导航:首页 > 创造发明 > 数学里的元次根是谁发明的

数学里的元次根是谁发明的

发布时间:2021-07-04 18:24:22

① 一元一次方程中的“元”产生于什么年代是哪位数学家发明的原来的意思是什么

一元一次方程中的“元”产生的年代没有明确的记录,据说是康熙皇帝在学习西方数学时专提出的,因属当时没有可以代替“未知数”的代词,因此采用“元”为方程的未知数。

公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。

(1)数学里的元次根是谁发明的扩展阅读:

一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。

如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。

② 谁发明的“元”“次”“根”

是 康熙。康熙拜比抄利时的传教士袭为师,学习数学。但听他讲课很不轻松,而且讲方程是句子冗长,,所以康熙就建议 ,吧未知数翻译成“元”最高次翻译成“次”方程的解翻译成“根” 康熙创造的几个学术用语一直沿用至今!

③ 发明整体数学公式的人是谁

没有整体数学公式这个公式。
宇宙规律公式的发明的完整过程是这样的:发明版人利用自己的智慧聪权明和观察能力发现了一个宇宙物质规律,他为了证明这个规律的存在,就必须用公式把它描述出来,所以要通过大量繁琐的数学计算。可是在计算过程中发现原有的数学模式计算不好用,所以他首先要超越原有的数学模式,发明出新的数学计算模式,然后在用新的计算模式证明他开始发现的那个宇宙规律。

④ 历史上二次根式是怎么来的,由谁提出的

根号的由来
英语:radical sign 现在,我们都习以为常地使用根号(如√ 等),并感到它使用起来既简明又方便。 那么,根号是怎样产生和演变成现在这种样子的呢? 古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。阿拉伯人用 表示 。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴,变成“ ”。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写 4是2, 9是3,并用 8, 8表示 , 。但是这种写法未得到普遍的认可与采纳。 与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的 ,当时有人写成R.q.4352。现在的 ,用数学家邦别利(1526—1572年)的符号可以写成R.c.?7p.R.q.14╜,其中“?╜”相当于今天用的括号,P(plus)相当于今天用的加号(那时候,连加减号“+”“-”还没有通用)。 直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“√”。在一本书中,笛卡尔写道:“如果想求n的平方根,就写作√n,如果想求n的立方根,则写作3√n。” 这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。 现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号3√;√的使用,比如25的立方根用3√25表示。以后,诸如√等等形式的根号渐渐使用开来。 由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,不是从天上掉下来的。 电脑中的根号是√的形式。

⑤ 一元三次方程求根公式是谁发明的

1500年的某天,意大利北部的布里西亚,一户人家生了一个男孩,取名叫丰坦那。不久,意大利与法国发生战争,法军攻陷了布里西亚地区,大肆屠杀意大利人。丰坦那的父亲死于战祸,小丰坦那的头部和下颚也受了重伤。好在他的母亲是一位聪明而勇敢的妇女,她见儿子受伤,又没有医生看病治疗,她就想到了狗用舌头舔愈伤口的情景。于是,她也学着这个方法,用自己的舌头治好了儿子的伤口。谁知痊愈后的小丰坦那却得了一个口吃的毛病,说话不连贯,人们就给他取个外号叫塔尔塔利亚(意译为口吃者)。久而久之,塔尔塔利亚就成了他的名字,丰坦那的名字也被人忘记了。

因为父亲死于战乱,塔尔塔利亚的家境十分贫寒,母亲无力送他上学读书。但是,塔尔塔利亚从小求知欲极强,母亲就在他父亲坟墓的石板上教他认字、算题。由于他天资聪明,意志坚强,竟独自学会了拉丁文和希腊文,对数学的钻研成绩更为突出。经过长期自学,成人后,他终于取得了成功,先后在他的家乡布里西亚和威尼斯等地从事教学工作。塔尔塔利亚专门喜欢解各种数学难题,在这方面不少数学爱好者败在他的手下。

1530年的一天,有一位叫科拉的数学教师向塔尔塔利亚提出两道数学难题进行挑战:

1.一个数的立方加上它的平方的3倍等于5,求这个数。实际上是一个一元三次方程,即:x3+3x2=5

2.三个数,第二个数比第一个数多2,第三个数比第二个数多2,三个数的乘积是1000,求这三个数各是多少。实际上这也是一个一元三次方程,即:x(x+2)(x+2+2)=1000,展开后是x3+6x2+8x=1000

