1. 黃禎祥的腦炎病毒研究具體內容有哪些
黃禎祥,1910年2月10日出生於福建廈門鼓浪嶼。病毒學家。福建廈門人。1930年畢業於燕京大學,獲碩士學位。1934年畢業於北京協和醫學院,獲博士學位。中國醫學科學院病毒學研究所教授、名譽所長。首創病毒體外培養法新技術,為現代病毒學奠定了基礎,被稱為「在醫學病毒學的發展史上第二次技術革命」;第一次使病毒定量測定的顯微鏡觀察法被革新為肉眼觀察法;對流行性乙型腦炎的流行病學、病原學及發病機理的研究,為控制中國乙型腦炎的流行做出了重要貢獻;首先發現自然界中存在著不同毒力的乙腦病毒株,並對其生態學與流行的關系、變異的某些規律、保存毒株的方法及疫苗等進行了研究;發明了用福爾馬林處理麻疹活疫苗的新方法。
良好的家庭環境使他養成了好讀書求知識的習慣。1926年,他以優異的成績考取了當時的醫學最高學府北平協和醫學院,接受了嚴格的醫學教育。他於1934年畢業後,擔任了北平協和醫院內科醫生。北平協和醫院是當年中國條件最好、最有權威的醫學機構,黃禎祥在這里整整工作了8年。他不僅打下了堅實的醫學基礎,而且培養了善於觀察、發現問題和獨立解決問題的能力。這期間,他發表了有獨到見解的關於白喉桿菌及其免疫的論文,受到了美國醫學雜志的重視。青年時期的黃禎祥,憑著他敏銳的洞察力和堅實的醫學基礎,在對霍亂、鏈球菌感染、鼠疫等方面的研究上多有建樹,發表了一系列研究論文。黃禎祥的才華受到了協和醫院的器重,1941年被選送到美國留學。
黃禎祥在美國期間,首創了引起世界病毒學界矚目的病毒體外培養新技術,為現代病毒學奠定了基礎。這時,日本侵略軍仍在蹂躪中華大地,中華民族處於危急存亡關頭,他毅然謝絕了美國方面的一再挽留,於1943年末懷著憂國憂民之心,抱著科學救國的理想返回了祖國,到重慶中央衛生實驗院任醫理組主任。抗日戰爭勝利後,他回到北平任中央衛生實驗院北平分院院長。
北平解放前夕,他選擇了留下來等待新中國誕生的道路。
中華人民共和國成立以後,黃禎祥的專業特長開始得以發揮。盡管當時經費少,還不具備大規模開展病毒研究的條件,而人民政府盡力為他添置了科研設備,配備了助手,他開始著手流行性乙型腦炎、麻疹、肝炎等病毒的研究工作。黃禎祥決心在中國共產黨的領導下為中國的病毒學事業貢獻自己的聰明才智。
抗美援朝時期,他積極響應中國共產黨的號召,為了粉碎敵人的細菌戰爭,冒著生命危險深入到中國東北和朝鮮前線進行調查,用自己的專業技術為保衛世界和平做出了貢獻。
黃禎祥先後出訪過蘇聯、羅馬尼亞、荷蘭、埃及、法國、菲律賓、美國等十幾個國家,進行講學和學術交流。1983年他率中國微生物專家代表團應邀赴美國參加第十三屆國際微生物學大會,在美國丹頓市被授予該城的「金鑰匙」和「榮譽市民」稱號。
黃禎祥享有很高的國際聲望。他是美國實驗生物醫學會會員、蘇聯與東歐社會主義國家合辦的《病毒學雜志》編委,還擔任美國《國際病毒學雜志》、《傳染病學論叢》雜志的編委。1983年他被選為美國傳染病學會名譽委員。
黃禎祥熱心中國醫學病毒學事業,他倡議和創建了中華醫學會病毒學會,創辦了《實驗和臨床病毒學雜志》(《中華實驗和臨床病毒學雜志》前身)。他先後主編了《醫學病毒學總論》、《常見病毒病實驗技術》、《中國醫學網路全書·病毒學》等書。在他晚年生病住院期間還主持編寫了《醫學病毒學基礎及實驗技術》、《醫學病毒學詞典》。
黃禎祥為人正直,待人誠懇熱情,學識淵博,治學嚴謹又勇於創新。1985年他加入了中國共產黨,實現了多年的夙願。正當他以極大的干勁帶領研究人員投入新課題病毒免疫治療腫瘤研究時,1987年,白血病奪去了他的生命,終年77歲。
病毒培養技術
20世紀初,國際上對病毒的研究剛剛起步,研究病毒的工作還很不成熟,方法也很落後。由於病毒是微生物中最小的生物,當時檢測病毒存在與否,需要通過對動物注射含病毒物,觀察動物發病或死亡來判斷,顯然這種方法是十分原始的。病毒還有另外一個特性,即它沒有自己的酶系統,需要寄生在活細胞內,因而一般的微生物培養基不能使病毒繁殖和生存。病毒的這兩個特性加大了尋找培養病毒新技術的難度。病毒培養是病毒研究中最基礎、最關鍵的一步,可以說沒有病毒培養新技術的建立,也就沒有病毒研究的突破和發展。因此,許多國家為此投入了大量的人力、物力,國際上許多知名學者為此苦苦探索了幾十年。
1943年黃禎祥在美國發表了《西方馬腦炎病毒在組織培養上滴定和中和作用的進一步研究》,這一研究論文立即引起舉世矚目,並得到同行的普遍認可。
這一新技術概括為:
第一步,用人為的方法將動物組織經過處理消化成單層細胞,並給這種細胞以一定的營養成分使其在試管內存活。
第二步,將病毒接種在這種細胞內,經過一段時間,細胞就會出現一系列病理改變。觀察者只要用普通顯微鏡觀察細胞有無病變,即可間接判斷有無病毒的繁殖。
這項新技術把病毒培養從實驗動物和雞胚的「動物水平」,提高到體外組織培養的「細胞水平」。也正是這項技術的建立,拓寬了國際上病毒學家的思路,世界上許多國家的病毒學者採用或改良了這一技術,成功地發現了許多病毒性疾病的病原,分離出許多新病毒。20世紀50年代,美國著名病毒學家恩德斯獲得諾貝爾獎金,就是在採用了黃禎祥這一技術的基礎上取得的成果。美國1982—1985年各版的《世界名人錄》,稱黃禎祥這一技術為現代病毒學奠定了基礎。
病毒學研究的實踐證明:病毒學研究發展到今天的分子病毒學水平,黃禎祥所發現的這一新技術起著重要的作用。迄今為止,世界上還沒有找到比這一技術更先進的病毒體外培養的方法。這一新技術至今還廣泛應用於病毒性疾病的疫苗研製、診斷試劑的生產和病毒單克隆抗體、基因工程等高技術研究領域。世界上許多國家採用這種技術分離了諸如流行性出血熱、麻疹、脊髓灰質炎(小兒麻痹)病毒。近年來在全球引起震動的艾滋病病毒也是採用組織培養這一技術分離得到的。
乙型腦炎研究
中華人民共和國建立初期,流行性乙型腦炎是當時嚴重威脅勞動人民健康的傳染病之一。黃禎祥清楚地知道要開展乙型腦炎的研究,著手解決這一醫學難題,困難是很大的。然而,作為新中國第一代病毒學者的責任感,激勵著他不能不主動請纓,他向衛生部領導要求,要從乙型腦炎入手開始新中國的病毒研究事業。衛生當局滿足了他的願望,支持他的工作,給了他人力、物力的保證。乙型腦炎的研究工作從此開始了。
由於當時科技水平的限制,對乙型腦炎這種傳染病的認識還很膚淺,乙型腦炎的病原、發病機制、傳播規律、診斷、免疫等問題都還沒有解決,甚至於在中國流行的乙型腦炎(當時俗稱大腦炎)和日本等亞洲國家所流行的乙型腦炎是不是一種病都未能搞清楚。這些問題在當時的病毒學界都是有待揭示的課題。
在新中國成立後的頭兩年中,黃禎祥組織進行了全面、系統的有關調查工作,由於衛生當局的大力協助及各醫療衛生機構的熱誠合作,這項工作是相當順利的。在進行了大量的流行病學調查之後,黃禎祥帶領科研人員開始了病毒分離、實驗診斷方法的建立、乙型腦炎傳播媒介昆蟲生態學、乙型腦炎病毒特性等方面的研究,基本摸清了中國乙型腦炎的流行規律、傳播途徑及特點,並著重指出蚊蟲是傳播乙型腦炎的媒介昆蟲,從而在技術上具體地指導了建國初期轟轟烈烈的群眾愛國衛生運動。
