❶ 买3万元保险,时间是5年,合同期未满,想退保,以插值方式计还可以退多少钱
退保退的是保险本身的现金价值
你要看你的保单在周年日还有多少现金价值
在你的纸质保险合同里面有
❷ 请列一下插值法的计算公式,并举个例子。
举个例子。
2008年1月1日甲公司购入乙公司当日发行的面值600 000元、期限3年、票面利率%、每年年末付息且到期还本的债券作为可供出售金融资产核算,实际支付的购买价款为620 000元。
则甲公司2008年12月31日因该可供出售金融资产应确认的投资收益是()元。(已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)
题目未给出实际利率,需要先计算出实际利率。600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000,采用内插法计算,得出r=6.35%。甲公司2008年12月31日因该可供出售金融资产应确认的投资收益=620 000×6.35%=39 370(元)。
插值法计算过程如下:
已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)
600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000
R=6%时
600000*0.8396+600000*8%*2.673=503760+128304=632064
R=7%时
600000*0.8163+600000*8%*2.2463=489780+107823=597603
6% 632064
r 620000
7% 597603
(6%-7%)/(6%-R)=(632064-597603)/(632064-620000)
解得R=6.35%
注意上面的式子的数字顺序可以变的,但一定要对应。如可以为
(R-7%)/(7%-6%)=(620000-597603)/(597603-632064)也是可以的,当然还有其他的顺序。"
(2)合同期限插值扩展阅读:
若函数f(x)在自变数x一些离散值所对应的函数值为已知,则可以作一个适当的特定函数p(x),使得p(x)在这些离散值所取的函数值,就是f(x)的已知值。从而可以用p(x)来估计f(x)在这些离散值之间的自变数所对应的函数值,这种方法称为插值法。
如果只需要求出某一个x所对应的函数值,可以用“图解内插”。它利用实验数据提供要画的简单曲线的形状,然后调整它,使得尽量靠近这些点。
如果还要求出因变数p(x)的表达式,这就要用“表格内插”。通常把近似函数p(x)取为多项式(p(x)称为插值多项式),最简单的是取p(x)为一次式,即线性插值法。
在表格内插时,使用差分法或待定系数法(此时可以利用拉格朗日公式)。在数学、天文学中,插值法都有广泛的应用。
❸ 持有至到期资产中的实际利率用插值法怎么算啊,望举例
插值法:复
债券票面金额制1000元,票面利率5%,期限5年,每年支付利息,到期还本。然而你用950元买的,折价购买。求实际利率。
答:设实际利率为i,票面金额1000=票面利息50*(i,p/a,5)+你的买价950*(i,p/f,5)。
i=6%,50*(6%,p/a,5)+950*(6%,p/f,5)=50*4.2124+950*0.7473=920.56
i=5%,50*(5%,p/a,5)+950*(5%,p/f,5)=50*4.3295+950*0.7835=960.8
(6%-i)/(i-5%)=(920.56-950)/(950-960.8),i=5.27%
❹ 财务管理中插值法怎么计算
求实际利率是要用内插法(又叫插值法)计算的。“内插法”的原理是根据比例关系专建立一个方程,然后属,解方程计算得出所要求的数据。学习之前先来做一个小测试吧点击测试我合不合适学会计❺ 谁会计算插值法
“插值法”计算实际利率。在08年考题中涉及到了实际利率的计算,其原理是根据比例关系建立一个方程,然后,解方程计算得出所要求的数据,
例如:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,即下对应关系:A1B1
A(?)B
A2B2
则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,其中A1、A2、B1、B2、B都是已知数据。根本不必记忆教材中的公式,也没有任何规定必须B1>B2
验证如下:根据:(A1-A)/(A1-A2)=(B1-B)/(B1-B2)可知:
(A1-A)=(B1-B)/(B1-B2)×(A1-A2)
A=A1-(B1-B)/(B1-B2)×(A1-A2)
=A1+(B1-B)/(B1-B2)×(A2-A1)
考生需理解和掌握相应的计算。
例如:某人向银行存入5000元,在利率为多少时才能保证在未来10年中每年末收到750元?
