❶ 核能的发展历史
核能问世的准备时期,可以追溯到19世纪末至20世纪初。
19世纪末,英国物理学家汤姆逊发现了电子;1895年,德国物理学家伦琴发现了X射线;1896年,法国物理学家贝克勒尔首次发现了天然铀的放射性;1898年,居里夫人又发现了新的放射性元素钋和镭;1902年,她经过4年的艰苦努力成功分离出毫克级的高纯镭;1905年,爱因斯坦提出了著名的质能转换公式E=mc2(c为光速,E为能量,m为转换成能量的质量)。
1914年,英国物理学家卢瑟福通过实验,确定氢原子核是一个正电荷单元,称为质子。1932年,英国物理学家查得威克发现了中子。1938年,德国科学家哈恩和他的助手斯特拉斯曼用中子轰击铀原子核,发现了核裂变现象。有些元素可以自发地放出射线,这些元素叫做放射性元素。放射性元素可以放出3种看不见的射线。一种是α射线,就是氦原子核。一种是β射线,就是高速电子。一种是γ射线,就是高能电磁波。其中γ射线的穿透能力最强。当中子撞击铀原子核时,一个铀核吸收了一个中子而分裂成两个较轻的原子核,同时发生质能转换,放出很大的能量,并产生两个或3个中子,这就是举世闻名的核裂变反应。
在一定的条件下,新产生的中子会继续引起更多的铀原子核裂变,这样一代代传下去,像链条一样环环相扣,所以科学家将其命名为链式裂变反应。1946年,在法国居里实验室工作的我国科学家钱三强、何泽慧夫妇发现了铀原子核的“三裂变”、“四裂变”现象。链式裂变反应释放出巨大的核能,1千克铀235裂变释放出的能量,相当于2500吨标准煤燃烧产生的能量。只有铀233、铀235和钚239这3种核素可以由能量为0.025电子伏的热中子引起核裂变。它们都可用作核燃料,其中只有铀235是天然存在的,而铀233、钚239是在反应堆中人工生产出来的。铀235在天然铀中的含量仅为0.7%。
❷ 中国国际核工业展览会开幕,都有哪些新成果展示
“这个展览会,展示了中国完整的核科技工业体系和自主创新成果。 ”其中,中核集团、中国广核集团等国内展商重点展示“华龙一号”、高温气冷堆建设等取得的新进展,海上浮动核电站、电子束辐照处理工业废水技术等科技创新成果,以及核技术应用在抗击疫情中发挥的重要作用。西屋电气、法国原子能委员会等国际参展单位全面系统展示在核电、核燃料、仪器仪表、装备制造及核技术应用等领域的最新成果和创新能力。 我们祖国的发展越来越强大,为大家创造了美好的幸福生活。
❸ 核能是现在重要的新能源,它与传统能源相比有何优劣之处
核电站是目前新兴的一种发电方式,其主要利用的就是可以控制速度的缓慢的核裂变来释放能量。从而驱动发电机的主轴进行旋转,产生电力。而且越来越多的国家开始建设属于自己的核电站。之所以核电站能够这么吃香,原因其实非常简单,首先就是核电站在发电的时候,没有任何污染物的传输。其次就是核电站使用中能源消耗其实非常少,而且堆芯更换的频率也更小。最后就是核能并不是完美的,因为核电站是一个高耗水的设施,所以核电站基本上都建立在海边。
最后就是核能的缺点,核能的缺点是必须要有大量的淡水进行冷却。核电站的好处有非常多,但是其也不是完美无缺的,毕竟核电厂在进行发电的时候必须要大量的水对堆芯进行冷却,所以核电厂的耗水量是非常大的,可以说基本上源源不断的需要水资源。所以核电站的耗水量比正常的火电厂高了许多。
❹ 请就核能的开发和利用谈谈自己的看法
目前人类所使用的能源主要是化石能源,自19世纪70年年代产业革命以来,化石燃料的消费量急剧保持增长,90%以上的世界经济活动所需的能源都依靠化石能源提供,由于大量消耗,这类资源正趋于枯竭;同时化石燃料的大规模利用也带来了严重的环境污染,导致了温室效应和全球气候变暖等一系列环境问题。能源危机与环境危机日益紧迫,寻找新的清洁、安全、高效的能源是人类所面临的共同任务。能源是人类社会和经济发展的保障性资源,同时能源问题也是世界性的问题。