1949年,黃禎祥在中國首先開始了乙型腦炎疫苗的研製工作。他在一篇論文中闡述了最初研製乙型腦炎疫苗時的想法:「當1949年我們開始了流行性腦炎的研究之後,首先對這種傳染病的流行病學問題進行了調查研究,並且用血清學和病毒分離的方法確定了該病的病原是流行性乙型腦炎病毒。這些研究的結果給預防工作指出了方向,為了更好地配合預防工作上的需要,於1949年我們開始了疫苗製造試驗。」這是中國開展乙型腦炎疫苗研究文獻中最早的記錄。在這以後的幾十年中,乙型腦炎疫苗的研製工作一直在進行著,最初從研究死疫苗開始,繼而發展到利用組織培養技術進行乙型腦炎減毒活疫苗研究。這些研究成果無一不滲透著黃禎祥的心血。乙型腦炎疫苗的研製這一成果獲得了1978年全國科學大會獎。
眾所周知,預防醫學研究所取得的成果,絕不是靠某一個人獨自奮斗所能取得的,必須要有長時期的,有時甚至幾代人的共同努力才能取得。中國乙型腦炎的研究從1949年開始,經過整整40年的工作,終於被社會所承認。1989年這項成果獲得了衛生部科技進步一等獎。頒獎時,雖然黃禎祥已不在人世,甚至獲獎者的名單中也沒有他的名字,但是人們不會忘記黃禎祥在中國乙型腦炎研究中開拓者的地位和他在取得這項成果中的重大作用。
病毒免疫貢獻
1954年,世界上分離麻疹病毒獲得成功。用組織培養技術研製麻疹疫苗就成為世界病毒學界探討的重要課題。1961年,黃禎祥以極大的熱情和充沛的精力投入到麻疹疫苗的研究工作中。他和著名兒科專家諸福棠教授合作,對麻疹病毒的致病性、免疫性進行了深入研究。他們的合作推動了當時中國麻疹病毒的研究工作。此後,黃禎祥和他領導的麻疹病毒研究室對麻疹病毒血凝素、麻疹疫苗的佐劑、疫苗的生產工藝等進行了廣泛的研究。《福爾馬林處理的麻疹疫苗》是他這一時期發表的重要論文。這篇論文曾在第四屆國際病毒大會上宣讀,得到與會者的好評。
1980年以後,黃禎祥致力於病毒免疫的研究,先後發表了《被動免疫對活病毒自動免疫的影響》等論文。在病毒免疫治療腫瘤的研究方面,他指導研究生進行了探索性的工作,先後發表了《不同病毒兩次治療腹水瘤小鼠的初步研究》、《病毒與環磷醯胺聯合治療小鼠瘤的研究》、《腫瘤抗巨噬細胞移動作用的研究》等多篇論文。這些研究成果無疑對尋找抗腫瘤治療方法提供了有思考價值的線索和依據。黃禎祥提出的病毒免疫治療腫瘤的新設想,將是腫瘤治療研究中有待開發的一塊具有廣闊前景的領域。知識點黃禎祥的影響
由於黃禎祥在醫學病毒學研究中的重要貢獻,1981年他當選為中國科學院生物學部委員,被任命為中國預防醫學科學院病毒學研究所名譽所長。他還擔任了中國微生物學會常務理事、中華醫學會微生物學和免疫學會常務理事、中華醫學會病毒學會主任委員。
黃禎祥逝世後,為了紀念他在醫學病毒學研究中取得的成績,他在海內外的同事、親友共同發起成立了黃禎祥醫學病毒基金會,以黃禎祥的名義頒發獎學金,以獎勵在醫學病毒學研究中做出貢獻的新人。中華醫學會病毒學會、中國預防醫學科學院病毒學研究所共同主編、出版了《黃禎祥論文選集》,以紀念他在病毒學研究中的突出貢獻。
2. 首先研究出減毒活疫苗的科學家是
首先研究出減毒活疫苗的科學家是巴斯德
巴斯德 首先利用固定毒株製成減毒活疫苗,預防狂犬病。
減毒活疫苗是指病原體經過甲醛處理後,A亞單位(毒性亞單位)的結構改變,毒性減弱,但B亞單位(結合亞單位)的活性保持不變,即保持了抗原性的一類疫苗。將其接種到身體內,不會引起疾病的發生,但病原體可以引發機體免疫反應,刺激機體產生特異性的記憶B細胞和記憶T細胞。起到獲得長期或終生保護的作用。
3. 糖丸是誰發明的,什麼時候產生的
糖丸是顧來方舟教授,顧方舟源教授是我國組織培養口服活疫苗開拓者之一,1958年他在我國首次分離出「脊灰」病毒,為免疫方案的制定提供了科學依據。
上世紀60年代初,他研製成功液體和糖丸兩種活疫苗,使數十萬兒童免於致殘。同時提出採用活疫苗技術消滅「脊灰」的建議及適合於我國地域條件的免疫方案和免疫策略。2000年10月,經中國國家以及世界衛生組織西太區消滅「脊灰」證實委員會證實,中國本土「脊灰」野病毒的傳播已被阻斷,成為無脊灰國家。
糖丸:
中國使用的脊灰疫苗是減毒活疫苗,是混合糖丸疫苗。糖丸疫苗需用奶粉、奶油、葡萄糖等材料作輔劑,將液體疫苗滾入糖中,即糖丸疫苗。糖丸疫苗為白色,對熱非常敏感。屬於國家免疫規劃的第一類疫苗。
4. 世界哪個國家最早創造疫苗接種法
古時候在疫苗被發明之前,各種烈性傳染病簡直如洪水猛獸,一旦爆發瘟疫,被傳染被致死的人以幾萬幾十萬甚至以百萬來計。在疫苗被發現之前,古時候烈性傳染病也沒有什麼好的辦法,最多隻能隔離一下。古時候曾經爆發過幾場很有名的瘟疫大流行,造成了毀滅性的後果。
那麼疫苗是怎麼被發現的呢?其實在中國古代,天花經常盛行,染上天花的人很難逃得過去,讓人聞之色變。後來,人們發現得過天花的人如果幸運活過來,再遇上天花病人,就沒事了,不會被傳染上,於是考慮得過天花的人體內可能產生了能夠抵抗天花的物質,於是,在中國古代就發明了接種天花患者體內的膿液以預防天花的辦法。
如果非要追根究底的說哪個國家最早創造的疫苗接種法,這也很難完全分的清,因為在漫長的歷史長河中,和傳染病作斗爭是人類一直在進行的行為。在早先,也都多多少少的積累了一些經驗。
5. 醫學上最偉大的發明——疫苗,mRNA疫苗會是未來的希望嗎
疫苗是對很多病的一種阻斷的有效方式,所以疫苗的發展是人類的一個偉大的貢獻。
6. 化學家的傑出代表
門捷列夫:(俄語:Дми́трий Ива́нович Менделе́ев,1834年2月8日—1907年2月2日 )俄國化學家。1834年2月7日生於西伯利亞托博爾斯克,1907年2月2日卒於聖彼得堡。1850年入聖彼得堡師范學院學習化學,1855年畢業後任敖德薩中學教師。1857年任聖彼得堡大學副教授。1859年他到德國海德堡大學深造。1860年參加了在卡爾斯魯厄召開的國際化學家代表大會。1861年回聖彼得堡從事科學著述工作。1863年任工藝學院教授,1865年獲化學博士學位。1866年任聖彼得堡大學普通化學教授,1867年任化學教研室主任。1893年起,任度量衡局局長。1890年當選為英國皇家學會外國會員。
人物生平
門捷列夫(Дмитрий Иванович Менделеев)1834年2月7日出生於西伯利亞托博爾斯克,1907年2月2日卒於彼得堡。
1848年入彼得堡專科學校,1850年入彼得堡師范學院學習化學,1855年取得教師資格,並獲金質獎章,畢業後任敖德薩中學教師。
1856年獲化學高等學位,1857年首次取得大學職位,任彼得堡大學副教授。1859年他到德國海德堡大學深造。
