導航:首頁 > 證書轉讓 > 高斯成果的經歷告訴我們

高斯成果的經歷告訴我們

發布時間:2021-05-05 08:20:06

A. 高斯的故事!

德國大數學家高斯(CarlFriedrichGauss1777-1855)是德國最偉大,最傑出的科學家,如果單純以他的數學成就來說,很少在一門數學的分支里沒有用到他的一些研究成果

貧寒家庭出身

高斯的祖父是農民,父親除了從事園藝的工作外,也當過各色各樣的雜工,如護堤員、建築工等等。父親由於貧窮,本身沒有受過什麼教育。

母親在三十四歲時才結婚,三十五歲生下了高斯。她是一名石匠的女兒,有一個很聰明的弟弟,他手巧心靈是當地出名的織綢能手,高斯的這位舅舅,對小高斯很照顧,有機會就教育他,把他所知道的一些知識傳授給他。而父親可以說是一名」大老粗」,認為只有力氣能掙錢,學問對窮人是沒有用的。

高斯在晚年喜歡對自己的小孫兒講述自己小時候的故事,他說他在還不會講話的時候,就已經學會計算了。

他還不到三歲的時候,有一天他觀看父親在計算受他管轄的工人們的周薪。父親在喃喃的計數,最後長嘆的一聲表示總算把錢算
出來。

父親念出錢數,准備寫下時,身邊傳來微小的聲音:「爸爸!算錯了,錢應該是這樣」。

父親驚異地再算一次,果然小高斯講的數是正確的,奇特的地方是沒有人教過高斯怎麼樣計算,而小高斯平日靠觀察,在大人不知不覺時,他自己學會了計算。

另外一個著名的故事亦可以說明高斯很小時就有很快的計算能力。當他還在小學讀書時,有一天,算術老師要求全班同學算出以下的算式:1+2+3+4+……+98+99+100=?
在老師把問題講完不久,高斯就在他的小石板上端端正正地寫下答案5050,而其它孩子算到頭昏腦脹,還是算不出來。最後只有高斯的答案是正確無誤。

原來:1+100=101,2+99=101,3+98=101……50+51=101

前後兩項兩兩相加,就成了50對和都是101的配對了即101×50=5050。

按:今用公式表示:1+2+……+n

高斯的家裡很窮,在冬天晚上吃完飯後,父親就要高斯上床睡覺,這樣可以節省燃料和燈油。高斯很喜歡讀書,他往往帶了一捆蕪菁上他的頂樓去,他把蕪菁當中挖空,塞進用粗棉捲成的燈芯,用一些油脂當燭油,於是就在這發出微弱光亮的燈下,專心地看書。等到疲勞和寒冷壓倒他時,他才鑽進被窩
睡覺。

高斯的算術老師本來是對學生態度不好,他常認為自己在窮鄉僻壤教書是懷才不遇,現在發現了「神童」,他是很高興。但是很快他就感到慚愧,覺得自己懂的數學不多,不能對高斯有什麼幫助。

他去城裡自掏腰包買了一本數學書送給高斯,高斯很高興和比他大差不多十歲的老師的助手一起學習這本書。這個小孩和那個少年建立起深厚的感情,他們花許多時間討論這裡面的東西。

高斯在十一歲的時候就發現了二項式定理(x+y)n的一般情形,這里n可以是正負整數或正負分數。當他還是一個小學生時就對無窮的問題注意了。

有一天高斯在走回家時,一面走一面全神貫注地看書,不知不覺走進了布倫斯維克(Braunschweig)宮的庭園,這時布倫斯維克公爵夫人看到這個小孩那麼喜歡讀書,於是就和他交談,她發現他完全明白所讀的書的深奧內容。

公爵夫人回去報告給公爵知道,公爵也聽說過在他所管轄的領地有一個聰明小孩的故事,於是就派人把高斯叫去宮殿。

費迪南公爵(Duke Ferdinand)很喜歡這個害羞的孩子,也賞識他的才能,於是決定給他經濟援助,讓他有機會受高深教育,費迪南公爵對高斯的照顧是有利的,不然高斯的父親是反對孩子讀太多書,他總認為工作賺錢比去做什麼數學研究是更有用些,那高斯又怎麼會成材呢?

高斯的學校生涯

在費迪南公爵的善意幫助下,十五歲的高斯進入一間著名的學院(程度相當於高中和大學之間)。在那裡他學習了古代和現代語言,同時也開始對高等數學作研究。

他專心閱讀牛頓、歐拉、拉格朗日這些歐洲著名數學家的作品。他對牛頓的工作特別欽佩,並很快地掌握了牛頓的微積分理論。

1795年10月他離開家鄉的學院到哥庭根(Gottingen)去念大學。哥庭根大學在德國很有名,它的豐富數學藏書吸引了高斯。許多外國學生也到那裡學習語言、神學、法律或醫學。這是一個學術風氣很濃厚的城市。

高斯這時候不知道要讀什麼系,語言系呢還是數學系?如果以實用觀點來看,學數學以後找生活是不大容易的。

可是在他十八歲的前夕,現在數學上的一個新發現使他決定終生研究數學。這發現在數學史上是很重要的。

我們知道當n≥3時,正n邊形是指那些每一邊都相等,內角也一樣的n邊多邊形。

希臘的數學家早知道用圓規和沒有刻度的直尺畫出正三、四、五、十五邊形。但是在這之後的二千多年以來沒有人知道怎麼用直尺和圓規構造正十一邊、十三邊、十四邊、十七邊多邊形。

