❶ 航空摄影测量的测绘成果主要有哪几种表达形式
数字正射影像图
数字高程模型
数字线划图
三维数模
其它非数字的模拟的同类产品
❷ 好心人帮帮忙很急很急…航空摄影测量测绘成果的表达形式有四种,为什么会有这四种不同的表达形式
航空摄影测量是一种测量手段。
不同形式的测绘成果是这种测量手段的产品。
这样说可能更确切一些。
为什么要有不同的表达形式,主要是从产品需求方面说的,有人需要做数字线划图,为了规划设计、选线或施工用,要得到这种图可以有多种技术手段来实现,航空摄影测量是其中的一种,还可以野外采集。如果有人为了建立管理信息系统,要用图片格式的所谓正射影像图来做背景,也可以由航测方法得到。
测量手段有多种,测绘成果也有多种。
对应航空摄影测量这种手段可生产的主要测绘产品就是那几种形式。
❸ 什么是倾斜摄影测量,目前的主要应用是在什么方面
国外排名前三的有Smart 3D, Photoscan, OpenDroneMap,
国内有Skyline PhotoMesh,大疆无人机(需要硬件投入成本)。
ThingJS提供Web数据可视化开发组件,对于倾斜摄影的数据都支持加载到ThingJS,并在web浏览器端显示,尤其是园区建筑密集区域的数据加载【官网有3D演示】
❹ 摄影测量基础知识
(一)地面摄影测量
1.地面摄影测量定义
利用地面摄影的像片对所摄目标物进行的摄影测量,是指利用安置在地面上基线两端点处的摄影机向目标拍摄立体像对,对所摄目标进行测绘的技术。可用于险阻高山区、小范围山区和丘陵地区测图,还可用于地质、冶金、采矿、水利和铁道等方面的勘察。
2.地面摄影测量分类
地面摄影测量分为外业工作和内业工作。
外业工作包括摄影和测量。摄影是在基线两端点,用摄影经纬仪或其他摄影机按一定方式分别摄影,以获取目标的立体像对。测量工作,先选摄影基线,后用普通测量方法测定基线长度、基线端点和检查点的坐标和高程,为内业像片处理提供起始数据。
内业成图方法分为图解法、模拟法和解析法。图解法是根据立体坐标量测仪量测出像点坐标和左右视差值,按相似三角形关系设计一种图板,用图解法求出地面点的平面位置和高程。模拟法是利用地面立体测图仪进行测图的方法。解析法是按一定的数学公式求出地面点在其地面辅助坐标系中的空间坐标,再转换为地面坐标。解析法适应性强,精度高,是常用的方法。
(二)航空摄影测量
航空摄影测量指的是在飞机上用航摄仪器对地面连续摄取像片,结合地面控制点测量、调绘和立体测绘等步骤,绘制出地形图的作业。
1.航摄像片与地图的区别
航摄像片是地面景物的中心投影构象,而地图则是地面景物的正射投影,这是两种不同性质的投影。只有当地面严格水平且像片也严格水平时,上述两种投影结果才等效。
地图是地表面根据一定的比例按正射投影位置来描绘的,其平面位置是正确的。当航摄像片有倾角或地面有高差时,所摄得的像片与上述理想情况会有差异。这种差异表现为像点位移,它包括因像片倾斜引起的像点位移和因地形起伏引起的像点位移,后者又称为投影差。航摄像片上所存在的倾斜位移与投影差决定了其不能直接作为地图使用。
2.像片倾斜引起的像点位移
一般情况下,航空摄影所获取的像片是倾斜的,此时,即使地面严格水平,航摄像片上的目标物体也会因为像片倾斜而产生变形或像点位移。这种位移的结果使得像片上的几何图形与地面上的几何图形产生变形,而且像片上影像比例尺处处不等。正是由于存在这种差异,使得中心投影的航摄像片不具备正射投影的地图功能。摄影测量中对这种因像片倾斜引起的像点位移可用像片纠正的方法予以改正。
3.航空摄影测量的优点
1)航摄像片充分客观地记载了地物地貌在摄影时瞬间的状态。因而具有信息量大、形态逼真、精度较均匀的特点。