现代社会中,除了煤炭、石油、天然气、水力资源外,还有许多可利用的能源,如风能、太阳能、潮汐能、地热能等等,但是由于技术问题和开发成本等因素,这些能源很难在近期内实现大规模的工业生产和利用;而核能是一种经济、安全、可靠、清洁的能源,同各种化石能源相比起来,核能对环境和人类健康的危害更小,这些明显的优势使核能成为新世纪可以大规模使用的安全和经济的工业能源。开发利用核能、发展核电是实现人类社会和经济可持续发展的必然选择,清洁、高效的核能有着广阔的发展前景。 一、 能源危机与发展核能的必然性
由于人类对化石能源的大规模开发利用,可供开采的化石能源日益衰竭,在世界一次能源供应中约占87.7% , 其中石油占37.3%、煤炭占26.5%、天然气占23.9%。非化石能源和可再生能源虽然发展迅猛、增长很快, 但仍保持较低的比例, 约为12.3%。根据《2004年BP 世界能源统计》, 截止到2003年底, 全世界剩余石油探明可采储量为1565.8亿吨, 2003年世界石油产量为36.79亿吨, 即可供开采年限大约42 年。煤炭剩余可采储量为9844.5 亿吨, 可供192 年,天然气剩余可采储量为175.78 万亿立方米, 可供67 年。化石燃料在使用过程中也造成了严重的环境污染,温室效应、酸雨和全球气候变暖等全球性的环境问题不断加剧,资源危机和环境危机使人类文明的可持续发展受到制约和挑战。
在已知的可再生新能源中,由于技术上的困难和经济性等因素,已开发的太阳能、风能、沼气等均未能大规模利用,只有水电资源已大规模开发利用,尽管尚可继续开发,但仅靠水电资源难以满足经济和社会发展的需求,由此看来 ,要使可再生能源达到全面应用并足以支持经济持续发展的水平,还需要相当一段进一步开发的时期。由于新的可再生清洁能源目前面临技术和成本的问题,只有核能是一种既清洁、又安全可靠且经济上具竞争力的最现实的替代能源。 由于使用核能发电已使世界二氧化碳的排放减少了8%。所以在未来相当一段时期内,发展利用核能将成为21世纪人类应对能源危机和实现经济可持续发展的必然选择。
二、核能的发展历程与开发利用现状
1、核能发展的简单历程。
人类对核能的现实利用始于战争。核能的战争用途在于通过原子弹的巨大威力损坏敌方人员和物资, 达到制胜或结束战争的目的, 目前人类对核能的开发利用主要是发展核电, 相对与其他能源, 核能具有明显的优势。核电站的开发与建设开始于20世纪50年代,1954年,前苏联建成电功率为5000kW 的实验性核电站;1957年,美国建成电功率为9万kW 的希平港原型核电站;这些成就证明了利用核能发电的技术可行性。国际上把上述实验性和原型核电机组称为第一代核电机组。20世纪70年代,因石油涨价引发的能源危机促进了核电的发展,目前世界上商业运行的四百多座核电机组大部分是在这段时期建成的,称为第二代核电机组。第三代核电设计开始于20世纪80年代, 第三代核电站按照URD或EUR 文件或IAEA 推荐的新的安全法规设计,但其核电机组的能源转换系统(将核能转换为电能的系统)仍大量采用了第二代的成熟技术,预计一般能在2010年前进行商用建造。从核电发达国家的动向来看,第三代核电是当今国际上核电发展的主流。
2、世界核能的利用现状与核电的发展。