還不到十八歲的高斯發現了:一個正n邊形可以用直尺和圓規畫出當且僅當n是底下兩種形式之一:k=0,1,2……十七世紀時法國數學家費馬(Fermat)以為公式在k=0,1,2,3,……給出素數。(事實上,目前只確定F0,F1,F2,F4是質數,F5不是)。

高斯用代數方法解決了二千多年來的幾何難題,而且找到正十七邊形的直尺與圓規的作法。他是那麼的興奮,因此決定一生研究數學。據說,他還表示希望死後在他的墓碑上能刻上一個正十七邊形,以紀念他少年時最重要的數學發現。

1799年高斯呈上他的博士論文,這論文證明了代數一個重要的定理:任何一元代數方程都有根。這結果數學上稱為「代數基本定理」。

事實上在高斯之間有許多數學家認為已給出了這個結果的證明,可是沒有一個證是嚴密的,高斯是第一個數學家給出嚴密無誤的證明,高斯認為這個定理是很重要的,在他一生中給了一共四個不同的證明。高斯沒有錢印刷他的學位論文,還好費迪南公爵給他錢印刷。

二十歲時高斯在他的日記上寫,他有許多數學想法出現在腦海中,由於時間不定,因此只能記錄一小部份。幸虧他把研究的成果寫成一本叫《算學研究》,並且在二十四歲時出版,這書是用拉丁文寫,原來有八章,由於錢不夠,只好印七章,這書可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」這個概念。

B. 關於數學家高斯的故事 大約150~200字

①在成長過程中,幼年的高斯主要得力於他的母親羅捷雅和舅舅弗利德里希(Friederich)。弗利德里希富有智慧,為人熱情而又聰明能幹投身於紡織貿易頗有成就。他發現姐姐的兒子聰明伶利,因此他就把一部分精力花在這位小天才身上,用生動活潑的方式開發高斯的智力。

若干年後,已成年並成就顯赫的高斯回想起舅舅為他所做的一切,深感對他成才之重要,他想到舅舅多產的思想,不無傷感地說,舅舅去世使"我們失去了一位天才"。正是由於弗利德里希慧眼識英才,經常勸導姐夫讓孩子向學者方面發展,才使得高斯沒有成為園丁或者泥瓦匠。

②一天,老師布置了一道題,1+2+3······這樣從1一直加到100等於多少。

高斯很快就算出了答案,起初高斯的老師布特納並不相信高斯算出了正確答案:"你一定是算錯了,回去再算算。」高斯非常堅定,說出答案就是5050。高斯是這樣算的:1+100=101,2+99=101······50+51=101。從1加到100有50組這樣的數,所以50X101=5050。

布特納對他刮目相看。他特意從漢堡買了最好的算術書送給高斯,說:「你已經超過了我,我沒有什麼東西可以教你了。」接著,高斯與布特納的助手巴特爾斯建立了真誠的友誼,直到巴特爾斯逝世。他們一起學習,互相幫助,高斯由此開始了真正的數學研究。

③1788年,11歲的高斯進入了文科學校,他在新的學校里,所有的功課都極好,特別是古典文學、數學尤為突出。他的教師們和慈母把他推薦給伯倫瑞克公爵,希望公爵能資助這位聰明的孩子上學。

布倫茲維克公爵卡爾·威廉·斐迪南召見了14歲的高斯。這位朴實、聰明但家境貧寒的孩子贏得了公爵的同情,公爵慷慨地提出願意作高斯的資助人,讓他繼續學習。

1792年高斯進入布倫茲維克的卡羅琳學院繼續學習。1795年,公爵又為他支付各種費用,送他入德國著名的哥丁根大學,這樣就使得高斯得以按照自己的理想,勤奮地學習和開始進行創造性的研究。

④高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:寧可發表少,但發表的東西是成熟的成果。許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。

其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 洛巴切夫斯基,波爾約。其中波爾約的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小波爾約還是沉溺於平行公理。

最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老波爾約把兒子的成果寄給老同學高斯,想不到高斯卻回信道:我無法誇贊他,因為誇贊他就等於誇獎我自己。

⑤1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。

這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。

(2)高斯成果的經歷告訴我們擴展閱讀

高斯已經指出,正三邊形、正四邊形、正五邊形、正十五邊形和邊數是上述邊數兩倍的正多邊形的幾何作圖是能夠用圓規和直尺實現的,但從那時起關於這個問題的研究沒有多大進展。

高斯在數論的基礎上提出了判斷一給定邊數的正多邊形是否可以幾何作圖的准則。例如,用圓規和直尺可以作圓內接正十七邊形。這樣的發現還是歐幾里得以後的第一個。

這些關於數論的工作對代數數的現代算術理論(即代數方程的解法)作出了貢獻。高斯還將復數引進了數論,開創了復整數算術理論,復整數在高斯以前只是直觀地被引進。

1831年(發表於1832年)他給出了一個如何藉助於x,y平面上的表示來發展精確的復數理論的詳盡說明。

高斯是最早懷疑歐幾里得幾何學是自然界和思想中所固有的那些人之一。歐幾里得是建立系統性幾何學的第一人。他模型中的一些基本思想被稱作公理,它們是透過純粹邏輯構造整個系統的出發點。

