导航:首页 > 证书转让 > y3卫衣成果

y3卫衣成果

发布时间:2021-10-02 22:07:26

⑴ Y3现在还在生产吗

Y-3系列只是09年受到经济危机影响并没有破产,只是当时申请了破产保护而已,网上不知道为什麼传来传去就变成了破产=,=现在Y-3在海外仍然是顶级家喻户晓的奢侈品
Y-3系列在中国内地贩售的专柜很少,记得加上香港和台湾好像就8座城市有官方授权的专卖
其次就是海外的各大奢侈品购物中心都有Y-3专柜,我上周还在harrod's买了一件spring11年最新款的卫衣的说=,=
其次还有可以登录线上Y-3官方线上商店购买,不过一般一件邮寄费用在20磅左右200RMB左右吧仅支持paypal和credit card支付

http://www.y-3store.com/

⑵ 长沙哪里有y3衣服买

他给你讲乱。。只有北京 上海才有Y-3如果你要买防正的话就在 地下商场就有

⑶ 绿色的卫衣该怎样搭配帽子、裤子、方巾

里边要套白T
从脖子的位置看很范~
要戴帽子鸭舌为好
头发长长的垂下来就行
因为天气还比较冷加条灰色深蓝色黑色要是有胆量加红色的围巾都可以
下身穿米色灰色黑色的短裤配黑丝
雪地靴 毛球球的平地鞋都很范
注意颜色搭配
绿色本来就很跳啦!~