1860年參加了在卡爾斯魯厄召開的國際化學家代表大會。
1861年回彼得堡從事科學著述工作。1863年任工藝學院教授,1864年,門捷列夫任技術專科學校化學教授,1865年獲化學博士學位。
1866年任彼得堡大學普通化學教授,1867年任化學教研室主任。
1893年起,任度量衡局局長。1890年當選為英國皇家學會外國會員。
1907年2月2日,俄國著名化學家門捷列夫逝世,享年73歲。[2]為紀念這位偉大的科學家,1955年,由美國的喬索(A.Gniorso)、哈維(B.G.Harvey)、肖邦(G.R.Choppin)等人,在加速器中用氦核轟擊鎄(253Es),鎄與氦核相結合,發射出一個中子,而獲得了新的元素,便以門捷列夫(Mendeleyev)的名字命名為鍆(Mendelevium,Md)。
重大成果
門捷列夫的最大貢獻是發現了化學元素周期律。今稱門捷列夫周期律。1869年2月,門捷列夫編制了一份包括當時已知的全部63種元素的周期表(表1)。同年3月,他委託N.A.緬舒特金在俄國化學會上宣讀了題為《元素的屬性與原子量的關系》的論文,闡述了元素周期律的要點:
①按照原子量的大小排列起來的元素,在性質上呈現明顯的周期性。
②原子量的大小決定元素的特徵。
③應該預料到許多未知單質的發現,例如,預料應有類似鋁和硅的,原子量位於65~75之間的元素。
④已知某些元素的同類元素後,有時可以修正該元素的原子量。
1871年門捷列夫又發表了《化學元素周期性的依賴關系》論文,對化學元素周期律作了進一步闡述。他還重新修訂了化學元素周期表(表2),把1869年豎排的表格改為橫列,突出了元素族和周期的規律性;劃分了主族和副族,使之基本上具備了現代元素周期表的形式。
門捷列夫在發現周期律及製作周期表的過程中,除了不顧當時公認的原子量而改排了某些元素(Os、Ir、Pt、Au;Te、I;Ni、Co)的位置外,並且考慮到周期表中合理的位置,修訂了其他一些元素(In、La、Y、Er、Ce、Th、U)的原子量,而且預言了一些元素的存在。在1869年的元素周期表中,門捷列夫為4種尚未被發現的元素留下空位。1871年他又發表論文《元素的自然體系和運用它指明某些元素的性質》,對一些元素,例如,類鋁、類硼和類硅的存在和性質以及它們的原子量做了詳盡的預言。這樣的空位共留下6個。門捷列夫的這些推斷為後來的化學實驗所證實。
元素周期律的發現激起了人們發現新元素和研究無機化學理論的熱潮。元素周期律的發現在化學發展史上是一個重要的里程碑,它把幾百年來關於各種元素的大量知識系統化起來,形成一個有內在聯系的統一體系,進而使之上升為理論。
門捷列夫還曾研究氣體和液體的體積與溫度和壓力的關系,於1860年發現氣體的臨界溫度並提出了液體熱膨脹的經驗式。1865年研究了溶液的性質,提出了溶液的水合物學說,為近代溶液學說奠定了基礎。1872~1882年,他和他的學生准確地測定了數種氣體的壓縮系數。
門捷列夫因發現周期律而獲得英國皇家學會戴維獎章。他還曾獲英國科普利獎章。1955年科學家們為了紀念元素周期律的發現者門捷列夫,將101號元素命名為鍆。門捷列夫運用元素性質周期性的觀點寫成《化學原理》一書,曾被譯成英、法等多種文字。 居里夫人MarieCurie (1867-1934)法國籍波蘭科學家,研究放射性現象,發現鐳和釙兩種放射性元素,一生兩度獲諾貝爾獎。作為傑出科學家,居里夫人有一般科學家所沒有的社會影響。尤其因為是成功女性的先驅,她的典範激勵了很多人。很多人在兒童時代就聽到她的故事但得到的多是一個簡化和不完整的印象。世人對居里夫人的認識。很大程度上受其次女在1937年出版的傳記《居里夫人》(MadameCurie)所影響。這本書美化了居里夫人的生活,把她一生所遇到的曲折都平淡地處理了。美國傳記女作家蘇珊·昆(SusanQuinn)花了七年時間,收集包括居里家庭成員和朋友的沒有公開的日記和傳記資料。出版了一本新書:《瑪麗亞·居里:她的一生》(MariaCurie:ALife),為她艱苦、辛酸和奮斗的生命歷程描繪了一幅更詳細和深入的圖像。
生平經歷
如果只看簡歷,很容易使人覺得瑪麗亞·居里只是一帆風順的成功科學家。她於1867年11月在波蘭華沙出生。有一兄三姊,父母親都是教師。她15歲時以第一名的成績中學畢業。其後當了幾年家庭教師,於1891年到法團巴黎大學索邦分校(Sorbonne)接受大學教育,1894年畢業,獲得數學和物理兩張證書。1895年,她與任教於巴黎市工業物理和化學學院的皮埃爾·居里(PierreCurie)結婚,1897年秋長女伊倫(Irène)出生。此前。她跟索邦的李普曼(GabrielLippman)做磁學研究,並發表了第一篇論文;此時,為了博士學位論文作準備,她開始在皮埃爾的實驗室進行新課題,皮埃爾也很快便加入了妻子的工作。他們的實驗筆記從1897年12月6日開始,到1898年2月17日記錄了第一次觀察到新的放射性元素釙(polonium)為止。經過幾個月追蹤和分析,他們在7月18日正式提交法國科學院宣讀的報告中提出兩個重要發現:一是元素釙、二是r放射性」(radioactivity)這個概念。釙的純化和另一新元素鐳的分離等現象的發現,對化學研究有很大刺激;而放射性研究,則是物質本質研究的突破性發現。1903年6月,居里夫人通過論文答辯,獲頒物理科學博士。11月初居里夫婦獲頒英國皇家學會的戴維獎章(HumphreyDavyMedal);11月中旬更獲悉與貝克勒爾(HenriBecquerel)同獲諾貝爾物理學獎這一最高榮譽,以表彰他們對放射性現象的研究。1905年他們得次女伊芙(Eve)。1906年皮埃爾去世。1911年居里夫人獲諾貝爾化學獎。表彰她發現釙和鐳。1934年居里夫人去世。1935年她的長女伊倫和女婿的里奧·居里(FrédéricJoliot-Curie)獲諾貝爾化學獎(他們的科學發現,居里夫人在世時就知道了)。1937年次女出版的《居里夫人》,成為風靡全球的一本傳記。
重大成果
居里夫人在實驗研究中,設計了一種測量儀器,不僅能測出某種物質是否存在射線,而且能測量出射線的強弱。她經過反復實驗發現:鈾射線的強度與物質中的含鈾量成一定比例,而與鈾存在的狀態以及外界條件無關。
居里夫人對已知的化學元素和所有的化合物進行了全面的檢查,獲得了重要的發現在:一種叫做釷的元素也能自動發出看不見的射線來,這說明元素能發出射線的現象決不僅僅是鈾的特性,而是有些元素的共同特性。她把這種現象稱為放射性,把有這種性質的元素叫做放射性元素。它們放出的射線就叫「放射線」。