2)航测很大一部分工作将由室外移至室内。因此,节约了大量的人力、物力,还减少了天气季节的影响。
3)航测成图具有成图快、精度好、成本低和工效高的特点。
4.航空摄影测量外业、内业工作内容
航空摄影测量需要进行外业和内业两方面的工作。
航测外业是为航测内业提供控制测量成果和调绘像片,包括以下工作:①像片控制点联测。像片控制点一般是航摄前在地面上布设的标志点,也可选用像片上的明显地物点(如道路交叉点等),用普通测量方法测定其平面坐标和高程。②像片调绘。是图像判读、调查和绘注等工作的总称。在像片上通过判读,用规定的地形图符号绘注地物、地貌等要素;测绘没有影像的和新增的重要地物;注记通过调查所得的地名等。外业调绘中的主要调绘目标有独立地物调绘,居民地调绘,道路及其附属设施调绘,管线、垣栅和境界的调绘,水系、地貌、土质和植被的调绘,地理名称的调查和注记等。
航测内业工作包括:①测图控制点的加密。以前对于平坦地区一般采用辐射三角测量法,对于丘陵地和山地则采用立体测图仪建立单航线模拟的空中三角网,进行控制点的加密工作。②用各种光学机械仪器及计算机测制地形原图。
(三)航天摄影测量
航天摄影测量利用航天摄影资料所进行的摄影测量。
1972年美国成功发射了第一颗地球资源卫星(后改为陆地卫星),标志着航天摄影测量时代的开始。之后美国发射了陆地卫星1~5号,法国于1985年成功发射了SPOT卫星1号,我国也成功发射了测地卫星。
卫星影像(遥感影像)在测绘中主要被用来测绘地形图、制作正射影像图或各种专题图。这里简要列出卫星影像分辨率与成图比例尺的关系,以及几种常见卫星及其传感器。
1.卫星影像分辨率与成图比例尺的关系
各种卫星与影像图比例尺之间的关系如表1-10所示。
表1-10 卫星分辨率与成图比例尺
2.常用卫星简介
(1)Landsat卫星系列
Landsat卫星系列属于太阳同步极轨卫星,其运行轨道高度和倾角分别为750km 和98.2°,重访周期为16日。自1972年发射第一颗Landsat卫星后,美国NASA共发射了7颗Landsat系列卫星,已连续观测地球35年。最后一颗Landsat-7卫星也于1999年4月15日发射成功。
(2)SPOT卫星系列
法国SPOT卫星系列属于太阳同步准回归轨道,其运行轨道高度和倾角分别为830km和98.7°,重访周期为26日,但由于采用倾斜观测,所以,实际上可以对同一地区用4~5天的间隔进行观测。它搭载两台高分辨率遥感器HRV,具有通过侧视进行立体观测等优点。1986~1998年法国相继发射了1~4号星。2002年5月发射的SPOT-5号星分辨率达到了2.5m,在数据压缩、存储和传输等一系列方面都有了显著的提高。
(3)新型高分辨率遥感卫星及传感器
目前常的新型高分辨率遥感卫星有:IKONOSⅡ、Quick Bird、SPOT-5、P5、ALOS、WorldView-1、GeoEye-1等,其传感器主要参数见表1-11。
表1-11 新型高分辨率遥感卫星及传感器
(4)国产卫星系统
目前我国主要遥感卫星有:CBERS-02 B中巴地球资源卫星、资源二号卫星、遥感二号卫星、“北京一号”小卫星、环境1号HJ1-B星、遥感一号卫星、遥感三号卫星、环境一号HJ1-A星等。
❺ 由摄影测量得到成果图的工作流程,详细点。
你的问题涉及面太广了。
光圈、快门就没有特别的单位。
测量曝光量用到EV值这也是没有所谓单位的。
镜头的口径等用mm标识。
景深会用M标识。
感光度就有美制和欧制两种,现在一般用美制ISO表示。
像素用dpi表示
色温用K表示
想到的就这些。
❻ 数字摄影测量1:1000的测绘成果能否作为工程量结算的依据
数字摄影测量1:1000的测绘成果可以作为工程量结算的依据(或部分依据)。