⑷ 范盛金的学术成就

范盛金研究出比世界著名的卡尔丹公式解题法更为实用的“三次方程新解法——盛金公式解题法”:
(清晰图片,点击放大。) 当Δ=0(d≠0)时,使用卡尔丹公式解题仍存在开立方。与卡尔丹公式相比较,盛金公式的表达形式较简明,使用盛金公式解题较直观、效率较高;盛金判别法判别方程的解较直观。
重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd是最简明的式子,由A、B、C构成的总判别式Δ=B^2-4AC也是最简明的式子(是非常美妙的式子),其形状与一元二次方程的根的判别式相同;盛金公式2中的式子(-B±(B^2-4AC)^(1/2))/2具有一元二次方程求根公式的形式,这些表达形式体现了数学的有序、对称、和谐与简洁美。
这一研究成果,于1989年12月发表在《海南师范学院学报(自然科学版)》(第2卷,第2期;1989年12月,中国海南。国内统一刊号:CN46-1014),第91—98页。范盛金,一元三次方程的新求根公式与新判别法。(NATURAL SCIENCE JOURNAL OF HAINAN TEACHERES COLLEGE , Hainan Province, China. Vol. 2, No. 2;Dec,1989), A new extracting formula and a new distinguishing means on the one variable cubic equation. Fan Shengjin. PP·91—98 .
盛金判别法体现了数学的有序、对称、和谐与简洁美。盛金判别法具有一元二次方程根的判别法的表达形式,简明易记、解题直观,所体现的数学美,令人惊叹!
盛金公式具有可靠性、直观性、简洁性、准确性、高效性、广泛性、实用性。
特别是盛金公式③,简明易记,不存在开方(此时的卡尔丹公式仍存在开立方),手算解题效率高。
盛金公式③被称为超级简便的公式。
[精彩例题]
解方程X^3-67.4X^2+1417.92X-9539.712=0
(用科学计算器辅助运算)
解:a=1,b=-67.4,c=1417.92,d=-9539.712。
A=289;B=-9710.4;C=81567.36,
Δ=0。
根据盛金判别法,此方程有三个实根,其中两个相等。
应用盛金公式③求解。
K=—33.6。
把有关值代入盛金公式③,得:
X⑴=33.8;X⑵=X⑶=16.8。
经检验,结果正确。
盛金公式④是漂亮的三角式,解题直观、准确。
而此时,卡尔丹公式存在虚数性,虽然可转换为三角式解题,但不直观。
[精彩例题]
解方程X^3-70.5X^2+1533.54X-10082.44=0
(用科学计算器辅助运算)
解:a=1,b=-70.5,c=1533.54,d=-10082.44。
A=369.63;B=-17372.61;C=219308.8716,
Δ=-22444974.63<0。
根据盛金判别法,此方程有三个不相等的实根。
应用盛金公式④求解。
θ=90°。
把有关值代入盛金公式④,得:
X⑴=12.4;X⑵=34.6;X⑶=23.5。
经检验,结果正确。
盛金定理清晰地回答了盛金公式解三次方程中的疑惑问题。如:
盛金定理8:当Δ<0时,盛金公式④一定不存在A≤0的值。(此时,适用盛金公式④解题)。
盛金定理9:当Δ<0时,盛金公式④一定不存在T≤-1或T≥1的值,即T出现的值必定是-1<T<1。
盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。
[精彩例题]
判别方程X^3-1.3X^2+0.9X-9.7=0的解
解:a=1,b=-1.3,c=0.9,d=-9.7。
A=-1.01<0。
根据盛金定理5:当A<0时,则必定有Δ>0。
根据盛金判别法,当Δ>0时,方程有一个实根和一对共轭虚根。
范盛金在研究解一元三次方程问题的基础上,进而深入研究根式解一元五次方程的问题。
根式解一元五次方程问题是世界数学史上的最著名难题之一。根据阿贝尔定理,一般五次方程不存在根式表达的求根公式。范盛金对解五次方程问题进行了深入探索与研究,给出了可化为(X+r)^5=R的求根公式,并提出了具有数学美的一般式一元五次方程求根公式的猜想表达式。
范盛金给出的“可化为(X+b/(5a))^5=R的一元五次方程之求根公式”如下:
一元五次方程:aX^5+bX^4+cX^3+dX^2+eX+f=0
(a,b,c,d,e,f∈R,且a≠0)
重根判别式:
A=2b^2—5ac;
B=c^2—2bd;
C=d^2—2ce;
D=2e^2—5df。
当A=B=C=D=0时,公式⑴:
X⑴=X⑵=X⑶=X⑷=X⑸=-b/(5a)=-c/(2b)=-d/c=-2e/d =-5f/e。
当A=B=C=0,D≠0时,公式⑵:
X⑴=(-b+Y^(1/5))/(5a);