1902年年底,居里夫人提煉出了十分之一克極純凈的氯化鐳,並准確地測定了它的原子量。從此鐳的存在得到了證實。鐳是一種極難得到的天然放射性物質,它的形體是有光澤的、像細鹽一樣的白色結晶,鐳具有略帶藍色的熒光,而就是這點美麗的淡藍色的熒光,融入了一個女子美麗的生命和不屈的信念。在光譜分析中,它與任何已知的元素的譜線都不相同。鐳雖然不是人類第一個發現的放射性元素,但卻是放射性最強的元素。利用它的強大放射性,能進一步查明放射線的許多新性質。以使許多元素得到進一步的實際應用。醫學研究發現,鐳射線對於各種不同的細胞和組織,作用大不相同,那些繁殖快的細胞,一經鐳的照射很快都被破壞了。這個發現使鐳成為治療癌症的有力手段。癌瘤是由繁殖異常迅速的細胞組成的,鐳射線對於它的破壞遠比周圍健康組織的破壞作用大的多。這種新的治療方法很快在世界各國發展起來。在法蘭西共和國,鐳療術被稱為居里療法。鐳的發現從根本上改變了物理學的基本原理,對於促進科學理論的發展和在實際中的應用,都有十分重要的意義。 巴斯德於1822年出生在法國東部的多爾鎮。他在巴黎讀大學,主修自然科學。他的天賦在學生時代並沒有顯露出來,他的一位教授把他的化學成績評為「及格」。但是巴斯德在1847年獲得博士學位,不久便證明了教授的裁判還為時過早,年僅二十六歲的巴斯德因對酒石酸的鏡像同分異構體的研究而一躍跨入著名化學家的行列之中。
重大成果
巴斯德並不是提出疾病細菌學說的第一個人,類似的假說以前就由吉羅拉摩·費拉卡斯托羅、弗里德里克·亨利及其他人提出過。但是巴斯德通過大量的實驗和論證有力地支持了細菌學說,這種支持是使科學界相信該學說正確的主要因素。
如果疾病是由細菌引起的,那麼通過防止有害細菌進入人體就可以避免疫病,這看來是合乎邏輯的。因此巴斯德強調防菌方法對內科臨床的重要性,他對把防菌方法引入外科臨床的約瑟夫·李斯特有著重大的影響。
有害細菌可以通過食品和飲料進入人體。巴斯德發明了一種消滅飲料中的微生物的方法(叫做巴斯德氏消毒法),這種方法在使用之處幾乎把受污染的牛奶傳染源徹底消除了。
巴斯德年過半百又開始潛心研究炭疽──一種侵襲牛和許多其他動物包括人在內的嚴重傳染病。巴斯德證明有一種特殊的細菌是這種病的致病因素。但是遠比這更為重要的是他發明一種弱株炭疽桿菌,用這種弱株給牛注射,會使這種病發作輕微,而無致命危險,並且還會使牛對此病的正常狀況產生免疫力。巴斯德公開演示證明了他的方法會使牛產生免疫力,引起了巨大的轟動。人們很快就認識到他的一般方法可用於許多其他傳染病的預防。
巴斯德本人在他那舉世無雙的著名成就基礎之上發明了一種人體免疫法,此法使人接種後對可怕的狂犬病具有免疫能力。從那時起,其他科學家也發明了防治許多嚴重疾病如流行性斑疹傷寒和脊髓灰質炎的疫苗。
巴斯德是一位格外勤奮的科學工作者。在他的功勞簿上有許多仍有價值的小成果。就是他的而不是任何他人的實驗,令人信服地證明了微生物並不是自然產生的。巴斯德還發現了厭氧生活現象,即某些微生物能在無空氣或無氧的條件下生存。巴斯德對蠶病的研究成果有巨大的商業價值。他的其他成就之一就是發明了雞霍亂──家禽的霍亂疫苗。巴斯德於1895年在巴黎附近去世。
人們常把巴斯德和發明天花疫苗的英國醫生愛德華·詹納相比較。雖然詹納的工作比巴斯德早八十年,但是我認為詹納遠不如巴斯德重要,因為他的免疫方法只對一種疾病有效,而巴斯德的方法可以而且已經用於許多種疾病的預防。
自從十九世紀中葉以來,世界許多地區的人口估計壽命大體上增長了一倍。在整個人類史上,人類壽命的這種巨大增長對個人生活來說可能比任何其他發明都具有更大的影響。實際上現代科學和醫學真正把第二次生命賜給了我們生活著的每一個人。假如這種壽命的延長可以完全歸功於巴斯德的工作的話,我就會毫不猶豫地把他列在本書之首。巴斯德的貢獻是如此重要以致於上個世紀死亡率下降的最大成就應當毫無疑問地歸功於他。因此他在本冊中得以名列前茅。巴斯德一生進行了多項探索性的研究,取得了重大成果,是19世紀最有成就的科學家之一。他用一生的精力證明了三個科學問題:(1)每一種發酵作用都是由於一種微菌的發展,這位法國化學家發現用加熱的方法可以殺滅那些讓啤酒變苦的惱人的微生物。很快,「巴氏殺菌法」便應用在各種食物和飲料上。(2)每一種傳染病都是一種微菌在生物體內的發展:由於發現並根除了一種侵害蠶卵的細菌,巴斯德拯救了法國的絲綢工業。(3)傳染病的微菌,在特殊的培養之下可以減輕毒力,使他們從病菌變成防病的葯苗。他意識到許多疾病均由微生物引起,於是建立起了細菌理論。
由賽諾菲巴斯德開發上市的主要疫苗
1934:破傷風疫苗1941:白喉、破傷風、百日咳疫苗1947:流感疫苗1950:黃熱病疫苗1955:薩賓研製的脊髓灰質炎減毒活疫苗1958:白喉、破傷風、百日咳和脊髓灰質炎疫苗1960:結核菌素多糖疫苗1960:麻疹疫苗1962:薩賓口服脊髓灰質炎疫苗1970:風疹疫苗1973:薩賓口服脊髓灰質炎疫苗(Vero細胞)1974:甲型腦膜炎疫苗1975:甲型+丙型腦膜炎疫苗狂犬病疫苗(人二倍體細胞)1979:索爾克注射脊髓灰質炎疫苗(Vero細胞)1980:狂犬病疫苗(Vero細胞)1981:乙肝疫苗1985:麻疹、腮腺炎、風疹三聯疫苗1987:乙肝疫苗(使用基因技術)1987:白喉、破傷風、百日咳、脊髓灰質炎和b型流感嗜血桿菌五聯苗1988:傷寒疫苗(多糖純化)1992:b型流感嗜血桿菌疫苗1992:破傷風、白喉和非細胞百日咳三聯苗1996:甲肝疫苗1997:白喉、破傷風、百日咳、脊髓灰質炎和b型流感嗜血桿菌五聯苗
2001:甲肝和傷寒聯合疫苗 萊納斯·卡爾·鮑林(LinusCPauling,1901.2.28—1994.8.19),是美國著名的量子化學家。他極富個性和創新精神,不斷開拓邊緣學科,在化學的許多領域卓有建樹,是20世紀最偉大的化學家。曾兩次榮獲諾貝爾獎(1954年化學獎, 1962年和平獎),有很高的國際聲譽。是迄今為止世界上唯一一位兩次單獨獲得諾貝爾獎的科學家。
重大成果
在鮑林近一個世紀的生命歷程中,他參與和經歷了20世紀科學史上許多重大的科學發現,成果卓著:首次全面描述化學鍵的本質;發現蛋白質的結構;揭示鐮刀狀細胞貧血症的病因;參與揭示DNA結構的研究;主持第二次世界大戰期間的一些軍工科研項目;推進X射線結晶學、電子衍射學、量子力學、生物化學、分子精神病學、核物理學、麻醉學、免疫學、營養學等學科的發展。
7. 最早發明減毒活疫苗的科學家是是什麼
pasteur 最早發明減毒活疫苗的科學家
8. 有關病毒的資料
病毒是一種體積極微小的微生物,大多用電子顯微鏡才能看到;病毒結構簡單,屬於非細胞型微生物,由遺傳物質核酸及外面的蛋白質殼構成;病毒不能獨立生活,必須靠寄生在其他生物的活細胞內才能生長繁殖。
病毒在自然界中分布很廣,人、動物、昆蟲、植物、真菌、細菌等都可被病毒寄生而引起感染。病毒是引起人類傳染病的重要病原體之一。在人類的傳染病中,由病毒引起的遠較細菌和其他微生物為多,約佔3/4,如流行性感冒、肝炎、流行性出血熱、水痘、帶狀皰疹以及艾滋病等,傳染性強,流行廣泛。病毒還與某些腫瘤、先天性畸形、老年痴獃等有關。