❼ 航空摄影测量的测绘成果主要有哪几种形式
航测成果主要就是4D产品:DOM(数字正射影像图)、DEM(数字高程模型)、DRG(数字栅格地图)、DLG(数字线划地图)。
DOM:利用航空相片、遥感影像,经象元纠正,按图幅范围裁切生成的影像;
DEM:数字高程模型是以高程表达地面起伏形态的数字集合;
DRG:数字栅格地图是纸制地形图的栅格形式的数字化产品;
DLG:现有地形图上基础地理要素分层存储的矢量数据集。
❽ 到底什么是摄影测量技术
泛指通过摄影设备(数码相机,航摄仪,传感器)等拍摄测量对象的影像,通过控制测量成果结合空三加密算法得到目标的三维还原(构筑物的三维立体模型或者地形的DEM,DTM等)
在得到的还原而来的三维模型上就可以进行量测了
❾ 数字近景摄影测量的发展
数字近景摄影测量的发展历史可以概括为五个不同特征的时期:基础阶段的早期;初进入数字阶段的逐步发展期;进入数字阶段的全面发展时期、稳步研究和加大推广应用的深入发展期和新近的成熟期。
从1964年~1984年是数字近景摄影测量早期阶段,这一时期的研究成果主要是奠定了数字近景摄影测量的理论基础,包括图像处理算法、误差理论、CCD器件的研究及应用、模板匹配算法与多张像片的同时处理技术等,因此有人将这个时期称为数字近景摄影测量的婴儿期(infant state。
从1984~1988年是初进入数字阶段的逐步发展期,开始逐渐研发出许多数字近景摄影测量系统,尽管很少是实用的,但在系统的设计、开发、标定等方面为后续的研发奠定了基础。1986年6月在加拿大的渥太华召开的国际摄影测量与遥感大会(ISPRS)的年会上,数字近景摄影测量成为第五委员会的主题之一;1987年6月在瑞士Interlaken召开的ISPRS年会,是第一次单独以数字摄影测量为主题的国际会议;1988年在日本京都召开的第16届ISPRS大会上,第五委员会被正式改名为“近景摄影测量与机器视觉”(close range photogrammetry and machine vision),大量的文章都是关于数字近景摄影测量的。
从1988年~1992年,数字近景摄影测量步入全面发展时期,越来越多的研究者在此方向进行研究和系统开发,出现了许多成功的应用报道,而且应用邻域大大拓宽了(如工业测量、生物立体测量、流量测量、汽车碰撞实验测量和空间探测等。这一时期显著的特点有:(1)在学术研究和商业系统方面,全自动测量系统数量继续增加;(2)应用领域及行业大大拓宽;(3)与计算机视觉等其它学科的交流开始变多,相互间在学术会议及论文出版等方面互为支持。
从1992年~1996年,数字近景摄影测量的研究和开发不再像前一阶段那样不断出现新成果和新发现,而是处于更加稳步的发展,业内更多的关注是拓展应用和成型系统的市场推广。已有的老公司推出新的数字化产品(如美国GSI公司在1994年对模拟测量系统进行改造后推出了数字测量系统V-STARS),也新出现了许多很专业化的小公司和新系统(如挪威的Metronor公司的Metronor系统、加拿大的EOS公司的PhotoModeler系统,AICON 3D 公司DPA-Pro系统)。一系列的会议论文集公开出版,表明数字近景摄影测量技术和研究已趋于成熟。
从1996年至今,数字近景摄影测量的研究及应用已步入成熟期。它已能满足医学领域对图像实时性、几何高精度方面的要求,可用于外科、人体测量学、人类行为动作的监控测量等。研究的重点从几何量测精度转为实时性、全自动化和测量结果的深加工(三维建模与虚拟现实)等,尤其是激光扫描技术的发展,使得多传感器数据采集及数据融合等问题倍受关注,从而也使数字近景摄影与计算机视觉的关系越发密切。