随着国际能源价格的进一步飙升, 2000年以来发达国家正在转变其原有的核电发展态度, 调整原有的核电发展计划。美国2005年通过能源政策法, 联邦政府开始积极鼓励建设新的反应堆。英国政府在2008年2月宣布将投巨资发展核电,在2020年以前, 新建反应堆6个, 使英国的电力供应提高18%。据国际原子能机构预测, 到2030年, 全球核电所占份额将增加到27%。正在崛起的发展中国家能源需求旺盛, 其核能增长最快, 1999到2020年间将增长417% , 尤其是发展中的亚洲, 据世界原子能机构的统计, 未来65座正在兴建或正在立项的核电站中, 2/3分布在亚洲各国。中国目前运行核电机组11个,核电比例为119 % , 核电装机容量900万千瓦, 计划到2020年提高到4000万千瓦。印度运行核电机组17个, 核电比例为216% , 计划到2020年增加20至30个新核电机组,所以目前核电的扩展以及近期和远期的发展前景仍集中在亚洲,亚洲地区尤其是发展中国家发展核电的势头强劲。
3 、核能的利用对环境造成的影响。
虽然核能具有来源丰富、安全、清洁、高效等明显的优点,但是核能仍然可能对环境造成严重的污染,对人类社会和经济的可持续发展造成重大损害。核能的利用对环境造成的污染主要是放射性污染。核能利用上的任何疏忽、无知、差错,其结果并不亚于爆发一场小型核战争,有时甚至遗患无穷,给人类的生活乃至生存,投下可怕的阴影。目前核阴云主要来自核废料的严重污染,使用核能所产生的核废料会产生危险的辐射,并且影响会持续数千年。当前对环境造成污染的放射性核素大多来自核电站排放的废物,核电可能产生的放射性废物主要是放射性废水、放射性废弃和放射性固体废物。1座100万KW的核电站1年卸出的泛燃料约为25t,其中主要成分是少量未燃烧的铀、核反应后的生成物——钚等放射性核素,核废料中的放射性元素经过一段时间后会衰变成非放射性元素。此外,还有铀矿资源的开发问题,由于铀矿资源的开发造成的废弃、废水、废渣等污染也不可忽视,对铀尾矿也必须进行妥善处理,如果处理不好,将会覆盖农田、污染水体,甚至对自然和社会都造成严重影响。只有加强核安全和辐射安全的管理,处理好放射性核废料,合理科学地利用核能,才能保证核能安全的开发利用。 解决21 世纪初人类面临发展的能源瓶颈, 传统能源存量不足, 效率低, 污染大。目前的核能、水能、燃气能中核能优势明显, 核电具有资源丰富、高效、清洁而安全的相对优势, 水电资源的开发取决于长远生态影响的评估和科学论证, 燃气能受制于资源的存量, 其他可再生新型能源如风能、生物质能特别是太阳能由于成本高、效率低, 短期内难以成为能源供应主力, 因此未来核电将会不断发展以缓解人类能源需求的燃眉之急,并能更好地保护环境和促进人类利益
❺ 新能源技术包括核能吗
太阳能、氢能、核能、生物质能、化学能源、风能、海洋能和地热能等领域的新进展,在太阳能补充了多晶硅太阳电池及多晶硅材料制备、聚合物太阳能电池、染料敏化太阳能电池、屋顶计划和并网发电技术;氢能适合我国国情的煤气化重整制氢和焦炉气重整制氢技术;核能 第四代核能技术、高温气冷堆技术和核聚变堆进;生物质能 我国目前加大沼气工程的建设,已形成年产沼气数十亿立方米的能力;化学能源 钒电池、微生物燃料电池及有机聚合物锂离子电池等内容;“风能” 风机大型化技术。
❻ 核能给国家带来了哪些影响
在早先的非市场经济国家,宏观管理体制及“罕转民”的运行机制较差。先以中国为例。
中国在20世纪50~60年代,逐步形成了一套科技管理体制。当时,需要研究什么项目,几乎就成立什么部院。此后,又成为国家一个个独立的产业部门。例如,为实施原子能原子弹工程(当时称“596工程”),中国建立了第二机械工业部;为实施火箭导弹航天工程,中国建立了第七机械工业部。需要研究什么学科或课题就成立什么研究所或研究室。例如,二机部北京401研究所(对外称中国科学院原子能研究所,即今中国原子能科学研究院),101研究室是反应堆实验室;201研究室,是加速器实验室。每个部、所、室,都是一个庞大的机构;例如,二机部有30万职工队伍,5万科技人员;401所且不说在“文革”以前,就是将放射性同位素应用、放射生物与放射医学、堆工程、受控热核反应以及高能物理等部分先后分出以后,在20世纪70年代,该所主要研究领域还有核物理、放射化学与放射化工、堆科学以及同位素制备等,共有21个研究室,连家属及临时工在内超过10000人。每个研究所都已形成了相当的规模,并牢牢地扎根于所在地区,“割据”成一大块独立的自然经济式的科学城区,构成了一个“小社会”。必须指出,像401这样的院所,在我国并非凤毛麟角,中央各部委及中国科学院约有1000家(750所高等院校不算在内)。
