㈠ 現代物理學領域三大理論成就
回顧了物理學發展的歷史,討論了二十一世紀物理學發展的方向。認為二十一世紀物理學將在三個方向上繼續發展:(1)在微觀方向上深入下去;(2)在宏觀方向上拓展開去;(3)深入探索各層次間的聯系,進一步發展非線性科學。可能應該從兩方面去探尋現代物理學革命的突破口:(1)發現客觀世界中已知的四種力以外的其他力;(2)通過審思相對論和量子力學的理論基礎的不完善性,重新定義時間、空間,建立新的理論。
二十世紀即將結,二十一世紀即將來臨,二十世紀是光輝燦爛的一個世紀,是個類社會發展最迅速的一個世紀,是科學技術發展最迅速的一個世紀,也是物理學發展最迅速的一個世紀。在 這一百年中發生了物理學革命,建立了相對信紙和量子力學,完成了從經典物理學到現代物理學的轉變。在二十世紀二、三十年代以後,現代物理學在深度和廣度上有了進一步的蓬勃發展,產生了一系列的新學科的交叉學科、邊緣學科,人類對物質世界的規律有了更深刻的認識,物理學理論達到了一個新高度,現代物理學達到了成熟的階段。
㈡ 物理學的發展成果改變了我們的生活方式
例如電學,愛迪生發明了電燈,歐姆探索出了電流,電阻,電壓的關系。電與磁的探究,發明了電動機,對人類文明作出了巨大貢獻
㈢ 求現代物理學的最新成果
2000~2009年度諾貝爾獎獲獎名錄
2000年12月10日第一百屆諾貝爾獎頒發。
俄羅斯科學家阿爾費羅夫、美國科學家基爾比、克雷默因奠定了資訊技術的基礎,而共同獲得諾貝爾物理獎。
美國科學家黑格、麥克迪爾米德、日本科學家白川秀樹因發現能夠導電的塑料,而共同獲得諾貝爾化學獎。
瑞典科學家阿爾維德·卡爾松、美國科學家保羅·格林加德、奧地利科學家埃里克·坎德爾因在人類腦神經細胞間信號的相互傳遞方面獲得的重要發現,而共同獲得諾貝爾醫學及生理學獎。
詹姆斯· 赫克曼丹尼爾·麥克法登因發展了能廣泛應用於個體和家庭行為實證分析的理論和方法,而共同獲得諾貝爾經濟學獎。
2001年12月10日第一百零一屆諾貝爾獎頒發。
德國科學家克特勒、美國科學家康奈爾、維曼因在鹼性原子稀薄氣體的玻色-愛因斯坦凝聚態,以及凝聚態物質性質早期基礎性研究方面取得的成就,而共同獲得諾貝爾物理學獎。
美國科學家威廉·諾爾斯、巴里·夏普萊斯、日本科學家野依良治因在「手性催化氫化反應」領域取得的成就,而共同獲得諾貝爾化學獎。
美國科學家利蘭·哈特韋爾、英國科學家蒂莫西·亨特、保羅·納斯因發現了細胞周期的關鍵分子調節機制,而共同獲得諾貝爾生理學及醫學獎。
2002年12月10日第一百零二屆諾貝爾獎頒發。
美國科學家裡卡爾多·賈科尼、雷蒙德·戴維斯、日本科學家小柴昌俊因在探測宇宙中微子方面取得的成就,並導致中微子天文學的誕生,而共同獲得諾貝爾物理學獎。
美國科學家約翰·芬恩、日本科學家田中耕一、瑞士科學家庫爾特·維特里希因發明了對生物大分子進行確認和結構分析、質譜分析的方法,而共同獲得諾貝爾化學獎。
英國科學家悉尼·布雷內、約翰·蘇爾斯頓、美國科學家羅伯特·霍維茨因選擇線蟲作為新穎的實驗生物模型,找到了對細胞每一個分裂和分化過程進行跟蹤的細胞圖譜,而共同獲得諾貝爾醫學及生理學獎。
2003年12月10日第一百零三屆諾貝爾獎頒發。
俄羅斯科學家阿列克謝·阿布里科索夫、維塔利·金茨堡、英國科學家安東尼·萊格特因在超導體和超流體理論上作出的開創性貢獻,而共同獲得諾貝爾物理學獎。
美國科學家彼得·阿格雷、羅德里克·麥金農因在細胞膜通道方面做出的開創性貢獻,而共同獲得諾貝爾化學獎。