病毒有很多種類,按宿主不同可分為動物病毒、植物病毒、細菌病毒;按臨床和感染途徑可分為呼吸道感染病毒、消化道感染病毒、肝炎病毒、乙腦病毒、神經病毒、性傳播病毒等。不同的病毒侵入人體後的擴散方式和致病特點也不一樣,有的只引起局部感染,有的可隨血液或神經播散。
病毒感染人體後至發病前都有一段潛伏期,短者只1~3天,如流感病毒;長者可達數月甚至數年,如狂犬病毒。
人體感染病毒後大多能產生免疫力,但維持時間長短不一。
病毒可直接侵犯皮膚引起皮膚損害,少數可由病毒的抗原性作用而引起皮膚變態反應發疹。由於致病的病毒不同,其臨床表現亦各有差異,臨床上一般將病毒性皮膚病分為三型:
(1)水皰型 皮損以水皰為主。常見的有單純皰疹、帶狀皰疹、水痘、皰疹樣濕疹等。
(2)新生物型 皮損呈疣狀。常見的有各種疣(尋常疣、跖疣、扁平疣、尖銳濕疣、傳染性軟疣等)。
(3)發疹型 皮損為紅皮斑疹或丘疹等。常見的有麻疹、風疹、幼兒急疹等。
MicrobesVirus 病毒是沒有細胞結構但有遺傳、自我復制等生命特徵的微生物,它們是最微小的生命體。純凈的病毒是些形狀漂亮的結晶體,絲毫看不出它的生命性,可一旦讓它們和細胞結合,就立刻知道了它們是何等凶惡的生命體。 病毒要比細菌小得多。在發現病毒之前,人類第一次找到比細菌小的生命體的人是美國青年學者立克次。1909年在研究斑疹傷寒時發現了一種致病的微小生物, 為紀念他人們將此類生物稱立克次體。一年後這位僅39歲傑出的青年被斑疹傷寒奪去了生命。與真正病毒相比立克次體算是很大的了,盡管它比細菌小得多。 從後來的回顧中現在知道第一個看到病毒的人是蘇格蘭醫生布伊斯特,他看到的是牛痘病毒,這是種體積最大的病毒。這件事發生在1887年。 能夠讓人們清晰看到病毒基本形狀和結構的人是美國天文學家威廉斯,他發明了投影法,使得人們真正看到了病毒面貌,而芬蘭人維爾斯卡則用低速電子顯微鏡讓人們看清了病毒的細微結構。 病毒的外觀
有個笑話是這樣的,一個老師問學生說牛皮是用來干什麼的,一個學生回答說是用來包牛的。其實這話倒很實在。任何生命體好象都有一個外殼什麼的,絕大多數病毒也不例外,它們的外殼是蛋白質,而它們本身是一種核酸。有人曾剝去某種病毒的外殼而換上另一種蛋白質,經繁殖後的病毒卻和原來的是一樣的。這說明蛋白質外殼不是病毒的決定性的因素,但它可以防止裡面的核酸不受外界化學或物理 作用的損害。當然也有例外,如一種馬鈴薯病毒就沒有外殼。更極端的是羊的蹭癢病毒,乾脆連核酸也沒有,只有一個可把其它細胞體內的物質包括基因變成自己樣子的「抑制物」,它大概是世界上最小的病毒。最近有科學家在白鼠身上培殖了一隻人的耳朵,應該說是受了某種啟發吧。而這一點很重要,如果能將培殖的成本降得很低,人類的壽命可能會延長一倍以上。不過話又說回來,要是我們的世界基 本上是一個老人的世界,實在是件沒趣的事。老年朋友千萬別生氣:-) 現在簡單地說說病毒的結構吧:它像 個燈泡,玻璃部分是蛋白質外殼,燈絲部分就是那萬惡的核酸!
現在我們來看看一個病毒怎樣生活的。右圖中5是一個典型的病毒,形如蝌蚪狀的蛋白質外殼包裹著旋絲狀的核酸,它下面的須狀物稱尾絲,負責接觸細胞或細菌。1圖表示病毒用尾絲接觸到了一個細胞;2圖表示病毒的核酸注入細胞;3圖表示新的病毒被復制出來;4圖表示細胞破裂,放出新的數量更多的病毒。不用說那可憐的細胞算是徹底完蛋了。 沒有人喜歡感冒,除非他覺得學習和工作更痛苦,如果真是這樣他可以先弄出一身汗,然後立即用冷水洗個澡,有條件的話找個已感冒了的人,趁他打噴嚏時對著他深呼吸一口。接下來你只管放心地寫請假條……因為這時在你的體內有無數細胞開始被感冒病毒如此蹂躪。換句話說,許多動物病毒須在一定溫度下才能起作用,當機體溫度下降時,身體內的抵抗細胞停止或基本停止工作,病毒就有機會了。 T4噬菌體
噬菌體以捕食細菌或放線菌為生
上頁所展示的是微生物學界一個著名的實驗。圖中的那個病毒是一種被稱為噬菌體的傢伙。左圖則是它在電子顯微鏡下的真面目。 病毒營寄生,它的戕害對象是除了自身外的一切生物。一般地說一種病毒只有一種核酸,且只能在一類對象的細胞中增殖。病毒能引起動植物的病害,有時會造成極嚴重的後果,如曾在地球上猖獗了億萬年之久的天花病毒曾奪走了無數人的生命,我的猜想是由它造成的死亡人數可能僅次於瘧疾了。不過有些病毒也可以為我們人類服務,比方說消滅害蟲和有害細菌等。 右圖是肝炎病毒,想不到它會有如此美妙的結構吧?
主要流行的病毒感染性疾病:
病毒性肝炎
脊髓灰質炎
病毒性胃腸炎
腸道病毒感染
流行性感冒
麻疹
水痘
傳染性單核細胞增多症
流行性腮腺炎
流行性乙型腦炎
森林腦炎
流行性出血熱
登革熱
狂犬病
艾滋病
病毒的一般性狀
病毒(Virus)是一類非細胞形態的微生物。主要有以下列基本特徵:(1)個體微小,可通過除菌濾器,大多數病毒必須用電鏡才能看見;(2)僅具有一種類型的核酸,或DNA或RNA;(3)嚴格的活細胞(真核或原核細胞)內復制增殖;(4)具有受體連結蛋白 (receptor binding protein),與敏感細胞表面的病毒受體連結,進而感染細胞。病毒與其他微生物的主要區別見表21-1。
第一節 病毒的形態與結構
一、病毒的大小與形態
病毒個體微小,測量病毒大小的單位是毫微米(nm),即1/1000微米。在型病毒(如牛痘苗病毒)約200~300nm;中型病毒(如流感病毒)約100nm;小型病毒(如脊髓灰質炎病毒)僅20~30nm。研究病毒大小可用高分辯率電子顯微鏡,放大幾萬到幾十萬倍直接測量;也可用分級過濾法,根據它可通過的超濾膜孔徑估計其大小;或用超速離心法,根據病毒大小,形狀與沉降速度之間的關系,推算其大小。
一個成熟有感染性的病毒顆粒稱「病毒體」(Viron)。電鏡觀察有五種形態(圖21-1);
1.球形 (Sphericity) 大多數人類和動物病毒為球形,如脊髓灰質炎病毒、皰疹病毒及腺病毒等。
2.絲形 (Filament) 多見於植物病毒,如煙草花葉病病毒等。人類某些病毒(如流感病毒)有時也可形成絲形。
3.彈形(Bullet-shape)形似子彈頭,如狂犬病病毒等,其他多為植物病毒。
4.磚形 (Brick-shape)如痘病毒(無花病毒、牛痘苗病毒等)。其實大多數呈卵圓形或「菠蘿形」。
5.蝌蚪形(Tadpole-shape)由一卵圓形的頭及一條細長的尾組成,如噬菌體。
圖21-1 各種主要病毒的形態與大小比較(模式圖)
二、病毒的結構與功能
病毒的結構有二種,一是基本結構,為所有病毒所必備;一是輔助結構,為某些病毒所特有。它們各有特殊的生物學功能。
(一)病毒的基本結構
1.核酸(Nucleic acid)位於病毒體的中心,由一種類型的核酸構成,含DNA的稱為DNA病毒。含RNA的稱為RNA病毒。DNA病毒核酸多為雙股(除微小病毒外),RNA病毒核酶酸多為單股(除呼腸孤病毒外)。
