭力、生產力、創新能力以及創造消費者盈餘的關鍵要素。
例如醫療衛生行業,能夠利用大數據避免過度治療、減少錯誤治療和重復治療,從而降低系統成本、提高工作效率,改進和提升治療質量;公共管理領域,能夠利用大數據有效推動稅收工作開展,提高教育部門和就業部門的服務效率;零售業領域,通過在供應鏈和業務方面使用大數據,能夠改善和提高整個行業的效率;市場和營銷領域,能夠利用大數據幫助消費者在更合理的價格範圍內找到更合適的產品以滿足自身的需求,提高附加值。數據已經成為可以與物質資產和人力資產相提並論的重要的生產要素,伴隨著信息化發展,企業將收集更多的信息,從而帶來數據呈現指數級的增長。大數據在同時為商業和消費者創造價值方面有巨大的發展潛力。
大數據應用能夠發揮重要的經濟作用,不但有利於私人商業活動,更有利於國民經濟和公民。數據可以為世界經濟創造重要價值,提高企業和公共部門的生產率與競爭力,並為消費者創造大量的經濟剩餘。例如,能夠富有創造性而有效地利用大數據來提高效率和質量。麥卡錫公司研究報告指出,預計美國醫療行業每年通過數據獲得的潛在價值可超過3000億美元,能夠使得美國醫療衛生支出降低超過8%,充分利用大數據的零售商有可能將其經營利潤提高60%以上。通過利用大數據實現政府行政管理方面的運作效率提高。估計歐洲發達經濟體可以節省開支超過1000億歐元,其中尚不包括可以用來減少欺詐、錯誤以及稅差的影響作用。可以預見的是,隨著人們存儲、匯聚和組合數據然後利用其結果進行深入分析的能力超過以往,隨著越來越尖端技術的軟體與不斷提高的計算能力相結合,從數據中提取洞見的能力也在顯著提高。
大數據及其開發利用能夠催生新的產業形態,拓展成為戰略性新興產業的重要組成部分。大數據的生產、整合、開發利用具有廣泛的高附加值,可以形成和應用於各行業的關鍵發現,大數據的有效利用可以創造巨大的潛在價值,許多行業和承擔業務職能的組織可以利用大數據提高人力、物力資源的分配和協調能力,減少浪費,增加透明度,並促進新想法和新見解的產生。其價值一是提高透明度,讓利益相關方能夠更加容易地及時獲取信息,例如在公安部門,讓原本相互分離的部門之間更加容易地獲取相關數據,就可大大降低搜索和處理時間;在製造業,整合來自研發、工程和製造部門的數據以便實現並行工程,可以顯著縮短產品上市時間並提高質量。二是可以通過實驗來發現需求、暴露可變因素並提高業績。隨著組織創造並存儲更多數字形式的交易數據,並以實時或接近實時的方式收集更多准確而詳細的績效數據,組織能夠通過安排對比實驗,運用數據分析獲取更好的決策,例如在線零售商,通過將流量和銷售結合的試驗論證決定價格調整和促銷活動的制定。三是更加精準地組織市場,根據客戶需求細分人群。利用大數據使組織能夠對人群進行非常具體的細分,以便精確地定製產品和服務以滿足用戶需求。例如在公共部門如公共勞動力機構,利用大數據為不同的求職者提供工作培訓服務,確保採用最有效和最高效的干預措施使不同的人重返工作崗位。四是可以協助決策者更加科學地進行決策。大數據的自動處理能夠更好地為決策者提供更加精準恰當的決策支持,通過對大數據的自動處理來替換或支持人為決策。有些組織已經在通過分析來自客戶、雇員甚至嵌入產品中的感測器的整個數據集而做出更有效的決策。五是能夠創新商業模式、產品和服務。例如在醫療保健領域,通過分析病人的臨床和行為數據已經創造了瞄準最適當群體的預防保健項目。例如互聯網公司收集大量的在線行為數據,創新速度非常快。
應組織實施大數據產業專項
發展大數據及其相關服務業具有重要意義,有望使各個行業產生更多收益。隨著我國經濟和社會信息化的高速發展,不僅信息產業自身獲取了巨大的數據池,各個行業都存在利用大數據獲取價值的潛力。大數據促使信息化建設模式大轉變,結構化數據向非結構化數據演進,使得未來IT投資重點不再是建系統為核心,而是圍繞大數據為核心。政府和企業決策者應對大數據發展研究制定發展戰略和策略給予高度重視。
大數據真正的問題是大數據應用,讓大數據更有意義。目前大數據管理多從架構和並行等方面考慮,解決高並發數據存取的性能要求及數據存儲的橫向擴展,但對非結構化數據的內容理解仍缺乏實質性的突破和進展,這是實現大數據資源化、知識化、普適化的核心。非結構化海量信息的智能化處理包括自然語言理解、多媒體內容理解、機器學習等。例如2012年3月29日白宮發布美國政府的大數據計劃:通過提高從大型復雜的數據集中提取知識和觀點的能力,承諾幫助加快在科學與工程中的步伐,加強國家安全,並改變教學研究。
由此,我們提出組織實施大數據產業專項的初步設想。一是圍繞拓展新興信息服務業態,組織實施以大數據示範、加工、處理、整合和深加工的信息資源與內容服務業示範工程,面向重點行業和重點民生領域包括金融證券、醫療衛生、稅務海關、交通運輸、社會保障、電子商務等領域,開展大數據重大應用示範,提升基於大數據的公共服務能力;二是加快推動北斗導航核心技術研發和產業化,推動北斗導航與移動通信、地理信息、衛星遙感、移動互聯網等融合發展,支持位置信息服務市場拓展,完善北斗導航基礎設施,推進服務模式和產品創新,在重點區域和領域開展示範應用;三是大力發展地理信息產業,拓寬地理信息服務市場,推進大數據技術和服務模式融合創新,支持大數據服務創新和商業模式創新;四是組織實施基於大數據的信息內容加工服務業典型示範工程,包括關鍵技術產品產業化和大數據生產、轉換、加工、投送平台及專用工具的產業化項目,為豐富信息消費內容產品供給提供支撐;五是組織實施自主可控的大數據關鍵技術產品產業化項目,主要包括商業智能、數據倉庫、數據集市、元數據、可視化技術等。