在這些公理中,平行線公理一開始就顯得很突出。按照這一公理,通過不在給定直線上的任何點只能作一條與該直線平行的線。

不久就有人推測︰這一公理可從其他一些公理推導出來,因而可從公理系統中刪去。但是關於它的所有證明都有錯誤。高斯是最早認識到可能存在一種不適用平行線公理的幾何學的人之一。他逐漸得出革命性的結論︰確實存在這樣的幾何學,其內部相容並且沒有矛盾。

但因為與同代人的觀點相背,他不敢發表(參閱非歐幾里得幾何條)。

當1830年前後匈牙利的波爾約(Janos Bolyai)和俄國的羅巴切夫斯基獨立地發表非歐幾何學時,高斯宣稱他大約在30年前就得到同樣的結論。高斯也沒有發表特殊復函數方面的工作,可能是因為沒有能從更一般的原理導出它們。因此這一理論不得不在他死後數十年由其他數學家從他著作的計算中重建。

1830年前後,極值(極大和極小)原理在高斯的物理問題和數學研究中開始佔有重要地位,例如流體保持靜止的條件等問題。在探討毛細作用時,他提出了一個數學公式能將流體系統中一切粒子的相互作用、引力以及流體粒子和與它接觸的固體或流體粒子之間的相互作用都考慮在內。

這一工作對於能量守恆原理的發展作出了貢獻。從1830年起高斯就與物理學家威廉·愛德華·韋伯密切合作。由於對地磁學的共同興趣,他們一起建立了一個世界性的系統觀測網。他們在電磁學方面最重要的成果是電報的發展。因為他們的資金有限,所以試驗都是小規模的。

參考資料

卡爾·弗里德里希·高斯_網路

C. 關於高斯的故事以及他做出的突出貢獻,詳細的

1、高斯是德國著名的大科學家,他最出名的故事就是在他10歲時,小學老師出了一道算術難題:計算1+2+3+……+100=?

這下可難倒了剛學數學的小朋友們,他們按照題目的要求,正把數字一個一個地相加.可這時,卻傳來了高斯的聲音:「老師,我已經算好了!」

老師很吃驚,高斯解釋道:因為1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像這樣的等於101的組合一共有50組,所以答案很快就可以求出:101×50=5050

2、在高斯三歲夏天時,有一次當他爸爸正要發薪水的時候,小高斯站了起來說:「爸爸,你弄錯了。」然後他說了另外一個數目。原來三歲的小高斯趴在地板上,一直暗地裡跟著他爸爸計算該給誰多少工錢。重算的結果證明小高斯是對的,這把站在那裡的大人都嚇的目瞪口呆。
高斯設計的漢諾威大地測量的三角網為了獲知任意一年中復活節的日期,高斯推導了復活節日期的計算公式。
在1818年至1826年之間高斯主導了漢諾威公國的大地測量工作。通過他發明的以最小二乘法為基礎的測量平差的方法和求解線性方程組的方法,顯著的提高了測量的精度。出於對實際應用的興趣,他發明了日光反射儀,可以將光束反射至大約450公里外的地方。高斯後來不止一次地為原先的設計作出改進,試製成功被廣泛應用於大地測量的鏡式六分儀。
高斯親自參加野外測量工作。他白天觀測,夜晚計算。五六年間,經他親自計算過的大地測量數據,超過100萬次。當高斯領導的三角測量外場觀測已走上正軌後,高斯就把主要精力轉移到處理觀測成果的計算上來,並寫出了近20篇對現代大地測量學具有重大意義的論文。在這些論文中,推導了由橢圓面向圓球面投影時的公式,並作出了詳細證明,這套理論在今天仍有應用價值。漢諾威公國的大地測量工作直到1848年才結束,這項大地測量史上的巨大工程,如果沒有高斯在理論上的仔細推敲,在觀測上力圖合理精確,在數據處理上盡量周密細致的出色表現,就不能完成。在當時條件下布設這樣大規模的大地控制網,精確地確定2578個三角點的大地坐標,可以說是一項了不起的成就。
為了用橢圓在球面上的正形投影理論以解決大地測量中出現的問題,在這段時間內高斯亦從事了曲面和投影的理論,並成為了微分幾何的重要理論基礎。他獨立地提出了不能證明歐氏幾何的平行公設具有『物理的』必然性,至少不能用人類的理智給出這種證明。但他的非歐幾何理論並未發表。也許他是出於對同時代的人不能理解這種超常理論的擔憂。相對論證明了宇宙空間實際上是非歐幾何的空間。高斯的思想被近100年後的物理學接受了。
高斯試圖在漢諾威公國的大地測量中通過測量Harz的Brocken--Thuringer Wald的Inselsberg--哥廷根的Hohen Hagen三個山頭所構成的三角形的內角和,以驗證非歐幾何的正確性,但未成功。高斯的朋友鮑耶的兒子雅諾斯在1823年證明了非歐幾何的存在,高斯對他勇於探索的精神表示了贊揚。1840年,羅巴切夫斯基又用德文寫了《平行線理論的幾何研究》一文。這篇論文發表後,引起了高斯的注意,他非常重視這一論證,積極建議哥廷根大學聘請羅巴切夫斯基為通信院士。為了能直接閱讀他的著作,從這一年開始,63歲的高斯開始學習俄語,並最終掌握了這門外語。最終高斯成為和微分幾何的始祖(高斯,雅諾斯、羅巴切夫斯基)中最重要的一人。