中国的这种管理体制是模仿前苏联而逐步形成的。因此,中国和苏联解体后的俄罗斯等国,当今天面临经济转轨时,在核工业等领域首先就有一个如何寻找出路的问题。
俄罗斯有座城市叫谢韦尔斯克,但人们在地图上却无法找到它。它的占地面积不小,直径达数十公里,人口约10万。街道、广场、住宅、工业区……都呈封闭状。到处是哨兵、警卫、巡逻犬、警戒线。进入该市的一切车辆、行人及物品都要接受严格检查。
这座城市笼罩着浓厚的神秘色彩。这简直是座与世隔绝的城市。
谢韦尔斯克的秘密不久前才逐渐被披露,可以公开说出它的位置,离托木斯克大约半小时的路程。它于1954年建成,城内有西伯利亚化工联合工厂,该工厂的主要产品是用于制造核武器的钚,即原子弹“芯”。这就是这座城市的秘密所在。
这里的一切都编成了代码,没有真正的名字。
昔日,通过铁路把谢韦尔斯克生产的钚运到另外一座秘密的城市阿尔扎马斯,在这里制造原子弹,订货单源源不断。生产线年复一年地运转,为国家制造核武器。
谢韦尔斯克的工厂目前处在半停产状态。钚的订货量只剩下原来很小的一部分。现在也不再把钚运往任何地方了,直接贮藏在仓库里。这里贮存的钚足可以数次毁灭地球。
是美国人“挽救”了这座城市,他们决定向这里购买原子弹“芯”。于是,传送带现在开始反向工作:阿尔扎马斯不断地向谢韦尔斯克运送原子弹。在谢韦尔斯克工厂的一个专门车间里拆卸这些原子弹,从中提取钚。想要进入这车间必须经过原子能工业部长的许可。
工厂要对钚进行“稀释”,使其成为核电站可以利用的普通燃料。美国人购买钚的目的就在于此。
美国人的合同签了30年,他们要购买500吨昂贵的燃料,谢韦尔斯克因此能够定期发工资,而且没有遣散专家。大家现在都能相当平静地看待未来。
现在整个俄罗斯都发生了变化,这里同样也受到了影响。过去要花2个月时间才能办妥进入该市的许可证,现在只须不到一周。但进入该市依然需要办理一系列手续。
俄罗斯的另一个核秘密城市则有着另一番景象。
位于莫斯科以东400公里的莫尔多维亚森林中有一个叫阿尔扎马斯-16的禁区,这就是近50年来,俄罗斯联邦的主要核武器设计中心。
在3号试验场的四周修建了6米高的土堤,土堤外又种植了高大的松树和白桦树。多次的核爆炸就在这里进行。前苏联第一颗原子弹就是在阿尔扎马斯-16设计的;世界最大当量为1亿吨的氢弹也在此设计,并于1961年在此进行了爆炸试验。前苏联第一枚洲际弹道导弹弹头和第一枚弹头分导重返大气层运载工具,也都诞生在这里。
前苏联氢弹计划创始人之一安德烈·萨哈罗夫曾在这里工作过20年。全俄罗斯约有3000名脑子里装有核武器设计思想的科学家,其中有一半是在阿尔扎马斯;另一半是在车里雅宾斯克。
被称为“阿尔扎马斯-16”的区域有10万居民,因为有不少犹太核科学家,因而又被称作“新耶路撒冷”。这是俄罗斯10个绝密城市中最神秘的一个,也是俄罗斯军界、工业界集团的主要堡垒。
建设阿尔扎马斯-16的工作是从1946年开始的,
那里本是俄罗斯的一个叫做萨罗瓦的小镇。到1949年夏天,他们已经制造出一颗准备在塞米巴拉金斯克试验的原子弹。
当年在阿尔扎马斯-16工作的物理学家们认为,如果试验失败,他们几乎肯定会受到严厉惩罚。他们的担心是正确的。
20世纪90年代公开的档案披露,当时的苏联领导人之一的贝利亚已拟好了一份如果原子弹试验失败,将被处决或监禁的主要物理学家的名单。但是原子弹爆炸成功了,这些物理学家全都得到了勋章。