⑹ 用大數據怎樣來體現公共服務體系建設

大數據最重要的特點就是數據的相關性,應在清晰描述與索引數據的基礎上,通過數據的相關性,讓公眾能夠迅速查詢到關聯性較強的數據,既提高數據的可讀性,又提升公眾決策的准確性。因此,應在全社會層面加強對政府數據開放利用的宣傳,使公眾了解這項工作並積極參與其中,主動申請公開數據,讓公眾廣泛參與到政府數據開放決策、評判和監督中來。

⑺ 如何運用大數據提高政府公共服務能力

大數據最重要來的特源點就是數據的相關性,應在清晰描述與索引數據的基礎上,通過數據的相關性,讓公眾能夠迅速查詢到關聯性較強的數據,既提高數據的可讀性,又提升公眾決策的准確性。因此,應在全社會層面加強對政府數據開放利用的宣傳,使公眾了解這項工作並積極參與其中,主動申請公開數據,讓公眾廣泛參與到政府數據開放決策、評判和監督中來。

⑻ 簡述身邊大數據成功案例並且用了哪些大數據的數據達到什麼效果

隨著大數據時代的到來,大數據早已被逐步的運用在我們生活中的方方面面,那麼除了之前眾所周知的大數據殺熟事件,對於大數據你還了解多少呢?科學運用案例你又知道多少?今天就跟隨千鋒小編一起來看看。
洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
麻省理工學院利用手機定位數據和交通數據建立城市規劃。
梅西百貨的實時定價機制,根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
……
種種的案例實在是太多,或許我們永遠說不完一樣,所以我們就來看一看大數據被科學運用的一個經典案例:
「啤酒與尿布」的故事產生於20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷售數據時發現了一個令人難於理解的現象:在某些特定的情況下,「啤酒」與「尿布」兩件看上去毫無關系的商品會經常出現在同一個購物籃中,這種獨特的銷售現象引起了管理人員的注意,經過後續調查發現,這種現象出現在年輕的父親身上。
如果這個年輕的父親在賣場只能買到兩件商品之一,則他很有可能會放棄購物而到另一家商店,直到可以一次同時買到啤酒與尿布為止。沃爾瑪發現了這一獨特的現象,開始在賣場嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時找到這兩件商品,並很快地完成購物;而沃爾瑪超市也可以讓這些客戶一次購買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是「啤酒與尿布」 故事的由來。
當然「啤酒與尿布」的故事必須具有技術方面的支持。1993年美國學者Agrawal提出通過分析購物籃中的商品集合,從而找出商品之間關聯關系的關聯演算法,並根據商品之間的關系,找出客戶的購買行為。艾格拉沃從數學及計算機演算法角度提 出了商品關聯關系的計算方法——Aprior演算法。沃爾瑪從上個世紀 90 年代嘗試將 Aprior 演算法引入到 POS機數據分析中,並獲得了成功,於是產生了「啤酒與尿布」的故事。
其實大數據,其影響除了以上列舉的方面外,它同時也能在經濟、政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。