病毒核酸也稱基因組(Genome),最大的痘病毒(Poxvirus) 含有數百個基因,最小的微小病毒(Parvovirus)僅有3-4個基因。根據核酸構形及極性可分為環狀、線狀、分節段以及正鏈、負鏈等不同類型,對進一步闡明病毒的復制機理和病毒分類有重要意義。
核酸蘊藏著病毒遺傳信息,若用酚或其他蛋白酶降解劑去除病毒的蛋白質衣殼,提取核酸並轉染或導入宿主細胞,可產生與親代病毒生物學性質一致的子代病毒,從而證實核酸的功能是遺傳信息的儲藏所,主導病毒的生命活動,形態發生,遺傳變異和感染性。
2.衣殼(Capsid )在核酸的外面緊密包繞著一層蛋白質外衣,即病毒的「衣殼」。衣殼是由許多「殼微粒 (Capsomere)」按一定幾何構型集結而成,殼微米在電鏡下可見,是病毒衣殼的形態學亞單位,它由一至數條結構多肽能成。根據殼微粒的排列方式將病毒構形區分為:①立體對稱(Cubic symmetry),形成20個等邊三角形的面,12個頂和30條棱,具有五、三、二重軸旋轉對稱性(圖21-2),如腺病毒、脊髓灰質炎病毒等;②螺旋對稱 (Helical symmetry),殼微粒沿螺旋形盤紅色的核酸呈規則地重復排列,通過中心軸旋轉對稱,圖21-3,如正粘病毒,副粘病毒及彈狀病毒等; ③ 復合對稱 (Complex symmetry),同時具有或不具有兩種對稱性的病毒,如痘病毒與噬菌體(圖21-1)。
圖21-2 腺病毒結構的模式圖
蛋白質衣殼的功能是:(1)緻密穩定的衣殼結構除賦予病毒固有的形狀外,還可保護內部核酸免遭外環境(如血流)中核酸酶的破壞;(2)衣殼蛋白質是病毒基因產物,具有病毒特異的抗原性,可刺激機體產生抗原病毒免疫應答; (3)具有輔助感染作用,病毒表面特異性受體邊連結蛋白與細胞表面相應受體有特殊的親和力,是病毒選擇性吸附宿主細胞並建立感染灶的首要步驟。
病毒的核酸與衣殼組成核衣殼(Nucleocapsid),最簡單的病毒就是裸露的核衣殼,如脊髓灰質炎病毒等。有囊膜的病毒核衣殼又稱為核心(core)。
(二)病毒的輔助結構
圖21-3 螺旋對稱病毒顆粒的核衣殼
1.囊膜(Envelope) 某些病毒,如蟲媒病毒、人類免疫缺陷病毒、皰疹病毒等,在核衣殼外包繞著一層含脂蛋白的外膜,稱為「囊膜」。囊膜中含有雙層脂質、多糖和蛋白質,其中蛋白質具有病毒特異性,常與多糖構成糖蛋白糖蛋白亞單位,嵌合在脂質層,表面呈棘狀突起,稱「剌突(Spike)或囊微粒(Peplomer)」。它們位於病毒體的表面,有高度的抗原性,並能選擇性地與宿主細胞受體結合,促使病毒囊膜與宿主細胞膜融合,感染性核衣殼進入胞內而導致感染。囊膜中的脂質與宿主細胞膜或核膜成分相似,證明病毒是以「出芽」方式,從宿主細胞內釋放過程中獲得了細胞膜或核膜成分。有囊膜病毒對脂溶劑和其他有機溶劑敏感,失去囊膜後便喪失了感染性。
2.觸須樣纖維(Fiber) 腺病毒是唯一具有觸須樣纖維的病毒,腺病毒的觸須樣纖維是由線狀聚合多肽和一球形末端蛋白所組成,位於衣殼的各個頂角(圖21-2)。該纖維吸附到敏感細胞上,抑制宿主細胞蛋白質代謝,與致病作用有關。此外,還可凝集某些動物紅細胞。
3.病毒攜帶的酶 某些病毒核心中帶有催化病毒核酸合成的酶,如流感病毒帶有RNA的RNA聚合酶,這些病毒在宿主細胞內要靠它們攜帶的酶合成感染性核酸。
了解病毒的形態結構、化學組成及功能,不僅對病毒的分類和鑒定有重要意義,同時也有助於理解病毒的宿主范圍,致病作用及亞單位疫苗的研製。
病毒的增殖
病毒體在細胞外是處於靜止狀態,基本上與無生命的物質相似,當病毒進入活細胞後便發揮其生物活性。由於病毒缺少完整的酶系統,不具有合成自身成份的原料和能量,也沒有核糖體,因此決定了它的專性寄生性,必須侵入易感的宿主細胞,依靠宿主細胞的酶系統、原料和能量復制病毒的核酸,藉助宿主細胞的核糖體翻譯病毒的蛋白質。病毒這種增殖的方式叫做「復制(Replication)」。病毒復制的過程分為吸附、穿入、脫殼、生物合成及裝配釋放五個步驟,又稱復制周期(Replication cycle)。
一、吸附
吸附(Adsorption)是指病毒附著於敏感細胞的表面,它是感染的起始期。特異性吸附是非常重要的,根據這一點可確定許多病毒的宿主范圍,不吸附就不能引起感染。細胞與病毒相互作用最初是偶然碰撞和靜電作用,這是可逆的聯結。脊髓灰質炎病毒的細胞表面受體是免疫球蛋白超家族,在非靈長類細胞上沒有發現此受體,而猴腎細胞、 Hela細胞和人二倍體纖維母細胞上有它的受體,故脊髓來質炎病毒能感染人體鼻、咽、腸和脊髓前角細胞,引起脊髓灰質炎(小兒麻痹)。水磨石病毒的細胞表面受體是含唾液酸(N-乙醯神經氨酸)的糖蛋白,它與流感病毒表面的血凝素剌突(受體連結蛋白)有特殊的親和力,如用神經氨酸酶破壞該受體,則流感病毒不再吸附這種細胞。此外,HIV受體為CD4;鼻病毒的受體為細胞粘附分子-1(1CAM-1);EB病毒的受體為補體受體-2(CR-2)。病毒吸附也受離子強度、pH、溫度等環境條件的影響。研究病毒的吸附過程對了解受體組成、功能、致病機理以及探討抗病毒治療有重要意義。
二、穿入
穿入(Penetration)是指病毒核酸或感染性核衣殼穿過細胞進入胞漿,開始病毒感染的細胞內期。主要有三種方式:(1)融合 (Fusion),在細胞膜表面病毒囊膜與細胞膜融合,病毒的核衣殼進入胞漿。副粘病毒以融合方式進入,如麻疹病毒、腮腺炎病毒囊膜上有融合蛋白,帶有一段疏水氨基酸,介導細胞膜與病毒囊膜的融合。(2)胞飲 (Viropexis),由於細胞膜內陷整個病毒被吞飲入胞內形成囊泡。胞飲是病毒穿入的常見方式,也是哺乳動物細胞本身具有一種攝取各種營養物質和激素的方式。當病毒與受體結合後,在細胞膜的特殊區域與病毒病毒一起內陷形成膜性囊泡,此時病毒在胞漿中仍被胞膜覆蓋。某些囊膜病毒,如流感病毒藉助病毒的血凝素(HA)完成脂膜間的融合,囊泡內低Ph環境使HA蛋白的三維結構發生變化,從而介導病毒囊膜與囊泡膜的融合,病毒核衣殼進入胞漿。(3)直接進入,某些無囊膜病毒,如脊髓灰質炎病毒與受體接角後,衣殼蛋白的多肽構形發生變化並對蛋白水解酶敏感,病毒核酸可直接穿越細胞膜到細胞漿中,而大部分蛋白衣殼仍留在胞膜外,這種進入的方式較為少見。
三、脫殼
穿入和脫殼是邊續的過程,失去病毒體的完整性被稱為「脫殼 (Uncoating)」。人脫殼到出現新的感染病毒之間叫「隱蔽期」。經胞飲進入細胞的病毒,衣殼可被吞噬體中的溶酶體酶降解而去除。有的病毒,如脊髓灰質炎病毒,在吸附穿入細胞的過程中病毒的RNA釋放到胞漿中。而痘苗病毒當其復雜的核心結構進入胞漿中後,隨之病毒體多聚酶活化,合成病毒脫殼所需要的酶,完成脫殼。
四、生物合成