前苏联科学家们知道怎样保守秘密。整个20世纪70年代,阿尔扎马斯-16城所有居民的证件上都是用同一个地址:莫斯科十月大地街1号36号楼。那只是莫斯科的一座普通的公寓楼。后来,当那里的居民得知曾有10万人“居住”在他们的楼里后都大吃一惊。
实际上,阿尔扎马斯-16城里的杰出科学家都住在宽敞的别墅里。城里最漂亮的一座别墅是为著名物理学家萨哈罗夫建造的。不过他拒绝住进去。
这里的居民住在铁丝网后面。所有安全措施都像是在国境线上,地上撒了沙子以显示脚印,边界哨兵配备着冲锋枪和军犬,日夜守卫着这个国中之国。
过去几年俄罗斯发生了翻天覆地的巨变,而阿尔扎马斯-16城却依然如故。
这样,阿尔扎马斯-16的处境就很困难了;到了1993年,阿尔扎马斯-16城的居民有3个月拿不到工资。他们聚集在市体育馆,扬言要罢工。后来在政府答应支付部分欠款后,才避免了工作人员的这场罢工。有的科学家说:“太让人难过了,我觉得我们成了我们国家不需要的人了。”另外一些人则盼望有朝一日权威物理学家能比列车员挣得多。
冷战结束后,俄罗斯经济出现衰退,严重地威胁着阿尔扎马斯的生存,居住在这里的10万居民要重新寻求出路。
后来阿尔扎马斯和美国新墨西哥州的洛斯阿拉莫斯国立实验室谈判,同意联手共同进行核合作研究。在3号试验场进行了首次爆炸装置起爆试验,结果证明,俄罗斯拥有最好的爆炸装置,而美国拥有最好的监测设备。双方已进行了18次联合实验。据报道,20世90年代中期,洛斯阿拉莫斯实验室和美国能源部所属的其他实验室已提供阿尔扎马斯每年运营经费的10%,约500万美元,双方合作的领域是反应堆安全和清除污染等技术。
由于双方合作顺利,使阿尔扎马斯许多核武器专家能安心留下来。
拥有9500名造诣较高的科学家和工程师的阿尔扎马斯市,环境优美,自然条件独特。近年来,除与美国合作外,也在“军转民”上寻找出路,其“军转民”产品已占总产值的10%~15%,这个比例今后计划要提高到50%以上。
作为威慑力量的核武器,过去,它已经为寻求和平,沟通人类感情和国家之间的理解,并为保卫世界和平作出了贡献。目前,正在从它至高无上的全盛时期跌落下来。
带有放射性的核能正在人类社会生活中寻找新的位置。但核能无论定位如何,其价值将是永恒的,由于其蕴藏的巨大能量,今后它将为造福人类立新功。
就中国而言:
第一颗原子弹爆炸成功后的几天,周恩来总理就询问有关河西走廊上空放射性烟云的情况。正是在周恩来总理的关,心下,我国早在1964年,就考虑到核试验从大气层转向地下发展的趋势,制定了平洞、竖井试验场的各种方案。
国家卫生部1975年组织大批医务工作者对敦煌、酒泉等地区进行了大规模的居民健康调查。调查结果显示,中国进行有限的核试验至今没有发现对居民健康有不利的影响。卫生部的实测数据还表明,全球性的放射性污染,主要是由于当时的苏联与美国进行核爆炸引起的。他们两家的核试验造成的核污染占总污染量的90%以上。
20世纪60年代,有一次核试验前,投弹飞机正在准备起飞。国务院的会议厅里,周总理仔细询问了核爆炸云的走向,当他确信放射性烟云的下风不可能到达某国上空时,他才批准了核爆炸试验。
强烈的责任感、历史感和忧患意识萦绕在中国核决策人员的心头。
1986年,国际和平年。这年春天,中国政府宣布:中国已多年未进行大气层核试验,今后也将不再进行大气层核试验。秋天,人们在第一颗原子弹爆炸中心竖起一块花岗岩纪念碑。
蘑菇云从罗布泊上空消失了。大漠深处,当年大气层核试验的指挥部变成一堆废墟,驻扎过试验大军的营盘成了黄羊的乐园。
有人曾发出这样的感慨:如果当初我们不搞原子弹、氢弹、导弹,而把那些人力、物力用来建造高层公寓和立交桥,用来制造汽车和家电,岂不更好?
中国的政治家及军事科学家们是这样回答的:
“这当然是美好的愿望。可是如果我们没有原子弹、氢弹,没有火箭,卫星,我们能有今天的地位吗?我们能有这样一个和平安宁的环境来搞建设吗?”