美國科學家保羅·勞特布爾、英國科學家彼得·曼斯菲爾德因在核磁共振成像技術領域的突破性成就,而共同獲得諾貝爾生理學及醫學獎。
2004年12月10日第一百零四屆諾貝爾獎頒發。
三位美國科學家戴維·格羅斯、戴維·波利澤和弗蘭克·維爾澤克因在誇克粒子理論方面所取得的成就共同獲得諾貝爾物理學獎。
以色列科學家阿龍-西查諾瓦、阿弗拉姆-赫爾什科和美國科學家伊爾溫-羅斯因在蛋白質控制系統方面的重大發現而共同獲得諾貝爾化學獎。
美國科學家理查德-阿克塞爾和琳達-巴克兩人在氣味受體和嗅覺系統組織方式研究中作出的貢獻而共同獲得諾貝爾生理學及醫學獎。
奧地利女作家艾爾芙蕾德-耶利內克(Elfriede Jelinek)因"她小說和劇本中表現出的音樂動感,和她用超凡的語言顯示了社會的荒謬以及它們使人屈服的奇異力量"獲得諾貝爾文學獎
肯亞環保主義者馬塔伊因在可持續發展方面的貢獻獲諾貝爾和平獎。
挪威經濟學家基德蘭德(Finn Kydland)和美國經濟學家普雷斯科特(Edward Prescott)由於揭示了經濟政策和世界商業循環後驅動力的一致性而共同獲得2004年諾貝爾經濟學獎,這是美國經濟學家連續第5次獲得諾貝爾經濟學獎。
2005年12月10日第一百零五屆諾貝爾獎頒發。
美國科學家奧伊-格拉布爾(Roy J. Glauber) 、約翰-哈爾(John L. Hall )和德國科學家特奧多爾-漢什(Theodor W. H
㈣ 物理學的最新成就及發展動態
2011年諾貝爾物理獎--超新星與暗能量的發現
2011年世界十大科技進展新聞
1 英國發明超薄「納米片」制備方法
2 最大太陽能飛機首次跨國飛行成功
3 科學家成功「抓住」反物質原子長達一千秒
4 美國研製出世界上第一束生物激光
5 美國研製成功反激光器
6 美國「好奇」號火星探測器發射升空
7 晶體中量子糾纏態信息存儲成功
8 中外科學家完成馬鈴薯基因組測序
9 日本研製出世界最快計算機
10 荷蘭製造出世界最小分子「電動車」
最新動態:
量子力學與黑洞理論互相矛盾 物質或可逃離黑洞(8-15)
穿行於經典與量子之間的核磁共振理論 (4):理弦成像影憧憧(8-7)
上帝粒子進一步被證實:不存在幾率三億分之一(8-4)
㈤ 二十世紀以來物理學取得了哪些成就
普朗克(德國)發現普朗克輻射定律,並在論證過程中提出能量子概念和常數h(後稱為普朗克常數),成為此後微觀物理學中最基本的概念和極為重要的普適常量,成為量子論誕生和新物理學革命宣告開始的偉大時刻。
愛因斯坦(德)提出光子假設,成功解釋了光電效應,確定了光子的存在。
康普頓(美)進一步證實了愛因斯坦的光子理論,揭示出光的二象性。(康普頓-吳有訓效應)
玻爾(丹麥)通過引入量子化條件,提出了玻爾模型來解釋氫原子光譜;提出互補原理和哥本哈根詮釋來解釋量子力學,他創立了哥本哈根學派,對二十世紀物理學的發展有深遠的影響。
愛因斯坦1905年創立狹義相對論,1915年創立廣義相對論。愛因斯坦的工作為核能開發奠定了理論基礎,改變了人類的時空觀。
海森堡(德)得益於愛因斯坦的相對論思路而於1925年創立起了矩陣力學,並提出不確定性原理及矩陣理論。
玻恩(德)對波函數做出統計學詮釋。
埃倫費斯特(荷蘭)--研究普朗克輻射定律的統計力學基礎。埃倫費斯特的浸漸原理是經典物理和量子物理之間的一座橋梁。
德布羅意(法國)--提出物質波概念。
薛定諤(奧地利)建立量子力學中描述微觀粒子在運動速率遠小於光速時的運動狀態的基本定律,後人稱之為薛定諤方程。
狄拉克(英)給出描述費米子的物理行為的狄拉克方程,並且預測了反物質的存在。