D. 求高斯的故事

數學天才——高斯的故事 :
高斯(C.F.Gauss,1777.4.30-1855.2.23)是德國數學家、物理學家和天文學家,出生於德國布倫茲維克的一個貧苦家庭。父親格爾恰爾德·迪德里赫先後當過護堤工、泥瓦匠和園丁,第一個妻子和他生活了10多年後因病去世,沒有為他留下孩子。迪德里赫後來娶了羅捷雅,第二年他們的孩子高斯出生了,這是他們唯一的孩子。父親對高斯要求極為嚴厲,甚至有些過份,常常喜歡憑自己的經驗為年幼的高斯規劃人生。高斯尊重他的父親,並且秉承了其父誠實、謹慎的性格。1806年迪德里赫逝世,此時高斯已經做出了許多劃時代的成就。
在成長過程中,幼年的高斯主要是力於母親和舅舅。高斯的外祖父是一位石匠,30歲那年死於肺結核,留下了兩個孩子:高斯的母親羅捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,為人熱情而又聰明能幹投身於紡織貿易頗有成就。他發現姐姐的兒子聰明伶利,因此他就把一部分精力花在這位小天才身上,用生動活潑的方式開發高斯的智力。若干年後,已成年並成就顯赫的高斯回想起舅舅為他所做的一切,深感對他成才之重要,他想到舅舅多產的思想,不無傷感地說,舅舅去世使"我們失去了一位天才"。正是由於弗利德里希慧眼識英才,經常勸導姐夫讓孩子向學者方面發展,才使得高斯沒有成為園丁或者泥瓦匠。
在數學史上,很少有人象高斯一樣很幸運地有一位鼎力支持他成才的母親。羅捷雅直到34歲才出嫁,生下高斯時已有35歲了。他性格堅強、聰明賢慧、富有幽默感。高斯一生下來,就對一切現象和事物十分好奇,而且決心弄個水落石出,這已經超出了一個孩子能被許可的范圍。當丈夫為此訓斥孩子時,他總是支持高斯,堅決反對頑固的丈夫想把兒子變得跟他一樣無知。
羅捷雅真誠地希望兒子能幹出一番偉大的事業,對高斯的才華極為珍視。然而,他也不敢輕易地讓兒子投入當時尚不能養家糊口的數學研究中。在高斯19歲那年,盡管他已做出了許多偉大的數學成就,但她仍向數學界的朋友W.波爾約(W.Bolyai,非歐幾何創立者之一J.波爾約之父)問道:高斯將來會有出息嗎?W.波爾約說她的兒子將是"歐洲最偉大的數學家",為此她激動得熱淚盈眶。
7歲那年,高斯第一次上學了。頭兩年沒有什麼特殊的事情。1787年高斯10歲,他進入了學習數學的班次,這是一個首次創辦的班,孩子們在這之前都沒有聽說過算術這么一門課程。數學教師是布特納(Buttner),他對高斯的成長也起了一定作用。
在全世界廣為流傳的一則故事說,高斯10歲時算出布特納給學生們出的將1到100的所有整數加起來的算術題,布特納剛敘述完題目,高斯就算出了正確答案。不過,這很可能是一個不真實的傳說。據對高斯素有研究的著名數學史家E·T·貝爾(E.T.Bell)考證,布特納當時給孩子們出的是一道更難的加法題:81297+81495+81693+…+100899。
當然,這也是一個等差數列的求和問題(公差為198,項數為100)。當布特納剛一寫完時,高斯也算完並把寫有答案的小石板交了上去。E·T·貝爾寫道,高斯晚年經常喜歡向人們談論這件事,說當時只有他寫的答案是正確的,而其他的孩子們都錯了。高斯沒有明確地講過,他是用什麼方法那麼快就解決了這個問題。數學史家們傾向於認為,高斯當時已掌握了等差數列求和的方法。一位年僅10歲的孩子,能獨立發現這一數學方法實屬很不平常。貝爾根據高斯本人晚年的說法而敘述的史實,應該是比較可信的。而且,這更能反映高斯從小就注意把握更本質的數學方法這一特點。
高斯的計算能力,更主要地是高斯獨到的數學方法、非同一般的創造力,使布特納對他刮目相看。他特意從漢堡買了最好的算術書送給高斯,說:"你已經超過了我,我沒有什麼東西可以教你了。"接著,高斯與布特納的助手巴特爾斯(J.M.Bartels)建立了真誠的友誼,直到巴特爾斯逝世。他們一起學習,互相幫助,高斯由此開始了真正的數學研究。
1788年,11歲的高斯進入了文科學校,他在新的學校里,所有的功課都極好,特別是古典文學、數學尤為突出。經過巴特爾斯等人的引薦,布倫茲維克公爵召見了14歲的高斯。這位朴實、聰明但家境貧寒的孩子贏得了公爵的同情,公爵慷慨地提出願意作高斯的資助人,讓他繼續學習。
布倫茲維克公爵在高斯的成才過程中起了舉足輕重的作用。不僅如此,這種作用實際上反映了歐洲近代科學發展的一種模式,表明在科學研究社會化以前,私人的資助是科學發展的重要推動因素之一。高斯正處於私人資助科學研究與科學研究社會化的轉變時期。
1792年,高斯進入布倫茲維克的卡羅琳學院繼續學習。1795年,公爵又為他支付各種費用,送他入德國著名的哥丁根大家,這樣就使得高斯得以按照自己的理想,勤奮地學習和開始進行創造性的研究。1799年,高斯完成了博士論文,回到家鄉布倫茲維克,正當他為自己的前途、生計擔憂而病倒時—雖然他的博士論文順利通過了,已被授予博士學位,同時獲得了講師職位,但他沒有能成功地吸引學生,因此只能回老家-又是公爵伸手救援他。公爵為高斯付諸了長篇博士論文的印刷費用,送給他一幢公寓,又為他印刷了《算術研究》,使該書得以在1801年問世;還負擔了高斯的所有生活費用。所有這一切,令高斯十分感動。他在博士論文和《算術研究》中,寫下了情真意切的獻詞:"獻給大公","你的仁慈,將我從所有煩惱中解放出來,使我能從事這種獨特的研究"。
1806年,公爵在抵抗拿破崙統帥的法軍時不幸陣亡,這給高斯以沉重打擊。他悲痛欲絕,長時間對法國人有一種深深的敵意。大公的去世給高斯帶來了經濟上的拮據,德國處於法軍奴役下的不幸,以及第一個妻子的逝世,這一切使得高斯有些心灰意冷,但他是位剛強的漢子,從不向他人透露自己的窘況,也不讓朋友安慰自己的不幸。人們只是在19世紀整理他的未公布於眾的數學手稿時才得知他那時的心態。在一篇討論橢圓函數的手搞中,突然插入了一段細微的鉛筆字:"對我來說,死去也比這樣的生活更好受些。"
慷慨、仁慈的資助人去世了,因此高斯必須找一份合適的工作,以維持一家人的生計。由於高斯在天文學、數學方面的傑出工作,他的名聲從1802年起就已開始傳遍歐洲。彼得堡科學院不斷暗示他,自從1783年歐拉去世後,歐拉在彼得堡科學院的位