是的,昨天,为了不再任人欺凌,为了国家的独立、主权和尊严,我们铸造起和平盾牌;今天,为早日实现最终消除核武器的崇高目标,中国向世界宣告:暂停核试验。
现在,世界进入了一个新的格局,世纪之交的最大的挑战是经济和科技的挑战。
中国改革开放以来,特别是确立社会主义市场经济体制以后,国防科技工业最先感受到现实涌来的时代大潮。长期处于神秘状态的核技术已经撩开了面纱,和船舶、航空、航天工业一样走向民间。
核电的光明正在走进寻常百姓家。中国已形成从核电科研、设计、试验,到各种大型设备加工制造、施工、安装、调试等完整的核电体系。
核技术在农业上的应用,每年为国家增产粮食40亿公斤。核技术应用于医学,也在中国得到发展,现在全国每年接受核医学治疗的病人达400万人次。
作为在核领域中耕耘的广大科技人员,也正在从“造原子弹的不如卖茶叶蛋”的困境中走出来。
中国的核能及核技术正在转向。
核武器中的“弹芯”,可以让它变成蘑菇云,危害人与生物圈;但是,经过稀释加工后,也可以让它向人类输送电力,造福于社会,原子弹里能够飞出“核凤凰”。
❼ 月亮上的核能新秀是什么
一、月球氦能的概念
氦(He)是拉丁语Helium一词的词头,氦本意即为“太阳元素”。1868年,由法国天文学家詹逊在观测日食的时候,在日冕光谱中所发现。这种稀有气体充斥在宇宙空间大气层中。它无色无味,在空气中大约占整个体积的0.0005%,密度只有空气的1/7.2,是除了氢以外密度最小的气体。现时已知的氦同位素有八种,包括3He、4He、5He、6He、8He等,但只有3He和4He是稳定的,其余的均带有放射性。在自然界中,氦同位素中以4He占最多,多是从其他放射性物质的α衰变放出α粒子(4He原子核)而来。3He的含量在地球上极少,而在月球上储量巨大。
目前,地球上核电站所采用的核裂变生产方式危险性很大。如果用核聚变反应来生产能源,不仅单位产量是裂变能的几百倍,而且产生的放射性危险只有裂变过程的万分之一。人类社会进入20世纪90年代之后,科学家利用氢的同位素氘和氚进行控制性核聚变反应,取得突破性的进展。作为这种受控热核反应重要元素的氚,在自然界中并不存在,需要从核反应中获取。因此,科学家提出一个以氦的同位素3He代替氚的新设想。3He含有两个质子和一个中子,在热核聚变反应过程中,3He同具有一个中子和一个质子的氘发生热核聚变,产生的中子很少,可以大大降低热核聚变反应堆的放射性危害。这样,受控热核反应装置既不存在放射性,又可以比用氚反应的体积小、结构简单、造价也低,既可用于地面核电站,而且特别适合宇宙航行。因此,3He被认为是21世纪人类社会的完美燃料。
地球上的3He十分稀缺。在整个地球大气中,氦只占0.0005%;而3He又只占这些氦中的0.00014%,其余的99.99986%都是4He,即使把地球大气中的3He全部分离出来,也只有4000t。而在月球上的情况却大不相同,月球表面覆盖着的一层由岩屑、粉尘、角砾岩和冲击玻璃组成的细小颗粒状物质。这层月壤富含由太阳风粒子积累所形成的气体,如氢、氦、氖、氩、氮等。这些气体在加热到700℃时,就可以全部释放出来。其中,3He在月壤中的资源总量可以达到(100~500)×104t。另据计算,从月壤中每提炼出1t的3He,还可以获得约6300t氢气、700t氮气和1600t含碳气体(CO、CO2)。所以,通过采取一定的技术措施来获得这些气体,对于人类得到新的能源和维持永久性月球基地是十分必要的(图5-5)。
图5-5月球能源基地想象图
二、月氦的成因及分布
月球上的3He全部来自太阳。太阳不断向外喷射出稳定的粒子流,称为“太阳风”,其速度达到100~200km/s。太阳风粒子流在经过地球附近时,由于受到地球磁场的排斥和大气层的阻挡而发生偏转,只有极少量的粒子能到达地球。月球既无磁场,又无大气,太阳风粒子能自由地抵达月球表面,在月球表面土壤上形成覆盖层。月球表面经过亿万年流星和微流星的撞击,表层的土壤得以混合掺杂,以致整个月球表面都不同程度地“沾染”上太阳风的粒子。太阳风由90%的质子(氢核),7%的α粒子(氦核)和少量其他元素的原子核组成。月球上的3He正是太阳风中的α粒子形成的。