当时,人类还没有找到三次方程的解法。塔尔塔利亚于是全身心地投入进去,废寝忘食地解这两道题。不久,居然让他解开了,并因此找到了解开一元三次方程的办法。于是,塔尔塔利亚向外公开宣称,他已经知道了一元三次方程的解法,但不能公开自己的步骤,他要保密。此时,有一位叫菲俄的人也宣称,他也找到了解开一元三次方程的办法,并宣称,他的方法是得到了当时著名数学家波伦那大学教授费罗的真传。

他们二人谁真谁假?谁优谁劣?于是,1535年2月22日,在意大利有名的米兰大教堂里,举行了一次仅有塔尔塔利亚和菲俄参加的数学竞赛。竞赛内容专门限于一元三次方程。他们各自给对方出30道题,谁解得对解得快谁就得胜。两个小时之后,塔尔塔利亚解完了全部30道题,而菲俄却一道题也解不出来。竞赛结果,塔尔塔利亚大获全胜。

原来,一元三次方程的问题是1404年被人引起来的。当时意大利著名数学家巴巧利说:“x3+mx=n,x3+n=mx之不可解,正像化圆为方问题一样。”谁知此问题提出不久,就被费罗解出了。1510年,他将方法透露给了他的学生菲俄。于是,当塔尔塔利亚宣称他找到一元三次方程解法时,便出现了要举行竞赛的事情。

初时,塔尔塔利亚面对出名的学者未免心虚,因为他的方法还不完善。据说在竞赛之前的10天,即2月12日深夜,塔尔塔利亚一夜未睡,直至黎明。他头脑昏昏,走出室外,伸伸懒腰,吸吸新鲜空气。顿时,他的思路豁然开朗,多日的深思熟虑,终于取得了结果。因此,才在竞赛中大获全胜。

为了使自己的成果更完善,塔尔塔利亚又艰苦努力了6年,才在1541年真正找到一元三次方程的解法。很多人请求他把这种方法公布出来,但却遭到他的拒绝。原来,塔尔塔利亚准备在译完欧几里得和阿基米德的著作之后,再把自己的发明发现写成一本专著,以便流传后世。

在这之前60几年,米兰有一位学者卡当,对一元三次方程的问题十分感兴趣,苦苦央求塔尔塔利亚把解法告诉他,并起誓发愿,决不泄密。1539年,塔尔塔利亚被卡当的至诚之心所动,就把此法传授给他。

卡当是意大利的数学家,后来又开业行医,也常常为人占卜,曾受雇于教皇当过占星术士。没过多久,卡当背信弃义,写成了一部叫《大术》的书。此书1545年在纽伦堡出版发行。在书中,卡当公布了一元三次方程的解法,声称这是他的发明。当时人们信以为真,便把三次方程的求根公式称为“卡当公式”。

在《大术》一书中,卡当说:“大约在30年前,波伦那的费罗教授发现了这一法则,并传授给了威尼斯的菲俄,菲俄曾与塔尔塔利亚进行过公开竞赛。塔尔塔利亚也发现了这一方法,他在我的恳求下,把三次方程的解法告诉了我,但是没有给出证明。借助塔尔塔利亚的帮助,我找到了几种证明方法,它是非常困难的。”

卡当的背信弃义激怒了塔尔塔利亚,他向卡当宣战,要求进行公开竞赛。双方各拟31道试题,限期15天完成。卡当临阵怯场,只派了他的一个高徒应战。结果,塔尔塔利亚在7天之内就解出了大部分试题,而卡当的高徒仅做对一题,其余全是错的。接着,二人又进行了一场激烈的争鸣和辩论。就这样,人们才明白事情的真相,塔尔塔利亚才被人们知道,他才是一元三次方程求根公式的真正发明人。