X(2,3)=(-b+Y^(1/5)(-1+√5)/4)/(5a)±Y^(1/5)√(5+√5)√2i/4/(5a);
X(4,5)=(-b+Y^(1/5)(-1-√5)/4)/(5a)±Y^(1/5)√(5-√5)√2i/4/(5a)。
其中Y=(be—25af)(5a)^3,i^2=-1。
这种表达式体现了数学的有序、对称、和谐与简洁美。
无论a、b、R为任何实数,展开(X+b/(5a))^5=R ,都可以用公式⑵直观求解。
重根判别式最简记忆符号:5a…2b…c…d…2e…5f。
由最简记忆符号可快速得出重根判别式:A=2b^2—5ac;B=c^2—2bd;C=d^2—2ce;D=2e^2—5df。
[精彩例题]
例1、解方程1024X^5+3840X^4+5760X^3+4320X^2+1620X+243=0
解:a=1024,b=3840,c=5760,d=4320,e=1620,f=243。
∵A=B=C=D=0,∴此方程有一个五重实根。
应用公式⑴解得:
X(1)=X(2)=X(3)=X(4)=X(5)=-3/4。
经检验,结果正确(检验过程略)。
例2、解方程X^5+15X^4+90X^3+270X^2+405X—1419614=0
解:a=1,b=15,c=90,d=270,e=405,f=-1419614。
∵A=0;B=0;C=0,D≠0,∴此方程有一个实根和两对共轭虚根。
应用公式⑵求解。
Y=(be—25af)(5a)^3=4437053125; Y^(1/5)=85。
把有关值代入公式⑵,得:
X(1)=14;
X(2,3)=(-29-17×5^(1/2))/4±17(5-5^(1/2))^(1/2)2^(1/2)i/4;
X(4,5)=(-29+17×5^(1/2))/4±17(5+5^(1/2))^(1/2)2^(1/2)i/4。
这是根式表达的精确结果。为了方便用韦达定理检验,取近似结果为宜,就是:
X(1)=14;
X(2,3)=-16.7532889±9.992349289i;
X(4,5)=2.253288904±16.16796078i。
经检验,解得的结果正确(检验过程略)。
例3、解方程X^5+8.15X^4+26.569X^3+43.30747X^2+35.29558805X—32756.49364=0
解:a=1;b=8.15;c=26.569;d=43.30747;e=35.29558805;f=-32756.49364。
A=0;B=0;C=0;D≠0。
∵A=B=C=0,D≠0。
∴应用公式⑵求解。
Y=102400000;Y^(1/5)=40。
把有关值代入公式⑵,得:
X(1)= 6.37;
X(2,3)=0.842135955±7.60845213i;
X(4,5)=-8.102135955±4.702282018i。
用韦达定理检验:
X⑴+X⑵+X⑶+X⑷+X⑸=-8.15,-b/a=-8.15;
X⑴(X⑵+X⑶+X⑷+X⑸)+(X⑵+X⑶)(X⑷+X⑸)+X⑵X⑶+X⑷X⑸=26.569,c/a=26.569;
X⑴(X⑵X⑶+X⑷X⑸)+X⑴(X⑵+X⑶)( X⑷+X⑸)+X⑵X⑶(X⑷+X⑸)+X⑷X⑸(X⑵+X⑶)=-43.307,-d/a=-43.307;
X⑴X⑵X⑶(X⑷+X⑸)+X⑴X⑷X⑸(X⑵+X⑶)+X⑵X⑶X⑷X⑸=35.296,e/a=35.296;
X⑴X⑵X⑶X⑷X⑸=32756.494,-f/a=32756.494。
经用韦达定理检验,结果正确。
例4、编制方程求实根的例子:
在(X+r)^5=R中,令r=6,R=3^(1/3)。
解方程 (X+6)^5=3^(1/3)
解:X=(3^(1/3))^(1/5)-6,
X=-4.8883876826。
我们已经知道,这个方程有一个实根是X=-4.8883876826。
展开(X+6)^5=3^(1/3),得方程:
X^5+30X^4+360X^3+2160X^2+6480X+7776-3^(1/3)=0
(这个方程显然无法用猜根法或因式分解法求解)
解:a=1;b=30;c=360;d=2160;e=6480;f=7776-3^(1/3)。
A=0;B=0;C=0;D≠0。
∵A=B=C=0,D≠0。
∴应用公式⑵求解。
Y=5412.658774。
把有关值代入公式⑵,得:
X(1)=-4.8883876826。
与我们知道的结果一致,结果正确!
如果把方程X ^5+30X^4+360X^3+2160X^2+6480X+7776-3^(1/3)=0中的f=7776-3^(1/3)换成其他任意实数,那么仍可用公式⑵求解,这样的方程有无限多个;
如果把解方程X^5+8.15X^4+26.569X^3+43.30747X^2+35.29558805X—32756.49364=0中的f=-32756.49364换成其他任意实数,那么仍可用公式⑵求解,这样的方程有无限多个。