太阳风粒子可以直接照射月球表面而被月壤层捕获,在漫长的月球地质历史过程中使得月壤层积累了丰富的3He。3He含量主要受制于两个过程:太阳风粒子注入3He与月壤的脱气作用(outgassing)。如果月表面没有对太阳风粒子注入饱和,3He含量取决于月表面的太阳风。再则,3He含量受制于月壤吸附与保持3He的能力,即月壤的脱气作用,该因素与月壤的结构和化学成分有关。
由于太阳风是月壤中3He的唯一来源,它的强度表现出全月球纬度向的变化,与太阳风射线成一角度的月表面就要受到较少的太阳风粒子照射。当月球进入地球磁尾并偏转太阳风时,月球正面比月球背面接受的太阳风要少一些,使得3He在经度向上有变化。
影响3He含量的第二个因素是月表面土壤的成熟度,即月表面土壤暴露在空间环境中经受了多长的时间。在太阳风空间环境中,月表面土壤粒子大小减小,胶合能力加强,使得月表面土壤3He含量增加。描述月壤成熟过程的定义有几个不同的特征指数,多采用光学成熟度OMAT(optical maturity)来表示月表面土壤的成熟度。
第三个因素是TiO2含量。月球土壤中不同成分(如钛铁矿、橄榄石、辉石、斜长石等)的同一大小粒子含有3He是不同的,其中钛铁矿含3He要高出10~100倍。由于大多数TiO2是在钛铁矿中,TiO2含量作为钛铁矿的一个示踪物,成为3He含量的一个特征指数。
月球正面月海区域由于TiO2含量高,可能有较高的3He含量,尽管那里由于地球磁尾的遮蔽而接受到的太阳风粒子较少。在月海区域可有最大的3He含量,可高达30ng/g。与月球正面月陆区域相比,月球背面月陆区域可有较高的3He含量,主要是月球背面太阳风强。月球极地区域3He含量较少,是因为该处太阳风照射比较弱。
三、月球氦能的利用
核聚变反应有多种,例如,可用氢的同位素氘聚变生成氦,或者用氢的两种同位素氘和氚聚变生成氦。这两种聚变反应虽均可产生大量能量,但也会释放出大量中子或质子,而且还要求反应温度不低于5×108℃,所以很难在实际工程中实施。然而,利用氘和3He聚变生成氦,在聚变过程中,除产生大量能量外,它没有释放中子的问题。因为,氘“多余”的一个中子,在反应过程中,正好被3He吸收而生成氦。而且,所需要的反应温度,也只是目前实验室已达到温度的2倍。所以,它是一种安全、干净、相对来说也比较容易实现的可控核聚变反应。商业经济性分析表明,氘-3He核(聚变)电站,完全可以同核(裂变)电站和火力发电站相竞争。理想的核聚变燃料应该蕴藏丰富,易于获取,释放能量大。氘在天然水中含量丰富,提纯也不困难。氘在水中所占的比例是1∶6500,全世界总储量达1013t。因此,月球上3He提供了新的能源(江燕,1996)。
核聚变反应不仅能够应用于产生电能,而且还可以用于作为火箭推动器的燃料。在氘-3He的核聚变反应中不仅释放14MeV的质子,而且还可以产生超过106s的比冲(火箭发动机单位重量推进剂产生的冲量,也叫比冲量)。这种性能是通过在火箭推动器排气口上加入冷却物质来实现降低火箭推动力实现的。同时也可以通过降低脉冲来增加火箭推动力。因此,核聚变火箭推动器可以在火箭飞行器用核引擎模式下运行加热氢气到高温来产生高的推动力和低的脉冲。也就是说,火箭推动器在运行时,其运行模式可以在一定范围内进行调节。在脱离重力场过程中可以使用较高推动力来完成,而当飞船处于失重状态时,则可以转化成高比冲调节操作。
至于如何把3He从月球拿回来,科学家也有了设想:第一步是要开展资源勘查工作,看月球表面什么地方3He最集中。在此之后才能进行试验性的开采并考虑在月球上建工厂。首先,需要专门的机械去收集月球表面上的土,再将这些土加热至600℃之后,就会分离出气体氦,然后从氦分离出它的同位素3He。下一步就得将3He气体液化,以便于运输。最后一步是将液化的3He用航天飞机运回地球。一般来说,航天飞机一昼夜便能一次性将20t的3He运回地球。全球每年所需能量原料只需航天飞机飞四五次(2.5亿~3亿美元/次),所以月壤中的3He具有巨大的开发利用前景。虽说开采和运输3He的方案非常复杂,需要花费很大的劳动力,而且耗资巨大,但确是可以实现的。据科学家计算,利用月球开发的3He发电成本只是现在核电站发电成本的1/10(宋成文和刘瑀,2009)。
四、月氦的发展