朗之萬(法)對順磁性及抗磁性的研究。他提出用現代的原子中的電子電荷去解釋順磁性和抗磁性。1905年他提出關於磁性的理論,用基元磁體的概念對物質的順磁性及抗磁性作了經典的說明。
泡利(奧地利)提出泡利不相容原理,預言中微子的存在。
科恩和霍恩伯格(美)提出密度泛函理論的基礎。
費曼(美)的路徑積分。費曼提出了費曼圖、費曼規則和重正化計算方法,這成為了研究量子電動力學和粒子物理學不可缺少的工具。
朗道(蘇聯)提出的密度矩陣,相變理論,鐵磁疇理論,液氦II的超流理論,費米液體理論等。
薩拉姆和溫伯格(美)等提出的描述強力、弱力及電磁力這三種基本力及組成所有物質的基本粒子的理論(標准模型理論)。
楊振寧(中)和R.L.米爾斯(美)合作提出非阿貝爾規范場理論;他在粒子物理和統計物理方面做了大量開拓性工作,提出楊-巴克斯特方程,開辟了量子可積系統和多體問題研究的新方向等
楊振寧-李政道-吳健雄(中):弱相互作用中宇稱不守恆定律。
格勞伯(美)於20世紀60年代提出光的相乾性量子理論。利用光的相乾性量子理論,人類可以研究光子大量的非經典特性,從而開拓更多研究領域和應用。
...
㈥ 物理學和哪些學科有關系最新研究成果
和生物 化學聯系密切。
生物學最新的研究就是生物物理學的迅猛發展
我們可以看到生物物理學上升速度是飛快的,至於最新研究成果,估計熒光.紫外什麼的都過期了。飛躍性的進展不大
㈦ 物理學有哪些蓬勃發展
物理學不論現在還是將來都要蓬勃發展,在一段時期內,物理學的發展主要是實際應用已經取得的研究成果。其後,在它的基礎研究方面,必將有新的突破。
在理論物理方面,除了建立統一的基本粒子理論外,將逐步對一系列假說(其中包括誇克假說和非局部場假說)進行驗證。在本世紀末,我們可能會查明基本的相互作用(萬有引力、電磁力、強核力及弱核力)的特性和它們的內在聯系。在利用電子束和正電子束碰撞的加速器研究方面將取得豐碩成果。
在量子理論、相對論等基礎物理理論中,存在著不同的論點。今後,物理學家們將繼續為建立統一的物理理論而進行工作,以便把不同的學派統一在共同的基礎上。這種理論將把引力、電磁力、場力等結合起來。
在計算物理的基本常數和初始常數方面,我們完全可能得出肯定的結論。測量的精確度將提高三個數量級。在高能物理方面,有很多疑難問題。普遍的物質理論有助於這些問題的解決。
80年代固體物理領域,在純科學和應用科學的邊緣取得了重大成果。人們可能還會利用新型的設備來研究晶體的中子擴散。研究的深度足以使我們更全面地了解金屬和合金的性狀。同時反物質在宇宙中的擴散程度也將獲得解決。
㈧ 為何近幾十年來,物理學已經沒有重大突破或者發現了
我們知道人類之誕生以來,就不斷的對自然結合,對整個地球乃至宇宙的規律,一直在不斷的研究和發展,正因為如此我們人類也憑借這些理論學說,感謝如今的科學技術的發展,帶來了重要的理論基礎。那麼自從進入二十一世紀以後很少有相關物理學的理論發表越來越少,而且沒有任何重大突破而這其中的原因主要歸咎於以下幾點。
最後一點就是老一輩的物理學家們,他們為我們後輩所做出的貢獻,足夠讓許多後輩一生都未必消化得了這些理論知識,更別說重新去發表新的重要理論。
㈨ 20世紀物理學的主要成就有哪些
1、相對論
1905年,20世紀最偉大的科學天才愛因斯坦在他26歲時創立了狹義相對論,提出了不同於經典物理學的嶄新的時空觀和質(m)能(E)相當關系式E=mc2(此處光速C=3×108米/秒),在理論上為原子能的應用開辟了道路。