E. 關於高斯的小故事

高斯的父親是泥瓦廠的工頭,每星期六他總是要發薪水給工人。在高斯三歲時,一次當他正要發薪

水的時候,小高斯站了起來說:「爸爸,你弄錯了。」 然後他說了另外一個數目。原來三歲的小高

斯趴在地板上,一直暗地裡跟著他爸爸計算該給誰多少工錢。重算的結果證明小高斯是對的,這把

站在那裡的大人都嚇的目瞪口呆。高斯常常帶笑說,他在學講話之前就已經學會計算了,還常說他

問了大人字母如何發音後,就自己學著讀起書來。

(5)高斯成果的經歷告訴我們擴展閱讀:

高斯的成就:

高斯不僅對純粹數學作出了意義深遠的貢獻,而且對20世紀的天文學、大地測量學和電磁學的實際

應用也作出了重要的貢獻。高斯開辟了許多新的數學領域,從最抽象的代數數論到內蘊幾何學,都

留下了他的足跡。

從研究風格、方法乃至所取得的具體成就方面,他都是18─19世紀之交的中堅人物。如果我們把18

世紀的數學家想像為一系列的高山峻嶺,那麼最後一個令人肅然起敬的巔峰就是高斯;如果把19世

紀的數學家想像為一條條江河,那麼其源頭就是高斯。高斯是"人類的驕傲"。天才、早熟、高產、

創造力不衰。 愛因斯坦曾評論說:「高斯對於近代物理學的發展,尤其是對於相對論的數學基礎所

作的貢獻,其重要性是超越一切,無與倫比的。」

F. 高斯的故事

1、高斯是位猶太人,德國著名數學家、物理學家、天文學家、大地測量學家,近代數學奠基者之一。高斯被認為是歷史上最重要的數學家之一,並享有「數學王子」之稱。

2、高斯三歲時便能夠糾正他父親的借債賬目的事情,已經成為一個軼事流傳至今。他曾說,他在麥仙翁堆上學會計算。能夠在頭腦中進行復雜的計算,是上帝賜予他一生的天賦。

3、在成長過程中,幼年的高斯主要得力於他的母親羅捷雅和舅舅弗利德里希。弗利德里希富有智慧,為人熱情而又聰明能幹投身於紡織貿易頗有成就。

4、高斯7歲那年開始上學。10歲的時候,他進入了學習數學的班級,這是一個首次創辦的班,孩子們在這之前都沒有聽說過算術這么一門課程。數學教師是布特納,他對高斯的成長也起了一定作用。

5、1796年高斯19歲,發現了正十七邊形的尺規作圖法, 解決了自歐幾里德以來懸而未決的一個難題。 同年,發表並證明了二次互反律。這是他的得意傑作,一生曾用八種方法證明,稱之為「黃金律」 。

6、1799年,高斯完成了博士論文,獲黑爾姆施泰特大學的博士學位,回到家鄉布倫茲維克,雖然他的博士論文順利通過了,被授予博士學位,同時獲得了講師職位,但他沒有能成功地吸引學生,因此只能回老家-又是公爵伸手救援他。