范盛金提出简明的、具有数学美的一般五次方程求根公式的猜想表达式是:
一元五次方程aX^5+bX^4+cX^3+dX^2+eX+f=0
(a,b,c,d,e,f∈R,且a≠0)
猜想求根公式:
X(1)=(-b+(Y1)^(1/5)+(Y2)^(1/5)+(Y3)^(1/5)+(Y4)^(1/5))/(5a);
X(2,3)=(-b+((Y1)^(1/5)+(Y2)^(1/5))M+((Y3)^(1/5)+(Y4)^(1/5))N
±(((Y1)^(1/5)-(Y2)^(1/5))G+((Y3)^(1/5)-(Y4)^(1/5))H)i)/(5a);
X(4,5)=(-b+((Y1)^(1/5)+(Y2)^(1/5))N+((Y3)^(1/5)+(Y4)^(1/5))M
±(((Y1)^(1/5)-(Y2)^(1/5))H+((Y3)^(1/5)-(Y4)^(1/5))G)i)/(5a),
其中:
i^2=-1,
M=(-1+5^(1/2))/4;
N=(-1-5^(1/2))/4,
G=(5+5^(1/2))^(1/2)2^(1/2)/4;
H=(5-5^(1/2))^(1/2)2^(1/2)/4。
Y1、Y2、Y3、Y4是方程Y^4+PY^3+QY^2+RY+S=0的解。
(P、Q、R、S是由重根判别式构成)
范盛金提出的这个猜想求根公式的特点是:
只要推导出一元四次方程Y^4+PY^3+QY^2+RY+S=0,根式解一般五次方程问题便得到解决,因为解一元四次方程有费拉里公式,这个猜想具有科学性。
重要关系式:
M=(-1+√5)/4;N=(-1-√5)/4,G=√(5+√5)√2)/4;H=√(5-√5)√2)/4。
V=N-Hi=(-1-√5-i√(5-√5)√2)/4;i^2=-1。
V^5=1;V^6=V;V^7=V^2;V^8=V^3;V^9=V^4;V^10=V^5=1;……;V^n=V^(n-5) (n≥5),
V+V^2+V^3+V^4=-1;V+V^2+V^3+V^4+V^5=0,
V+V^4=(-1-√5)/2;V^2+V^3=(-1+√5)/2,(V+V^4)(V^2+V^3)=-1。
以上关系式非常有用!
以上重要关系式是一种很自然常规的运算方法。当然,数学运算能力不是很强或不能很好地去运用以上技巧,那么推导过程就会无法进行下去,也就没有可能得出四元四次方程组。
为了简化运算,在推导一元五次方程的求根公式的过程中注意运用好以上关系式,这样可以简化运算,大大提高运算效率。
关于重要关系式的验证:
二十年前,范盛金是用笔算来运算的。
为了方便,用科学计算器验证以上关系式的正确性。
验证:
V=-0.8090169944-0.5877852523i;
V^2=0.3090169944+0.9510565163i;
V^3=0.3090169944-0.9510565163i;
V^4=-0.8090169944+0.5877852523i;
显然有:
V^5= V^2·V^3
= (0.3090169944+0.9510565163i)·(0.3090169944-0.9510565163i)
=0.3090169944^2+0.9510565163^2
=1。
即V^5=1。
就是说,((-1-√5-i√(5-√5)√2)/4)^5=1。
这就把复杂化为了简单,非常简洁漂亮。
研究数学就是要把复杂化为简单。运算过程是复杂的,结论是简单的。
特别有趣的是:
((-1-√5-i√(5-√5)√2)/4)^5=1;
((-1+√5+i√(5+√5)√2)/4)^5=1;
((-1+√5-i√(5+√5)√2)/4)^5=1;
((-1-√5+i√(5-√5)√2)/4)^5=1。
范盛金选择((-1-√5-i√(5-√5)√2)/4)^5=1体现在重要关系式来参与运算,是因为这个关系式的括号内的符号都是负号,这是很方便记忆的(一种符号,可以减少记忆负担,不易出错),范盛金认为,研究数学要尽可能地化简,尽可能地使用方便记忆的式子。
根式解五次方程的问题是非常复杂而有趣味的问题,完整地解决根式解五次方程的问题,仍需漫长的过程。
范盛金用数学美的方法把复杂的数学问题变为简单和直观化,被誉为解高次方程的数学美大师。

阅读全文

与y3卫衣成果相关的资料

热点内容
快递时效投诉 浏览:782
世纪创造绝缘有限公司 浏览:600
聚投诉珍爱网 浏览:47
公共卫生服务协议书2017 浏览:805
改革工作成果汇报 浏览:49
医疗纠纷管理伦理的主要要求不包括 浏览:959
工业光魔创造不可能720p 浏览:243
君主立宪制是法国大革命的成果 浏览:13
王成果青岛科技大学 浏览:519
护理品管圈成果汇报书 浏览:875
使用权获取途径 浏览:759
怎么投诉奥迪4s店 浏览:31
美术教师校本研修成果 浏览:740
股权转让合同模板 浏览:638
知识产权部门重点的工作计划范文 浏览:826
用地批准书能证明土地的使用权权吗 浏览:829
拓荒者知识产权 浏览:774
商标侵权事宜处理委托书 浏览:168
内容无版权今日头条 浏览:327
房产纠纷诉讼时效是多长时间 浏览:269