關於E=mc2,即物體貯藏的能量等於該物體的質量乘以光速的平方,這個數量大到令人難以想像的程度。我們不妨打個比方說,1克物質全部轉化成的能量,相當於常規狀態下燃燒36000噸煤所釋放的全部熱能;或者說,1克質量相當於2500萬度的電能。
1915年,愛因斯坦又創立了廣義相對論,深刻揭示了時間、空間和物質、運動之間的內在聯系——空間和時間是隨著物質分布和運動速度的變化而變化的。它成為了現代物理學的基礎理論之一。
從1923年開始,愛因斯坦用他的後半生致力於統一場論的探索,企圖建立一個既包括引力場又包括電磁場的統一場理論,雖然他沒有取得成功,但是楊振寧和米爾斯於50年代創立了「楊—米爾斯場方程」,發展了所謂「規范場」的理論,使愛因斯坦夢寐以求的統一場論可望在規范場的基礎上得以實現。
2、量子力學
1900年,普朗克創立了量子論,提出能量並非無限可分、能量的變化是不連續的新觀念。1905年,愛因斯坦提出了光量子論,揭示了光的「波粒二象性」。1913年,玻爾把量子化概念引進原子結構理論。1923年,德布羅意提出物質波理論。1925年,海森伯和薛定諤分別建立矩陣力學和波動力學。1928年,26歲的狄拉克提出電磁場中相對論性電子運動方程和最初形式的量子場論,使包括矩陣力和波動力學在內的量子力學取得了重大的進展。
20代末量子力學的建立,是繼1905-1915年相對論建立之後對經典物理學的又一次革命性的突破,它成功地揭示了微觀物質世界的基本規律,加速了原子物理學和固態物理學的發展,為核物理學和粒子物理學准備了理論基礎,同時也促進了化學鍵理論和分子生物學等的產生。因此,量子力學可以說是20世紀最多產的科學理論,迄今仍具有強大的生命力。
20世紀中後期5大科學成就
30年代以來,物質基本結構、規范場、宇宙大爆炸、遺傳物質分子雙螺旋結構、大地構造板塊學說以及資訊理論、控制論、系統論等理論的創建,使人類的視野進一步拓展到更為宇觀、宏觀和微觀的領域,成為人類文明進步的巨大推動力。
1、物質的基本結構
從遠古時代開始,人們就在探討物質是由什麼組成的,有沒有公共的基本單元。直到19世紀末,人們都認為這種共同的基元就是原子。1911年,盧瑟福發現原子內部有一個核;1913年,玻爾指出放射性變化發生在原子核內部,於是研究原子核的組成、變化規律以及內部結合力的核物理學應運而生。
1932年,查德威克發現了中子。從此,人們認識到各種原子都是由電子、質子和中子組成的,於是把這三種粒子和光子稱為基本粒子。
但是,基本粒子並不「基本」。一方面,正電子、中微子、介子等新的基本粒子相繼發現;另一方面,基本粒子還有其內部結構。60年代以來,出現了基本粒子結構的「誇克模型」、「層子模型」等,使40年代末誕生的一門新的獨立學科——基本粒子物理學(又稱高能物理學)至今方興未艾,成果累累。
2、宇宙大爆炸理論
現代宇宙學的研究發端於愛因斯坦。他在1915年創立廣義相對論後,用它來考察宇宙的結構問題,於1917年提出有限無邊的宇宙模型。1922年,弗里德曼提出的非靜態宇宙模型,認為宇宙是可能膨脹的。1929年,哈勃確定了星系紅移(即退行速度)和距離之間的線性關系,證實了宇宙膨脹理論。1932年,勒梅特提出了宇宙爆炸說。
1948年,伽莫夫把核物理學的知識同宇宙膨脹理論結合起來,發展了大爆炸理論,並用它來說明化學元素的起源。這一宇宙大爆炸理論在1965年發現的宇宙背景輻射現象和1998年哈勃望遠鏡探測到距地球120億光年之遙的星系中得到了有力的支持。
3、DNA分子雙螺旋模型