7、1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。

8、1837年高斯開始學習俄語。1839年4月18日,他的母親在哥廷根逝世,享年95歲。高斯於1855年2月23日凌晨1點在哥廷根去世。他的很多散布在給朋友的書信或筆記發現於1898年。

9、高斯具有濃厚的宗教感情、貴族的舉止和保守的傾向。他一直遠離他那個時代的進步政治潮流。在高斯身上表現出的矛盾是與他實際上的和諧結合在一起的。高斯身為才氣橫溢的算術家,對於數具有非凡的記憶力。他既是一個深刻的理論家,又是一個傑出的數學實踐家。

(6)高斯成果的經歷告訴我們擴展閱讀:

1、高斯已經指出,正三邊形、正四邊形、正五邊形、正十五邊形和邊數是上述邊數兩倍的正多邊形的幾何作圖是能夠用圓規和直尺實現的,但從那時起關於這個問題的研究沒有多大進展。高斯在數論的基礎上提出了判斷一給定邊數的正多邊形是否可以幾何作圖的准則。

2、高斯是最早懷疑歐幾里得幾何學是自然界和思想中所固有的那些人之一。歐幾里得是建立系統性幾何學的第一人。他模型中的一些基本思想被稱作公理,它們是透過純粹邏輯構造整個系統的出發點。在這些公理中,平行線公理一開始就顯得很突出。

3、高斯具有濃厚的宗教感情、貴族的舉止和保守的傾向。他一直遠離他那個時代的進步政治潮流。在高斯身上表現出的矛盾是與他實際上的和諧結合在一起的。高斯身為才氣橫溢的算術家,對於數具有非凡的記憶力。他既是一個深刻的理論家,又是一個傑出的數學實踐家。

G. 高斯有哪些人生經歷

德國著名的數學家、物理學家、天文學家、大地測量學家,卡爾·弗里德里希·高斯1777年生於不倫瑞克的一個工匠家庭,幼時家境貧困,但聰敏異常,受一位貴族的資助才進學校受教育。1795~1798年在格丁根大學學習1798年轉入黑爾姆施泰特大學,1799年因證明了代數基本定理而獲博士學位。從1807年起擔任格丁根大學的教授、格丁根天文台的台長直至1855年在哥廷根逝世。

高斯畫像

高斯在十五歲就進入不倫瑞克學院,並在那裡開始了對高等數學的研究。他獨立發現了二項式定理的一般形式、二次互反律、質數分布定理以及算術幾何平均等數學規律。1795年高斯進入哥廷根大學。1796年,19歲的高斯得到了一個數學史上極重要的結果,就是《正十七邊形尺規作圖之理論與方法》。5年後的1801年高斯又證明了「Fermat素數」等。此後高斯對數學的研究一直都沒有停止過,直到1855年2月一天的清晨他於睡夢中去世。

高斯的數學研究成就遍及了數學的各個領域,在數論、非歐幾何、徽分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。與畢達哥拉斯派的數學研究相反,他對數學的研究很注重其應用性,並且很喜歡用數學研究天文學、大地測量學和磁學。

高斯小的時候,他的父親是一個泥瓦廠的工頭,所以每星期六他總是要發薪水給工人。有一次高斯的父親發薪水的時候,小高斯站起來說:「爸爸,你弄錯了。」然後他說了另一個與父親所算的不同的數目。別看小高斯一直趴在地板上沒事人似的,其實他一直在暗地裡跟著爸爸計算該給誰多少工錢。結果他們又重算了一遍證明小高斯是對的,這使大人們都嚇得目瞪口呆,因為當時的小高斯才三歲。高斯還常說其實他在學講話之前就已經學會計算了,還常說他問了大人字母如何發音後,就自己學著讀起書來。

高斯是7歲進的小學。後來老師在算數課上出了一道難題:把1到100的整數寫下來,然後把它們加起來!看著孩子們才剛開始學做題,老師心想他可以休息一下了,沒想到的是還不到幾秒鍾,高斯已經把答案交到講桌上了。其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著答案。大部分都做錯了,出錯的學生就要挨一頓鞭打。最後,高斯的答案被翻了過來,老師大吃一驚,只見上面只有一個數字5050,這當然就是正確答案。高斯對他的答案給出了這樣的解釋:1+100=101,2+99=101,3+98=101……49+52=101,50+51=101,一共有50對和為101的數目,所以答案是50×101=5050。如此小小年紀的高斯就找到了算術級數的對稱性,可見他在數學方面的天性。

質數分布定理和最小二乘法被高斯發現是在他18歲的時候。高斯隨後專注於曲面與曲線的計算,並成功得到高斯鍾形曲線即正態分布曲線,其函數被命名為標准正態分布或者是高斯分布,並被大量運用於概率的計算中。

高斯對復數運用的總結是在計算穀神星軌跡時進行的,而三角形全等定理的概念和二次互反律的證明是在他的第一本著名的著作《數論》中論述的。高斯在他的建立在最小二乘法基礎上的測量平差理論的幫助下,結算出天體的運行軌跡。並用這種方法,發現了穀神星的運行軌跡。穀神星於1801年由義大利天文學家皮亞齊發現,但他因病耽誤了觀測,失去了這顆小行星的軌跡。皮亞齊以希臘神話中「豐收女神」來命名它,即穀神星,並將以前觀測的位置發表出來,希望全球的天文學家一起尋找。高斯通過以前的三次觀測數據,計算出了穀神星的運行軌跡。奧地利的一位天文學家依照高斯計算出的軌道,成功發現了這顆穀神星的位置。高斯由此聞名於天下,在他的著作《天體運動論》中曾著述過他推測穀神星軌跡的方法。