DNA病毒的RNA病毒在復制的生化方面有區別,但復制的結果都是合成核酸分子和蛋白質衣殼,然後裝配成新的有感染性的病毒。一個復制周期大約需6~8小時。
(一)雙股DNA病毒的復制
多數DNA病毒為雙股DNA。
雙股DNA病毒,如單純疹病毒和腺病毒在宿主細胞核內的RNA聚合酶作用下,從病毒DNA上轉錄病毒mRNA,然後轉移到胞漿核糖體上,指導合成蛋白質。而痘苗病毒本身含有RNA聚合酶,它可在胞漿中轉錄mRNA。mRNA有二種:早期m RNA,主要合成復制病毒DNA所需的酶,如依賴DNA的DNA聚合酶,脫氧胸腺嘧啶激酶等,稱為早期蛋白;晚期mRNA ,在病毒DNA復制之後出現,主要指導合成病毒的結構蛋白,稱為晚期蛋白。
子代病毒DNA的合成是以親代DNA為模板,按核酸半保留形式復制子代雙股DNA。DNA復制出現在結構蛋白合成之前。
(二)單股RNA病毒的復制
RNA病毒核酸多為單股,病毒全部遺傳信息均含在RNA中。根據病毒核酸的極性,將RNA病毒分為二組:病毒RNA的鹼基序列與mRNA完全相同者,稱為正鏈RNA病毒。這種病毒RNA可直接起病毒mRNA的作用,附著到宿主細胞核糖體上,翻譯出病毒蛋白。從正鏈RNA病毒顆粒中提取出RNA,並注入適宜的細胞時證明有感染性;病毒RNA鹼基序列與mRNA互補者,稱為負鏈RNA病毒。負鏈RNA病毒的顆粒中含有依賴RNA的RNA多聚酶,可催化合成互補鏈,成為病毒mRNA,翻譯病毒蛋白。從負鏈RNA病毒顆粒中提取出的RNA,因提取過程損壞了這種酶,從而無感染性。
1.正鏈RNA病毒的復制 以脊髓灰質炎病毒為例,侵入的RNA直接附著於宿主細胞核糖體上,翻譯出大分子蛋白,並迅速被蛋白水解酶降解為結構蛋白和非結構蛋白,如依賴RNA的RNA聚合酶。在這種酶的作用下,以親代RNA為模板形成一雙鏈結構,稱「復制型(Replicative form)」。再從互補的負鏈復制出多股子代正鏈RNA,這種由一條完整的負鏈和正在生長中的多股正鏈組成的結構,秒「復制中間體(Replicative intermediate) 」。新的子代RNA分子在復制環中有三種功能:(1)為進一步合成復制型起模板作用;(2)繼續起mRNA作用;(3)構成感染性病毒RNA。
2.負鏈RNA病毒的復制 流感病毒、副流感病毒、狂犬病毒和腮腺炎病毒等有囊膜病毒屬於這一范疇。病毒體中含有RNA的RNA聚合酶,從侵入鏈轉錄出mRNA,翻譯出病毒結構蛋白和酶,同時又可做為模板,在依賴RNA的RNA聚合酶作用下合成子代負鏈RNA。
圖21-4 DNA病毒復制的主要步驟
(三)逆轉錄病毒的復制
逆轉錄病毒(Retrovirus)又稱RNA腫瘤病毒 (Oncornavirus) ,病毒體含有單股正鏈RNA、依賴RNA的DNA多聚酶(逆轉錄酶)和 tRNA。其復制過程分二個階段:第一階段,病毒核時進入胞漿後,以RNA為模板,在依賴RNA的DNA多聚酶和tRNA引物的作用下,合成負鏈DNA(即RNA:DNA),正鏈RNA被降解,進而以負鏈DNA為模板形成雙股DNA(即DNA:DNA),轉入細胞核內,整合成宿主DNA中,成為前病毒。第二階段,前病毒DNA轉錄出病毒mRNA,翻譯出病毒蛋白質。同樣從前病毒DNA轉錄出病毒RNA,在胞漿內裝配,以出芽方式釋放。被感染的細胞仍持續分裂將前病毒傳遞至子代細胞。
(四)病毒蛋白的合成與修飾
病毒mRNA在宿主細胞聚核糖體上翻譯合成病毒結構蛋白和非結構蛋白,結構蛋白是病毒結構的組成成分,非結構蛋白雖然不是病毒的結構成分,但是在病毒復制中具有重要功能,大多是一些催化、調節病毒復制的酶類和調控蛋白。
通常動物病毒mRNA僅翻譯一條連續的完整的病毒多肽鏈,這種mRNA叫做單順反子mRNA (Monocistronic mRNA) 。分段基因級病毒,如流感病毒,核酸分為8個節段,每一節段轉錄一條mRNA,翻譯一種病毒蛋白。有的病毒,如脊髓灰質炎病毒,病毒RNA本身做為,mRNA,首先翻譯出一大分子蛋白,然後在特殊位點被細胞或病毒蛋白水解酶裂解為許多小分子病毒蛋白,包括結構蛋白和非結構蛋白。也有的病毒,如披膜病毒,基因組上有多處轉錄起始和終止碼,分別轉錄出單順反子mRNA並合成各自的病毒蛋白。DNA的轉錄發生在細胞核內,轉錄產物經剪切拼接,並在3'端聚腺苷酸化,5'端加上甲基化帽,轉送入胞漿,合成病毒蛋白。
某些病毒蛋白合成後需要修飾,如磷酸化、糖基化等。由病毒和細胞的蛋白激酶完成磷酸化,這是活化或滅活某些蛋白的一種方式。病毒糖蛋白是在胞漿中與膜相連的核糖體上合成,經粗面內質網、平滑內質網、高爾基氏體到達細胞膜,在此過程中被糖基化。
五、裝配與釋放
新合成的病毒核酸和病毒結構蛋白在感染細胞內組合成病毒顆粒的過程稱為裝配(Assembly),而從細胞內轉移到細胞外的過程為釋放(Release)。大多數DNA病毒,在核內復制DNA,在胞漿內合成蛋白質,轉入核內裝配成熟。而痘苗病毒其全部成份及裝配均在胞漿內完成。RNA病毒多在胞漿內復制核酸及合成蛋白。感染後6個小時,一個細胞可產生多達10,000個病毒顆粒。
病毒裝配成熟後釋放的方式有:(1)宿主細胞裂解,病毒釋放到周圍環境中,見於無囊膜病毒,如腺病毒、脊髓灰質炎病毒等;(2)以出芽的方式釋放,見於有囊膜病毒,如皰疹病毒在核膜上獲得囊膜,流感病毒在細胞膜上獲得囊膜而成熟,然後以出芽方式釋放出成熟病毒。也可通過細胞間橋或細胞融合鄰近的細胞。
圖21-5 正鏈RNA病毒復制的主要步驟
病毒的增殖不只是產生有感染性的子代,絕大多數動物病毒在大量感染的情況下,經多次增殖會產生缺損干擾顆粒(Defective interfering particles),它是能幹擾親代病毒復制的缺損病毒,其核酸有部分缺損或被宿主DNA片段替換。缺損干擾顆粒的基本特性是:(1)本身不能繁殖;(2)有輔助病毒存在時方能增殖;(3)干擾同種病毒而不幹擾異種病毒的增殖;(4)在感染細胞內與親代病毒競爭性增殖。由於缺損干擾顆粒的產生,使同種感染性病毒數量減少,在導致病毒的持續性感染中具有一定的作用,但疫苗中含有大量缺損干擾顆粒會影響活疫苗的免疫效果。
抵抗力與變異
一、病毒對理化因素的抵抗力
(一)物理因素
1.溫度 大多數病毒(除肝炎病毒外)耐冷而不耐熱。病毒一旦離開機體,經加熱56~60℃30分鍾,由於表面蛋白變性,而喪失其感染性,即被滅活。病毒對低溫的抵抗力較強,通常在-20~196℃仍不失去活性,但對反復凍融則敏感。一般可用低溫真空乾燥法(Lyophilization)保存病毒,但在室溫條件下乾燥易使病毒滅活。
2.鹽類對病毒的穩定作用 克分子濃度的鹽可提高病毒對熱的抵抗力。MgCl2對脊液灰質炎病毒、MgSO4對正粘和副粘病毒、Na2SO4對皰疹病毒具有穩定作用。因此在減毒活疫苗中須加這類穩定劑。有囊膜病毒即使在-90℃也不能長期保存,但加入保護劑如二甲基亞碸(DMSO)可使之穩定。