2013年12月“嫦娥三号”成功奔月,令无数华人又心潮澎湃地骄傲了一把。观看了发射全程的人们在感慨人类智慧伟大的同时,也提出了疑问题:利用月球资源距离我们尚远,那么探月工程当下到底对人们有什么实用价值?公开的数据显示,“嫦娥一号”投入14亿元人民币,“嫦娥三号”迄今共投入9亿元人民币,“嫦娥二号”的投入尚未公布。相对于巨额的投入,探月技术所带来的经济价值不可估量。
中国航天科技集团提供的一份数据表明,我国近年来的1000多种新材料中,80%是在空间技术的牵引下研制完成的;有近2000项空间技术成果已移植到国民经济各个部门。目前,空间生命科学与微重力科学、太空旅游、空间材料学等领域仍处于由政府投资研究、试验和探索阶段。中国科学院院士胡文瑞展望将来可能产生的效益时举例说:“美国以‘沸石’作为催化剂炼油,科学家们以提高炼制效率百分之一为目标,在空间展开研究,如果成功,按照美国每年炼油花费900亿美元来算,一年可节约9亿美元;我国科学家也有相应的计划,我国一年需要约20亿吨煤,如果能通过空间试验把燃煤效率提高千分之一,按每吨煤400元人民币计算,每年就是8亿元的效益……而在生命科学等领域如果能有突破性成果,人类的健康和生活将可能出现质的飞跃,这是用数字无法衡量的了。”
“嫦娥二号”的火箭发动机技术所衍生出的技术已应用于环保和人们的食住行等各个领域。经过成果转化后,“嫦娥”奔月将为人类带来众多像氦能这样新的绿色馈赠(水蓝天,2014)。
目前除了中国正积极发展自身的探月技术之外,包括美国在内的西方国家也在酝酿开采月球资源的计划。世界各国纷纷进行探月竞争的原因之一,即是为了确保拥有被认为是下一代核聚变发电燃料的3He。
不过,人类想要获得纯净、清洁的3He还有很长的路要走。英国伦敦大学学院马拉德空间科学实验室行星科学部门负责人安德鲁?科茨对利用3He的可行性提出了质疑,至少地球与月球之间的运输方式尚不完善。他说:“我们在地球上尚未实现聚变发电。这是一个好主意,但还是空中楼阁。”的确,以人类现有的技术和能力,目前还无法做到用3He来作为人类使用的能源,比如说,目前大规模受控核聚变的技术尚不具备等。但是随着科技的不断发展,科学家相信会克服这些困难,最终实现对月采矿的伟大工程。因此,有些国外的科学家认为,要实现这个目标需要联合世界上最好的科研力量,当然也还需要足够的资金支持(刘辉,2014)。
❽ 清华大学核能与新能源技术研究院的成果贡献
1964年,清华大学有关专业师生在此建成了自行设计的屏蔽试验反应堆,完成了动力堆屏蔽实验,此后又与有关部门合作,完成了溶剂萃取法核燃料后处理新技术研究,为中国核能事业做出了重要贡献。
1989年11月,核研院设计建设的5兆瓦低温核供热试验反应堆建成并运行成功,它是世界上首座投入运行的“一体化自然循环壳式供热堆”,也是世界上第一座采用新型水力驱动控制棒的反应堆,至今已完成了核能热电联供、低温制冷和海水淡化等一系列试验。根据“清华大学核能与新能源技术研究院”网站资料 ,中国第一座200兆瓦低温核供热工业示范堆的设计工作,已被国家批准立项由核研院承担。
核研院负责承担的国家863高技术研究与发展计划项目10兆瓦高温气冷实验反应堆,于1995年6月开始动工兴建,2000年12月建成达到临界,2003年1月实现满功率并网发电。模块式球床高温气冷堆被国际核电界公认为21世纪新型核电站的首选堆型之一。这座先进反应堆的建成,使我国成为世界上为数不多的掌握了高温气冷堆技术的国家之一。
核研院已研究成功了国际领先的分离高放废液的中国“TRPO流程”和国际首创的“钴60集装箱检测系统”,受到国内外专家的高度评价。
根据“清华大学核能与新能源技术研究院”网站资料 ,核研院完成了几十项国家重点科研任务,取得了一批重要科研成果。有160项成果获部委级科技成果奖,18项成果获国家级奖,139项专利获权。1990年12月,核研院荣获国家教委、国家科委命名的“全国高等学校科技工作先进集体”称号。1992年4月,荣获中华全国总工会命名的“全国先进集体”称号。2001年7月,核研院党委荣获中组部命名的“全国先进基层党组织”称号。与此同时,核研院党委还被中共北京市委命名为“北京市先进基层党组织”。
核研院在科研的基础上,利用本院优势,努力实现科研成果的转化,在功率电子器件和整机、核同位素工业仪表、精细陶瓷及新型材料、稀土分离与深度加工等方面先后开发了一批先进的高技术产品,为国民经济做出了贡献。