為了獲知任意一年中復活節的日期,高斯還推導出了復活節日期的計算公式。高斯還主導了漢諾威公國的大地測量工作,通過他發明的各類數學測量方法,使測量的精度得到顯著的提高。出於對實際應用的興趣,他發明了日光反射儀,可以將光束反射至大約450公里外的地方。高斯後來不止一次地為原先的設計做出改進,他成功試制的鏡式六分儀被廣泛應用於對大地的測量。

當時高斯又開始研究曲面和投影的理論,是因為橢圓在球面上的正形投影理論可以解決當時大地測量中出現的許多問題。他還獨立地提出了不能證明歐氏幾何的平行公式具有『物理的』必然性。但他的非歐幾何理論並未發表。而後來的物理學相對論證明了高斯理論的正確性。

高斯曾試圖在大地測量中通過測量三個山頭所構成的三角形的內角和,以驗證非歐幾何的正確性,但並未成功。而後高斯的朋友鮑耶的兒子雅諾斯證明了非歐幾何的存在,高斯對此感到很是欣喜。1840年,俄國人羅巴切夫斯基又用德文寫了《平行線理論的幾何研究》一文。這篇論文發表後,引起了高斯的注意,他非常重視這一論證,積極建議哥廷根大學聘請羅巴切夫斯基為通信院士。為了能直接閱讀他的著作,63歲的高斯又開始學習俄語,並成功的搞定了這門語言。高斯在數學方面的種種成就使他無可非議的成為了徽分幾何的始祖之一。

H. 數學家高斯的故事

德國大數學家高斯(CarlFriedrichGauss1777-1855)是德國最偉大,最傑出的科學家,如果單純以他的數學成就來說,很少在一門數學的分支里沒有用到他的一些研究成果。

貧寒家庭出身

高斯的祖父是農民,父親除了從事園藝的工作外,也當過各色各樣的雜工,如護堤員、建築工等等。父親由於貧窮,本身沒有受過什麼教育。

母親在三十四歲時才結婚,三十五歲生下了高斯。她是一名石匠的女兒,有一個很聰明的弟弟,他手巧心靈是當地出名的織綢能手,高斯的這位舅舅,對小高斯很照顧,有機會就教育他,把他所知道的一些知識傳授給他。而父親可以說是一名」大老粗」,認為只有力氣能掙錢,學問對窮人是沒有用的。

高斯在晚年喜歡對自己的小孫兒講述自己小時候的故事,他說他在還不會講話的時候,就已經學會計算了。

他還不到三歲的時候,有一天他觀看父親在計算受他管轄的工人們的周薪。父親在喃喃的計數,最後長嘆的一聲表示總算把錢算
出來。

父親念出錢數,准備寫下時,身邊傳來微小的聲音:「爸爸!算錯了,錢應該是這樣」。

父親驚異地再算一次,果然小高斯講的數是正確的,奇特的地方是沒有人教過高斯怎麼樣計算,而小高斯平日靠觀察,在大人不知不覺時,他自己學會了計算。

另外一個著名的故事亦可以說明高斯很小時就有很快的計算能力。當他還在小學讀書時,有一天,算術老師要求全班同學算出以下的算式:1+2+3+4+……+98+99+100=?

在老師把問題講完不久,高斯就在他的小石板上端端正正地寫下答案5050,而其它孩子算到頭昏腦脹,還是算不出來。最後只有高斯的答案是正確無誤。

原來:1+100=101,2+99=101,3+98=101……50+51=101

前後兩項兩兩相加,就成了50對和都是101的配對了即101×50=5050。

按:今用公式表示:1+2+……+n

高斯的家裡很窮,在冬天晚上吃完飯後,父親就要高斯上床睡覺,這樣可以節省燃料和燈油。高斯很喜歡讀書,他往往帶了一捆蕪菁上他的頂樓去,他把蕪菁當中挖空,塞進用粗棉捲成的燈芯,用一些油脂當燭油,於是就在這發出微弱光亮的燈下,專心地看書。等到疲勞和寒冷壓倒他時,他才鑽進被窩
睡覺。

高斯的算術老師本來是對學生態度不好,他常認為自己在窮鄉僻壤教書是懷才不遇,現在發現了「神童」,他是很高興。但是很快他就感到慚愧,覺得自己懂的數學不多,不能對高斯有什麼幫助。

他去城裡自掏腰包買了一本數學書送給高斯,高斯很高興和比他大差不多十歲的老師的助手一起學習這本書。這個小孩和那個少年建立起深厚的感情,他們花許多時間討論這裡面的東西。

高斯在十一歲的時候就發現了二項式定理(x+y)n的一般情形,這里n可以是正負整數或正負分數。當他還是一個小學生時就對無窮的問題注意了。

有一天高斯在走回家時,一面走一面全神貫注地看書,不知不覺走進了布倫斯維克(Braunschweig)宮的庭園,這時布倫斯維克公爵夫人看到這個小孩那麼喜歡讀書,於是就和他交談,她發現他完全明白所讀的書的深奧內容。

公爵夫人回去報告給公爵知道,公爵也聽說過在他所管轄的領地有一個聰明小孩的故事,於是就派人把高斯叫去宮殿。

費迪南公爵(Duke Ferdinand)很喜歡這個害羞的孩子,也賞識他的才能,於是決定給他經濟援助,讓他有機會受高深教育,費迪南公爵對高斯的照顧是有利的,不然高斯的父親是反對孩子讀太多書,他總認為工作賺錢比去做什麼數學研究是更有用些,那高斯又怎麼會成材呢?