3. pH 病毒一般在pH5.0~9.0的環境是穩定的,但在某些病毒的血凝反應中,pH改變可影響改變試驗的結果。
4.射線 紫外線、X線和高能量粒子可殺活病毒,這是因為光量子可擊毀病毒核酸的分子結構,不同病毒其敏感度不一。
某些活性染料(如甲苯胺蘭、中性紅、丫啶橙)對病毒具有不同程度的滲透作用,這些染料與病毒核酸結合後,易被可見光滅活。
(二)化學因素
1.脂溶劑 有囊膜病毒可迅速被脂溶劑破壞,如乙醚、氯彷、去氧膽酸鈉。這類病毒通常不能在含有膽汁的腸道中引起感染。病毒對脂溶劑的敏感性可作為病毒分類的依據之一。
2.甘油 大多數病毒在50%甘油鹽水中能活存較久。因病毒體中含游離水,不受甘油脫水作用的影響,故可用於保存病毒感染的組織。
3.化學消毒劑 一般病毒對高錳酸鉀、次氯酸鹽等氧化劑都很敏感,升汞、酒精、強酸及強鹼均能迅速殺滅病毒,但0.5%~1%石炭酸僅對少數病毒有效。飲水中漂白粉濃度對乙型肺炎,腸道病毒無效。β-丙內脂(β-Propiolactone) 及環氧乙烷(Ethylene oxide)可殺滅各種病毒。
4.抗生素 抗生素及磺胺對病毒無效。利福平(Rifampin)能抑制痘病毒復制,干擾病毒DNA或RNA合成,但也干擾宿主細胞的代謝,有較強的細胞毒性作用。
二、病毒的變異
(一)突變
病毒的突變(Mutation)是指基因組中核酸鹼基順序上的化學變化,可以是一個核苷酸的改變,也可為上百上千個核苷酸的缺失或易位。病毒復制中的自然突變率10-5~10-8,而各種物理、化學誘變劑 (Mutagens)可提高突變率,如溫度、射線、5-溴尿嘧啶、亞硝酸鹽等的作用均可誘發突變。突變株與原先的野生型病毒 (Wild-type virus)特性不同,表現為病毒毒力、抗原組成、溫度和宿主范圍等方面的改變。
1.毒力改變 有強毒株及弱毒株,後者可製成弱毒活病毒疫苗,如脊液灰質炎疫苗、麻疹疫苗等。
2.條件致死突變株 指病毒突變後在特定條件下能生長,而在原來條件下不能繁殖而被致死。其中最主要是的是溫度敏感條件致死突變株(Temperature-sensitive conditional lethalmutant),簡稱溫度敏感突變株(ts株),在特定溫(28~35℃)下孵育則能增殖,在非特定溫度(37~40℃)下孵育則不能繁殖,而野生型在兩種溫度均能增殖。顯然是由於在非特定溫度下 ,突變基因所編碼的蛋白缺乏其應有功能。因此大多數ts株同時又是減毒株。現已從許多動物病毒中分離出ts株,選擇遺傳穩定性良好的品系用於制備鹼毒活疫苗,如流感病毒及脊髓灰制裁炎病毒ts 株疫苗。
3.宿主適應性突株 例如狂犬病毒突變株適應在兔腦內增殖,由「街毒」變為「固定毒」,可製成狂犬病疫苗。
(二)基因重組
當二種有親緣關系的不同病毒感染同一宿主細胞時,它們的遺傳物質發生交換,結果產生不同於親代的可遺傳的子代,稱為基因重組(Genetic recombination)。
1.活病毒間的重組 例如流感病毒兩個亞型之間可基因重組,產生新的雜交株,即具有一個親代的血凝素和另一親代的神經氨酸酶。這在探索自然病毒變異原理中具有重要意義。流感每隔十年左右引起一次世界性大流行,可能是由於人的流感病毒與某些動物(雞、馬、豬)的流感病毒間發生基因重組所致。
2.滅活病毒間的重組 例如用紫外線滅活的兩株同種病毒,若一同培養後,常可使滅活的病毒復活,產生出感染性病毒體,此稱為多重復活(Multiplicity reactivation),這是因為兩種病毒核酸上受損害的基因部位不同,由於重組合相互彌補而得到復活。因此現今不用紫外線滅活病毒製造疫苗,以防病毒復活的危險。
3.死活病毒間的重組 例如將能在雞胚中生長良好的甲型流感病毒(A0或A1亞型)疫苗株經紫外線滅活後,再加亞洲甲型(A2亞型)活流感病毒一同培養,產生出具有前者特點的A2亞型流感病毒,可供製作疫苗,此稱
9. 的化學家有哪些
化學家有好多,如:
門捷列夫
門捷列夫:(俄語:Дми́трий Ива́нович Менделе́ев,1834年2月8日—1907年2月2日[7])俄國化學家。1834年2月7日生於西伯利亞托博爾斯克,1907年2月2日卒於聖彼得堡。1850年入聖彼得堡師范學院學習化學,1855年畢業後任敖德薩中學教師。1857年任聖彼得堡大學副教授。1859年他到德國海德堡大學深造。1860年參加了在卡爾斯魯厄召開的國際化學家代表大會。1861年回聖彼得堡從事科學著述工作。1863年任工藝學院教授,1865年獲化學博士學位。1866年任聖彼
萊納斯·卡爾·鮑林
性和創新精神,不斷開拓邊緣學科,在化學的許多領域卓有建樹,是20世紀最偉大的化學家。曾兩次榮獲諾貝爾獎(1954年化學獎, 1962年和平獎),有很高的國際聲譽。是迄今為止世界上唯一一位兩次單獨獲得諾貝爾獎的科學家。
重大成果
在鮑林近一個世紀的生命歷程中,他參與和經歷了20世紀科學史上許多重大的科學發現,成果卓著:首次全面描述化學鍵的本質;發現蛋白質的結構;揭示鐮刀狀細胞貧血症的病因;參與揭示DNA結構的研究;主持第二次世界大戰期間的一些軍工科研項目;推進X射線結晶學、電子衍射學、量子力學、生物化學、分子精神病學、核物理學、麻醉學、免疫學、營養學等學科的發展。
10. 科學家巴斯德對人類的四個貢獻
1、奠定了微生物學:巴斯德弄清了發酵的奧秘,從此開始,巴斯德終於成為一位偉大的微生物學家,成了微生物學的奠基人。而後創立了巴氏滅菌法。
2、免疫學上的貢獻:巴斯德一生發明很多,對生物科學和醫學作出了傑出的貢獻。一次偶然的機遇,使他找到了片服雞霍的靈丹妙葯。而後征服狂犬病。巴斯德是世界上最早地成功研製出炭疽病減毒活性疫苗的人,從而使畜牧業免受滅頂之災。
3、否定微生物自然發生說。
4、巴斯德是世界上最早地成功研製出炭疽病減毒活性疫苗的人,從而使畜牧業免受滅頂之災。
科學家巴斯德研究了微生物的類型、習性、營養、繁殖、作用等,把微生物的研究從主要研究微生物的形態轉移到研究微生物的生理途徑上來,從而奠定了工業微生物學和醫學微生物學的基礎,並開創了微生物生理學。
(10)最早發明減毒活疫苗的科學家是擴展閱讀:
巴斯德一生進行了多項探索性的研究,取得了重大成果,是19世紀最有成就的科學家之一。
巴斯德並不是病菌的最早發現者。在他之前已有基魯拉、包亨利等人提出過類似的假想。但是,巴斯德不僅熱情勇敢地提出關於病菌的理論,而且通過大量實驗,證明了他的理論的正確性,令科學界信服,這是他的主要的重大貢獻。
巴斯德以他極其細心的觀察力,小心實驗、大膽假設,發現酒石酸鹽、類酒石酸鹽的晶體結構不同後,謹慎的畢歐知道巴斯德的實驗後,決定親自重復這個實驗。
當他最終獲得相同的結論,激動地對巴斯德說:「親愛的孩子,我這一生熱愛科學,這個結果撼動了我的心。」從此,畢歐屢屢給予巴斯德實驗上的建議,也成為他重要的良師摯友。