5000/750=6.667 或 750*m=5000
查年金现值表,期数为10,利率i=8%时,系数为6.710;i=9%,系数为6.418.说明利率在8-9%之间,设为x%
8%6.710
x%6.667
9%6.418
(x%-8%)/(9%-8%)=(6.667-6.71)/(6.418-6.71) 计算得出 x=8.147.
二、经典例题
2000年1月1日,ABC公司支付价款120000元(含交易费用),从活跃市场上购入某公司5年期债券,面值180000元,票面利率5%,按年支付利息(即每年9000元),本金最后一次支付。合同约定,该债券的发行方在遇到特定情况时可以将债券赎回,且不需要为提前赎回支付额外款项。XYZ公司在购买该债券时,预计发行方不会提前赎回。
ABC公司将购入的该公司债券划分为持有至到期投资,且不考虑所得税、减值损失等因素。为此,XYZ公司在初始确认时先计算确定该债券的实际利率:
设该债券的实际利率为r,则可列出如下等式:
9000×(1+r)-1+9000×(1+r)-2+9000×(1+r)-3+9000×(1+r)-4+(9000+180000)×(1+r)-5=120000元
采用插值法,可以计算得出r=14.93%.由此可编制表
年份 期初摊余成本(a) 实际利率(r)
r=14.93% 现金流入(c) 期末摊余成本
d=a+r-c
2000 120000 17916 9000 128916
2001 128916 19247 9000 139163
2002 139163 20777 9000 150940
2003 150940 22535 9000 164475
2004 164475 24525(倒挤) 189000 0
但是如果计算利率r先假设两个实际利率a和b,那么这两个利率的对应值为A和B,实际利率是直线a、b上的一个点,这个点的对应值是120000,则有方程:
(a-r)/(A-120000)=(b-r)/(B-120000),
假设实际利率13%则有=9000×3.5172+180000×0.5428=31654.8+97704=129358.8
假设实际利率15%则有=9000×3.3522+180000×0.4972=30169.8+89496=119665.8
(0.13-r)/9358.8=(0.15-r)/(-334.2)
解得:r=14.93% 20×0年1月1日,XYZ公司支付价款l 000元(含交易费用)从活跃市场上购入某公司5年期债券,面值1 250元,票面利率4.72%,按年支付利息(即每年59元),本金最后一次支付。合同约定,该债券的发行方在遇到特定情况时可以将债券赎回,且不需要为提前赎回支付额外款项。XYZ公司在购买该债券时,预计发行方不会提前赎回。XYZ公司将购入的该公司债券划分为持有至到期投资,且不考虑所得税、减值损失等因素。XYZ公司在初始确认时首先应计算确定该债券的实际利率,设该债券的实际利率为r,则可列出如下等式:59×(1+r)-1+59×(1+r)-2+59×(1+r)-3+59×(1+r)-4+(59+1250)×(1+r)-5=1000(元)(1)上式变形为:59×(1+r)-1+59×(1+r)-2+59×(1+r)-3+59×(1+r)-4+59×(1+r)-5+1250×(1+r)-5=1000(元)(2)2式写作:59×(P/A,r,5)+1250×(P/F,r,5)=1000 (3)(P/A,r,5)是利率为r,期限为5的年金现值系数;(P/F,r,5)是利率为r,期限为5的复利现值系数。现值系数可通过查表求得。当r=9%时,(P/A,9%,5)=3.8897,(P/F,9%,5)=0.6499 代入3式得到59×3.8897+1250×0.6499=229.4923+812.375=1041.8673>1 000 当r=12%时,(P/A,12%,5)=3.6048,(P/F,12%,5)=0.5674 代入3式得到59×3.6048+1250×0.5674=212.6832+709.25=921.9332<1000 采用插值法,计算r按比例法原理: 1041.8673 9% 1000.0000 r 921.9332 12%(1041.8673-1000)/(1041.8673-921.9332)=(9%-r)/(9%-12%)解之得,r=10%
❻ 如何理解财务管理中的插值法
插值法的原理及计算公式如下图,原理与相似三角形原理类似。看懂下图与公式,即使模糊或忘记了公式也可快速、准确地推导出来。
举例说明:
20×5年1月1日,甲公司采用分期收款方式向乙公司销售一套大型设备,合同约定的销售价格为2 000万元,分5次于每年l2月31日等额收取。该大型设备成本为1 560万元。在现销方式下,该大型设备的销售价格为1 600万元。假定甲公司发出商品时开出增值税专用发票,注明的增值税额为340万元,并于当天收到增值税额340万元。
根据本例的资料,甲公司应当确认的销售商品收入金额为1 600万元。
根据下列公式:
未来五年收款额的现值=现销方式下应收款项金额
可以得出:
400×(P/A,r,5)+340=1 600+340=1 940(万元)
因为系数表中或是在实际做题时候,都是按照r是整数给出的,即给出的都是10%,5%等对应的系数,不会给出5.2%或8.3%等对应的系数,所以是需要根据已经给出的整数r根据具体题目进行计算。
本题根据:400×(P/A,r,5)+340=1 600+340=1 940(万元),得出(P/A,r,5)=4
查找系数表,查找出当r=7%,(P/A,r,5)=4.1062
r=8%,(P/A,r,5)=3.9927(做题时候,题目中一般会给出系数是多少,不需要自己查表)
那么现在要是求r等于什么时候,(P/A,r,5)=4,即采用插值法计算:
根据:
r=7%,(P/A,r,5)=4.1062
r=x%,(P/A,r,5)=4
r=8%,(P/A,r,5)=3.9927
那么:
x%-7%---对应4-4.1062
8%-7%---对应3.9927-4.1062
即建立关系式:
(x%-7%)/(8%-7%)=(4-4.1062)/(3.9927-4.1062)
求得:x%=7.93%,即r=7.93%。
❼ 财务管理中的插值法计算。
先用试误法,后用差值法
❽ 财务管理中插值法怎么计算
财务管理插值法公式为,已知折现率a1的利率为b1,折现率a2的利率为b2,要想求折现率a3的利率b3,公式为:学习之前先来做一个小测试吧点击测试我合不合适学会计❾ 什么是插值法,怎么算
"以下面的例题为例:2008年1月1日甲公司购入乙公司当日发行的面值600 000元、期限3年、票面利率8%、每年年末付息且到期还本的债券作为可供出售金融资产核算,实际支付的购买价款为620 000元。则甲公司2008年12月31日因该可供出售金融资产应确认的投资收益是()元。(已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)
题目未给出实际利率,需要先计算出实际利率。600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000,采用内插法计算,得出r=6.35%。甲公司2008年12月31日因该可供出售金融资产应确认的投资收益=620 000×6.35%=39 370(元)。
插值法计算过程如下:
已知PVA(7%,3)=2.2463,PVA(6%,3)=2.673,PV(7%,3)=0.8163,PV(6%,3)=0.8396)
600 000×PV(r,3)+600 000×8%×PVA(r,3)=620 000
R=6%时
600000*0.8396+600000*8%*2.673=503760+128304=632064
R=7%时
600000*0.8163+600000*8%*2.2463=489780+107823=597603
6% 632064
r 620000
7% 597603
(6%-7%)/(6%-R)=(632064-597603)/(632064-620000)
解得R=6.35%
注意上面的式子的数字顺序可以变的,但一定要对应。如可以为
(R-7%)/(7%-6%)=(620000-597603)/(597603-632064)也是可以的,当然还有其他的顺序"
❿ 持有至到期投资用插值法算实际利率,这个式子到底啥意思啊
你好,抄
很高兴为你回答问题袭,
解析:
你的这个问题,实际是财管管理学科所涉及的问题,在本题中只是讲解了一下它的确定原理,并没有解析方法的具体应用,在会计考试中,让你计算实际利率的可能几乎为0,也就是说,一般情况下,题上是要告诉你实际利率的。
当然,如果你学习了财务管理有关货币时间价值的知识后,自己也就会算了。本题中这个式子是用了复利现值的计算法,来计算实际利率(内含报酬率)的,这种计算过程用到的方法,就是内插法,也称为逐步测度法或测试法。如果想具体的了解此法,我有回答过的一个问题如下:
http://z..com/question/148494980.html
此问题的回答中的A方案与B方案中“内含报酬率的计算”,就是内插法的具体运用了。
如果还有疑问,可通过“hi”继续向我提问!!!