1953年4月25日,英國《自然》雜志刊登了25歲的沃森和37歲的克里克合作研究的成果——DNA雙螺旋結構的分子模型,這一成就後來被譽為20世紀生物學方面最偉大的發現,也被認為是分子生物學誕生的標志。
DNA是遺傳基因的物質載體——脫氧核糖核酸的英文簡稱。1915至1928年間,摩爾根通過果蠅實驗,證明了坐落在細胞核內染色體上的基因決定著生物性狀,從而創立了基因理論。染色體是由蛋白質和DNA組成的。過去生物學界一直認為蛋白質是遺傳信息的載體,直到1944年埃弗里等人通過實驗才證明了遺傳載體不是蛋白質,而是DNA。1953年DNA分子結構雙螺旋模型的建立是打開遺傳之謎的關鍵。60年代尼倫柏格等人破譯了遺傳密碼,證明地球上所有生物的遺傳密碼都是相同的——DNA的4種核苷酸鹼基的序列代表了基因的遺傳信息,決定著蛋白質的20種氨基酸的組成和排列順序。作為基因載體的DNA是生命的後台指揮者,生命的一切性狀通過受DNA決定的蛋白質來表現。
4、大地板塊構造學說
1912年,魏格納提出大陸漂移說,認為在地質歷史上的古生代,全球只有一塊巨大陸地,周圍是一片大洋;中生代以來,這塊古陸開始分裂、漂移,逐漸成為現在的幾個大陸和無數島嶼,原來的大洋則分割成幾個大洋和若干小海。
大陸漂移說經半個多世紀的發展,由地幔對流說(1928年)、海底擴張說(1961年)等階段,到1968年勒比雄等提出了全球大地板塊構造學說,建造了全球被分為歐亞、美洲、非洲、太平洋、澳洲、南極六大板塊和若干小板塊的結構模型,得到了越來越多的科學驗證,特別是海洋地質學的有力支持。
5、資訊理論、控制論、系統論
1948年,申農《通訊的數學理論》、維納《控制論:關於動物和機器中控制和通信的科學》、貝塔朗菲《生命問題》的出版,標志著交叉科學資訊理論、控制論、一般系統論的誕生;1957年,古德等《系統工程學》的出版為系統工程論奠定了基礎。60年代以來,又出現了新的交叉科學——突變論、協同論和耗散結構理論。
交叉科學不僅溝通了為數眾多的自然科學學科,而且在方法論上也溝通了自然科學與社會科學。它向人們提供了定量、精確和最優的認識世界的方法,對人類社會產生了深刻的影響。
20世紀的5大尖端技術成果
在科學的先導和生產的促進下,20世紀發展起來五大尖端技術:核技術、航天技術、信息技術、激光技術和生物技術,在能源、材料、自動化、海洋和環境等高新技術方面也有了長足的進步。
1、核能與核技術
原子核的裂變和聚變反應將產生和釋放出遠大於機械能、化學能等產生的能量。核能的和平利用,為人類提供了一個既安全又清潔、取之不盡而用之不竭的能源寶庫。
1942年,美國建成了世界上第一座原子反應堆,首次實現了人工控制的鏈式核裂變反應。1945年第一顆原子彈爆炸成功。1952年第一顆輕核聚變的氫彈爆炸成功。1954年,蘇聯建成世界上第一座原子能發電站。60年代以後,核電站進入實用階段,發展至今已成為一種重要能源,約佔全球發電總量的1/5。
核技術還廣泛應用於農業、醫療、材料、考古和環保等領域。40年代放射性同位素開始大量生產,1947年比利發明了C14測定年代的方法,1951年開始使用Co60等放射性元素治療癌症,70年代以來計算機x射線斷層掃描技術(CT)廣泛應用於臨床,80年代初發展到核磁共振掃描技術(MRI)。
2、航天和空間技術
1903-1914年,齊奧爾科夫斯基提出以火箭為動力的航行理論,奠定了航天學的基礎。1919年,戈達德提出火箭飛行的數學原理,並於1926年成功地發射了世界上第一枚液體燃料的火箭。1942年,布勞恩主持設計發射的液體軍用飛箭成為二戰後各國火箭發展的藍本。