高斯的學校生涯

在費迪南公爵的善意幫助下,十五歲的高斯進入一間著名的學院(程度相當於高中和大學之間)。在那裡他學習了古代和現代語言,同時也開始對高等數學作研究。

他專心閱讀牛頓、歐拉、拉格朗日這些歐洲著名數學家的作品。他對牛頓的工作特別欽佩,並很快地掌握了牛頓的微積分理論。

1795年10月他離開家鄉的學院到哥庭根(Gottingen)去念大學。哥庭根大學在德國很有名,它的豐富數學藏書吸引了高斯。許多外國學生也到那裡學習語言、神學、法律或醫學。這是一個學術風氣很濃厚的城市。

高斯這時候不知道要讀什麼系,語言系呢還是數學系?如果以實用觀點來看,學數學以後找生活是不大容易的。

可是在他十八歲的前夕,現在數學上的一個新發現使他決定終生研究數學。這發現在數學史上是很重要的。

我們知道當n≥3時,正n邊形是指那些每一邊都相等,內角也一樣的n邊多邊形。

希臘的數學家早知道用圓規和沒有刻度的直尺畫出正三、四、五、十五邊形。但是在這之後的二千多年以來沒有人知道怎麼用直尺和圓規構造正十一邊、十三邊、十四邊、十七邊多邊形。

還不到十八歲的高斯發現了:一個正n邊形可以用直尺和圓規畫出當且僅當n是底下兩種形式之一:k=0,1,2……十七世紀時法國數學家費馬(Fermat)以為公式在k=0,1,2,3,……給出素數。(事實上,目前只確定F0,F1,F2,F4是質數,F5不是)。

高斯用代數方法解決了二千多年來的幾何難題,而且找到正十七邊形的直尺與圓規的作法。他是那麼的興奮,因此決定一生研究數學。據說,他還表示希望死後在他的墓碑上能刻上一個正十七邊形,以紀念他少年時最重要的數學發現。

1799年高斯呈上他的博士論文,這論文證明了代數一個重要的定理:任何一元代數方程都有根。這結果數學上稱為「代數基本定理」。

事實上在高斯之間有許多數學家認為已給出了這個結果的證明,可是沒有一個證是嚴密的,高斯是第一個數學家給出嚴密無誤的證明,高斯認為這個定理是很重要的,在他一生中給了一共四個不同的證明。高斯沒有錢印刷他的學位論文,還好費迪南公爵給他錢印刷。

二十歲時高斯在他的日記上寫,他有許多數學想法出現在腦海中,由於時間不定,因此只能記錄一小部份。幸虧他把研究的成果寫成一本叫《算學研究》,並且在二十四歲時出版,這書是用拉丁文寫,原來有八章,由於錢不夠,只好印七章,這書可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」這個概念。

I. 高斯的故事是什麼

故事:

高斯三歲時,當水泥工頭的父親,星期六總會發薪水給工人,有一次他趴在地板上暗地裡跟著父親計算該給工人的薪水,他站了起來糾正錯誤的數目,把在場的大人嚇得木瞪口呆。高斯常笑著說,他在學講話之前就已學會計算,問了大人如何發音後,就自己讀起書來。

十歲時,他的小學老師布特納,出了一道算術難題:「計算1+2+3….+100=?」。當時考試,首先完成的就將石板(當時作為寫字用)板面朝下放在老師講桌,第二位寫完的就放在第一位上面,…..就這樣一張一張迭起來。布特納心想這可難為初學算術的學生,但是高斯卻在幾秒後將答案解出來,在老師驚奇中,他解釋如何解題,他找到了算術級數(等差級數)的對稱性,然後就像求得一般算術級數和的過程一樣,把數目一對對的湊在一起。

閱讀全文

與高斯成果的經歷告訴我們相關的資料

熱點內容
投訴制凝 瀏覽:932
黑警投訴 瀏覽:95
國培預期研修成果 瀏覽:151
知識產權專利培訓心得 瀏覽:974
工商登記需要提供什麼資料 瀏覽:683
大連使用權房子辦產權需要花多少錢 瀏覽:630
長春工商局投訴電話 瀏覽:519
湖北省基本公共衛生服務規范 瀏覽:393
國家歌曲版許可權制 瀏覽:860
開題預期成果怎麼寫 瀏覽:223
2016年4月自考知識產權法試題答案 瀏覽:741
民事案件申訴的期限 瀏覽:706
計算機軟體著作權許可合同範本 瀏覽:281
馬鞍山市政府王曉焱 瀏覽:176
vn豬年限定 瀏覽:90
馬鞍山金蘋果駕校 瀏覽:324
軟體使用權合作協議 瀏覽:123
七日殺75創造模式 瀏覽:905
濰坊高新區公共行政審批服務中心 瀏覽:455
馬鞍山深藍光電 瀏覽:699