⑼ 目前大數據在哪些行業有案例或者說應用

大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
大數據應用案例之:通信行業
XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。
電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。
中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
NTT docomo把手機位置信息和互聯網上的信息結合起來,為顧客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。
大數據應用案例之:零售業
"我們的某個客戶,是一家領先的專業時裝零售商,通過當地的百貨商店、網路及其郵購目錄業務為客戶提供服務。公司希望向客戶提供差異化服務,如何定位公司的差異化,他們通過從 Twitter 和 Facebook 上收集社交信息,更深入的理解化妝品的營銷模式,隨後他們認識到必須保留兩類有價值的客戶:高消費者和高影響者。希望通過接受免費化妝服務,讓用戶進行口碑宣傳,這是交易數據與交互數據的完美結合,為業務挑戰提供了解決方案。"Informatica的技術幫助這家零售商用社交平台上的數據充實了客戶主數據,使他的業務服務更具有目標性。
零售企業也監控客戶的店內走動情況以及與商品的互動。它們將這些數據與交易記錄相結合來展開分析,從而在銷售哪些商品、如何擺放貨品以及何時調整售價上給出意見,此類方法已經幫助某領先零售企業減少了17%的存貨,同時在保持市場份額的前提下,增加了高利潤率自有品牌商品的比例。