1957年,蘇聯用洲際導彈的火箭裝置發射了世界上第一顆人造地球衛星,「空間時代」從此開始。1961年,蘇聯發射載人宇宙飛船,人類首次飛向太空。1969年,美國「阿波羅」11號飛船登月,人類在月球上留下了第一個腳印。1971年,蘇聯建造空間站,人類首次在太空中有了活動基地。1981年,美國發射太空梭成功,從此人類可以自由進出太空。
自50年代後期起,人類開始對月球和太陽系各大行星,以及遙遠的行星際空間進行探測,至今已發射了100多顆空間探測器,去揭示宇宙的形成與演化,探索生命的起源以及空間環境對人類生存環境的影響。
3、信息技術
信息技術是20世紀發展最快的技術領域。它對人類社會、經濟、政治、文化等產生了全方位的巨大而深遠的影響。
1906年,三極電子管的發明使電信號放大,從而使遠程無線電通信成為可能。1947年,第一隻晶體管的誕生為電子電路集成化和數字化提供了重要的基礎。1945年問世的電子計算機,已經歷了第一代(電子管,40年代中至50年代末)、第二代(晶體管,50年代末至60年代中)、第三代(集成電路,60年代中至70年代初)和第四代(大規模和超大規模集成電路,70年代初開始)等發展階段,80年代開始對新一代的智能計算機、光學計算機和量子計算機的探索已取得初步成果。
隨著大規模集成電路的出現,計算機向巨型化和微型化兩極發展。70年代中,巨型機的向量運算速度超過了每秒億次;微機則進入了千家萬戶,標志著個人電腦時代的來臨。當今,巨型機的運算速度已達每秒3.9萬億次,而計算機互聯網路則在2億多網民的學習、研究、交流、貿易甚至娛樂等方面創造了嶄新的工作和生活方式。
4、激光技術
1917年,愛因斯坦在研究光的輻射的過程中,提出了「受激輻射」的概念,奠定了激光的理論基礎。1958年激光被發現。1960年美國製成了世界上第一台激光器,它用紅寶石晶體做發光材料,用發光強度很高的脈沖氙燈做激發光源,在這種受激輻射作用下產生的一種超強光束就是激光。
繼紅寶石激光器之後,半導體激光器(1963年)、氣體激光器(1964年)、自由電子激光器(1977年)乃至原子激光器(1977年)等相繼問世。
5、生物技術
基因重組技術(又稱基因工程)是20世紀下半葉蓬勃興起和發展的現代生物技術的最前沿領域。60年代末至70年代初,阿爾伯和史密斯發現細胞中有兩種「工具酶」,能對DNA進行「剪切」和「連接」;內森斯則使用工具酶首次實現了DNA切割和組合。DNA的重組能創造性地利用生物資源,實現人類改造生物的遺傳特徵、產生人類所需要的生物類型的意願。80年代以來,已獲得上百種轉基因動植物,對農業發展具有重要意義。轉基因葯物的研製和生產則將為人類的健康帶來新的福音。
除基因工程外,生物技術(即生物工程)還包括細胞工程、酶工程、發酵工程和蛋白質工程等領域。1978年首例試管嬰兒路易斯誕生、1996年克隆羊多莉的出現都是細胞工程的傑作;加酶洗衣粉和嫩肉粉等則是酶工程的產品;現代發酵工業始於青黴素的生產,現已大規模利用發酵工程生產抗生素等。至於根據需要對天然蛋白質的基因進行改造,生產出新的、自然界原本不存在的優質蛋白質,更是日益受到重視,被譽為第二代基因工程。
http://wenda.haosou.com/q/1368531692061658?src=140
㈩ 現代物理學的理論成就有哪些
現代物理學理論的發展
(1)量子論的誕生與發展——從普朗克到愛因斯坦
(2)相對論的建立——愛因斯坦
(來自網路知道)