塔尔塔利亚经过这场风波之后,准备心平气和地把自己的成果写成一部数学专著,可是他已经心力憔悴,1557年,他没有实现自己的愿望就与世长辞了。

⑥ 数学里的方程是谁发明的

大约2.71828

这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1。这个e究竟是何方神圣呢?
在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角。不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这麼奇怪的数,会有什麼故事可说呢?
这就要从古早时候说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那麼是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。
我们都知道复利计息是怎麼回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什麼状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。
包罗万象的e
读者恐怕已经在想,光是计算利息,应该不至於能讲一整本书吧?当然不,利息只是极小的一部分。令人惊讶的是,这个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。双曲线和计算复利会有什麼关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提到得更多。
如果整本书光是在讲数学,还说成是说故事,就未免太不好意思了。事实上是,作者在探讨数学的同时,穿插了许多有趣的相关故事。比如说你知道第一个对数表是谁发明的吗?是纳皮尔(John Napier)。没有听说过?这很正常,我也是读到这本书才认识他的。重要的是要下一个问题。你知道纳皮尔花了多少时间来建构整个对数表吗?请注意这是发生在十六世纪末、十七世纪初的事情,别说电脑和计算机了,根本是什麼计算工具也没有,所有的计算,只能利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算。因此纳皮尔整整花了二十年的时间建立他的对数表,简直是匪夷所思吧!试著想像一下二十年之间,每天都在重复做同类型的繁琐计算,这种乏味的日子绝不是一般人能忍受的。但纳皮尔熬过来了,而他的辛苦也得到了报偿——对数受到了热切的欢迎,许多欧洲甚至中国的科学家都迅速采用,连纳皮尔也得到了来自世界各地的赞誉。最早使用对数的人当中,包括了大名鼎鼎的天文学家刻卜勒,他利用对数,简化了行星轨道的繁复计算。
在《毛起来说e》中,还有许多我们在一般数学课本里读不到的有趣事实。比如第一本微积分教科书是谁写的呢?(假如你曾受微积分课程之苦,也会想知道谁是「始作俑者」吧?」)是罗必达先生。对啦,就是罗必达法则(L'Hospital's Rule)的那位罗必达。但是罗必达法则反倒是约翰.伯努利先发现的。不过这无关乎剽窃的问题,他们之间是有协议的。
说到伯努利可就有故事说了,这个家族实在不得了,别的家族出一位天才就可以偷笑了,而他们家族的天才是用「量产」形容。伯努利们前前后后在数学领域中活跃了一百年,他们的诸多成就(不仅止於数学领域),就算随便列一列,也有一本书这麼厚。不过这个家族另外擅长的一件事就不太敢恭维了,那就是吵架。自家人吵不够,也跟外面的人吵(可说是「表里如一」)。连爸爸与儿子合得一个大奖,爸爸还非常不满意,觉得应该由自己独得,居然气得把儿子赶出家门;和现代的许多「孝子」们比起来,这位爸爸真该感到惭愧。
e的「影响力」其实还不限於数学领域。大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的。建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e。这些与计算利率或者双曲线面积八竿子打不著的问题,居然统统和e有关,岂不奇妙?
数学其实没那麼难!
我们每个人的成长过程中都读过不少数学,但是在很多人心目中,数学似乎是门无趣甚至可怕的科目。尤其到了大学的微积分,到处都是定义、定理、公式,令人望之生畏。我们会害怕一个学科的原因之一,是有距离感,那些微积分里的东西,好像不知是从哪儿冒出来的,对它毫无感觉,也觉得和我毫无关系。如果我们知道微积分是怎麼演变、由谁发明的,而发明之时还发生了些什麼事(微积分是谁发明的这件事,争论了许多年,对数学发展产生重大的影响),发明者又是什麼样的人等等,这种距离感就应该会减少甚至消失,微积分就不再是「陌生人」了。

⑦ 数学方程的" 元""次"是谁 发明的

解:数学方程的元次是康熙首先提出的。

⑧ 是谁发明了平方根

平方根的概念很早.数学家在研究边长为单位1的正方形,发现他的对角线长不能用普通的数来表示,于是发明了平方根,即第一个平方根√2.
根号的由来:早在1840年,德国人便开始用一个点来表示平方根.如·3表示3的平方根.
一直到16 世纪的大数学家笛卡尔,才开始采用 (根号√)表示平方根.

阅读全文

与数学里的元次根是谁发明的相关的资料

热点内容
广告词版权登记 浏览:796
基本公共卫生服务考核方案 浏览:660
公共服务平台建设领导小组 浏览:165
人类创造了那些机器人 浏览:933
公共文化服务保障法何时实施 浏览:169
辽宁育婴师证书领取 浏览:735
划拨土地使用权转让能转让吗 浏览:97
2019年公需科目知识产权考试答案 浏览:256
关于知识产权管理办法 浏览:331
公共卫生服务培训笔记 浏览:532
基层公共卫生服务技术题库 浏览:497
中国城市老年体育公共服务体系的反思与重构 浏览:932
网络著作权的法定许可 浏览:640
工商局党风廉政建设工作总结 浏览:325
公共服务平台建设可行性研究报告 浏览:428
投诉华尔街英语 浏览:202
榆次区公共卫生服务中心 浏览:990
申发明5G 浏览:815
矛盾纠纷排查调处工作协调会议记录 浏览:94
版权贸易十一讲 浏览:370