⑽ 大數據洞察有哪些特色,大數據營銷案例,大數據企業

特色案例分析:
1、浪潮GS助力廣安集團一豬一ID強化食品安全
作為輻射全國的農牧企業集團,多年來廣安集團一直企業信息化進程與企業發展需求不匹配的問題。2013年,廣安集團引入浪潮GS,採用單件管理系統,通過一豬一ID對其成長周期進行全過程監控,促使食品安全可追溯,實現飼養流程精細化、集約化管理,使每年飼料節約了2成左右,為廣安的智慧企業養成之路奠定了基礎。
2、華為大數據一體機服務於北大重點實驗室
經過大量的前期調查,比較和分析准備工作,北大重點實驗室選擇了華為基於高性能伺服器RH5885V2的HANA數據處理平台。HANA提供的對大量實時業務數據進行快速查詢和分析以及實時數據計算等功能,在很大程度上得益於華為RH5885 V2伺服器的高可靠、高性能和高可用性的支撐。
3、神州數碼助張家港市更」智慧」
在張家港實踐的城市案例中,市民登錄由」神州數碼」研發的市民公共信息服務平台後,只要憑借自己的身份證和密碼,即可通過該系統平台進行240餘項」在線預審」服務、130餘項」網上辦事」服務等,還可通過手機及時查看辦事狀態。相比於以前來說,市民辦事的時間最少可以節省一半以上。
4、中科曙光助同濟大學科研領域再創新高
為了滿足爆炸式增長的用戶和數據量,同濟大學攜手中科曙光,在全面整合雲計算平台和現有資產的基礎上,採用 DS800-F20存儲系統、Gridview集群管理系統,以及Hadoop分布式計算平台構建出了業內領先的大數據柔性處理平台,使得同濟大學在信息學科及其交叉學科研究領域邁上一個新台階。
5、中國電信基於物聯網的智能公交解決方案
中國電信提出了基於物聯網的智能公交應用整體解決方案。該方案緊密結合公交行業特點,涵蓋了全球眼視頻監控系統、GPS定位調度系統、無線數據採集系統等技術,是基於物聯網技術的公交行業車輛監控調度管理綜合性解決方案。中國電信智能交通系統利用物聯網技術,提高了公交系統中的人(乘客、司乘人員、管理人員)、公交設施(道路、場站等)和公交車輛等之間的有機聯系,從而最佳地利用了交通系統的時空資源,通過信息資源的合理開發、利用和整合,提高了公交行業運行效率,改善了服務質量,為應對重大突發事件提供了必要的手段,在公交公司的科學運營管理、安全監控等方面發揮了重要的作用,物聯網的應用已成為公交業務發展的必然趨勢。
6、明略數據為稅務部門構建的可視化涉稅分析平台
稅務系統的數據在很長時間內大量來自於納稅人的申報行為數據和報表數據,面向稅務工作人員的是割裂的不同業務系統,信息本身被業務消解為固定的邏輯和處理形式。明略數據為稅務部門構建的可視化涉稅分析平台定位為面向稅務部門的數據服務產品。產品充分利用明略底層大數據平台相關技術,數據挖掘建模技術及明略稅務行業研究專家對稅源管理專業化,風險控制精細化,決策分析智能化的理解,搭建以分析預測為核心的數據應用平台,以幫助稅務部門征管工作更有效、更全面、更精細化的展開。
7、悠易互通汽車行業大數據經驗助奧迪品薦二手車
2015年,奧迪品薦二手車項目通過悠易互通程序化購買平台進行為期5個月的推廣活動,傳播受眾主要以男性以及已有奧迪車主為主,悠易互通規劃的投放策略是,首先,通過人群標簽及關鍵詞,對精準受眾人群進行全網競價;其次,對以上競價成功人群進行優化召回,分析以提高下一輪競價成功率;根據悠易互通汽車行業大數據經驗,消費者的行為路徑為」興趣-認知考慮-轉化」,程序化購買可以通過人群召回的方式將流失人群引導到下一環節,從而促進轉化可能。最終投放結果顯示,悠易互通通過以上策略高效達成客戶KPI,曝光量超過預估13%,點擊量超過KPI 26%,注冊量高達163%。
8、東風風神大數據」動」悉全系目標受眾,打破傳統促銷方式
派擇科技應用底層行為數據管理平台Action DMP支招東風風神全系營銷推廣活動, Action DMP實現全網用戶行為元數據、應用元數據、場景元數據的實時無損解析,精準捕獲各車型目標受眾;通過分析用戶行為場景,了解他們的觸媒習慣,展開品牌與用戶定製化溝通,其中也包括個性化創意載體與溝通渠道組合。項目最終CPL成本較目標降低40%。
9、智子雲大數據挖掘助蘇寧易購訪客」回心轉意」之路
蘇寧易購期望通過智子雲的VRM模型對到站/進APP的流失訪客進行精細劃分,並藉助DSP精準定向能力跨屏鎖定目標人群,找迴流失訪客。首先,建立數據倉庫;其次智子雲個性化推薦引擎Rec-Engine;智子雲智能動態出價引擎Delta-Engine;智子雲全網跨屏LBS定向引擎Loc-Engine不但支持多屏、跨屏投放,還能從訪客轉化率、媒體、地理位置、時段、設備類型、設備號等多個維度建立訪客轉化率預測模型和商品推薦模型;最後,重定向投放,針對每一個到訪訪客計算廣告點擊率和到站轉化率,然後通過自動聚類演算法將訪客人群分檔打分,對不同分值的人群,在綜合媒體環境、競價成功率等因素後,進行實時差異化出價。最終,本次活動找回蘇寧易購的流失訪客9,572,163次,並促成36,748個直接有效訂單;最終投資回報率>3。
10、 「優衣·幸運·穿回家」優衣庫2016春節場景營銷OxO
2016年,優衣庫中國推出了」優衣·幸運·穿回家」的春節主題活動,融入」LifeWear服適人生」品牌理念。結合大數據分析規模化的消費者共性,合適的移動媒介精準傳播,藉助自媒體傳播,連接到店體驗。制定優質的移動媒介策略,結合自媒體、網路廣告、社交媒體平台、零售店和微信支付,精準覆蓋受眾,,一系列線上活動讓優衣庫品牌和冬春裝產品形象直達人心,有效地將線下用戶帶到線上參與互動並積極分享,實現OxO導流,收獲了比較理想的品牌營銷和銷售增長效果。

閱讀全文

與大數據促進公共服務案例相關的資料

熱點內容
工程質量維修期限承諾 瀏覽:769
第四屆山東省知識產權新年論壇 瀏覽:176
房產證上沒有使用年限 瀏覽:867
誰創造了拼圖 瀏覽:998
簡單的土地轉讓協議書 瀏覽:708
南京江北新區知識產權告知書 瀏覽:251
工商局廉政談話講話稿 瀏覽:979
轉讓優思明 瀏覽:583
知識產權代理服務協議格式 瀏覽:117
商河縣工商局 瀏覽:810
沈陽冠君知識產權事務所 瀏覽:342
知識產權保障制度總結 瀏覽:950
榆次區工商局電話 瀏覽:981
馬鞍山新康達 瀏覽:448
學校矛盾糾紛處理制度 瀏覽:342
創造性的提出了思想建黨的原則 瀏覽:890
品管圈成果匯報書 瀏覽:381
京韻花園糾紛 瀏覽:895
衛生服務站公共衛生考核方案 瀏覽:62
快遞時效投訴 瀏覽:782