❶ 三角函數是誰發明的
迪卡爾
❷ 三角函數誰發明的
歷史表明,重要數學概念對數學發展的作用是不可估量的,函數概念對數學發展的影響,可以說是貫穿古今、曠日持久、作用非凡,回顧函數概念的歷史發展,看一看函數概念不斷被精煉、深化、豐富的歷史過程,是一件十分有益的事情,它不僅有助於我們提高對函數概念來龍去脈認識的清晰度,而且更能幫助我們領悟數學概念對數學發展,數學學習的巨大作用. (一) 馬克思曾經認為,函數概念來源於代數學中不定方程的研究.由於羅馬時代的丟番圖對不定方程已有相當研究,所以函數概念至少在那時已經萌芽. 自哥白尼的天文學革命以後,運動就成了文藝復興時期科學家共同感興趣的問題,人們在思索:既然地球不是宇宙中心,它本身又有自轉和公轉,那麼下降的物體為什麼不發生偏斜而還要垂直下落到地球上?行星運行的軌道是橢圓,原理是什麼?還有,研究在地球表面上拋射物體的路線、射程和所能達到的高度,以及炮彈速度對於高度和射程的影響等問題,既是科學家的力圖解決的問題,也是軍事家要求解決的問題,函數概念就是從運動的研究中引申出的一個數學概念,這是函數概念的力學來源. (二) 早在函數概念尚未明確提出以前,數學家已經接觸並研究了不少具體的函數,比如對數函數、三角函數、雙曲函數等等.1673年前後笛卡兒在他的解析幾何中,已經注意到了一個變數對於另一個變數的依賴關系,但由於當時尚未意識到需要提煉一般的函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分的時候,數學家還沒有明確函數的一般意義. 1673年,萊布尼茲首次使用函數一詞表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量.由此可以看出,函數一詞最初的數學含義是相當廣泛而較為模糊的,幾乎與此同時,牛頓在微積分的討論中,使用另一名詞「流量」來表示變數間的關系,直到1689年,瑞士數學家約翰·貝努里才在萊布尼茲函數概念的基礎上,對函數概念進行了明確定義,貝努里把變數x和常量按任何方式構成的量叫「x的函數」,表示為yx. 當時,由於連接變數與常數的運算主要是算術運算、三角運算、指數運算和對數運算,所以後來歐拉就索性把用這些運算連接變數x和常數c而成的式子,取名為解析函數,還將它分成了「代數函數」與「超越函數」. 18世紀中葉,由於研究弦振動問題,達朗貝爾與歐拉先後引出了「任意的函數」的說法.在解釋「任意的函數」概念的時候,達朗貝爾說是指「任意的解析式」,而歐拉則認為是「任意畫出的一條曲線」.現在看來這都是函數的表達方式,是函數概念的外延. (三) 函數概念缺乏科學的定義,引起了理論與實踐的尖銳矛盾.例如,偏微分方程在工程技術中有廣泛應用,但由於沒有函數的科學定義,就極大地限制了偏微分方程理論的建立.1833年至1834年,高斯開始把注意力轉向物理學.他在和W·威伯爾合作發明電報的過程中,做了許多關於磁的實驗工作,提出了「力與距離的平方成反比例」這個重要的理論,使得函數作為數學的一個獨立分支而出現了,實際的需要促使人們對函數的定義進一步研究. 後來,人們又給出了這樣的定義:如果一個量依賴著另一個量,當後一量變化時前一量也隨著變化,那麼第一個量稱為第二個量的函數.「這個定義雖然還沒有道出函數的本質,但卻把變化、運動注入到函數定義中去,是可喜的進步.」 在函數概念發展史上,法國數學家富里埃的工作影響最大,富里埃深刻地揭示了函數的本質,主張函數不必局限於解析表達式.1822年,他在名著《熱的解析理論》中說,「通常,函數表示相接的一組值或縱坐標,它們中的每一個都是任意的……,我們不假定這些縱坐標服從一個共同的規律;他們以任何方式一個挨一個.」在該書中,他用一個三角級數和的形式表達了一個由不連續的「線」所給出的函數.更確切地說就是,任意一個以2π為周期函數,在〔-π,π〕區間內,可以由 表示出,其中 富里埃的研究,從根本上動搖了舊的關於函數概念的傳統思想,在當時的數學界引起了很大的震動.原來,在解析式和曲線之間並不存在不可逾越的鴻溝,級數把解析式和曲線溝通了,那種視函數為解析式的觀點終於成為揭示函數關系的巨大障礙. 通過一場爭論,產生了羅巴切夫斯基和狄里克萊的函數定義. 1834年,俄國數學家羅巴切夫斯基提出函數的定義:「x的函數是這樣的一個數,它對於每個x都有確定的值,並且隨著x一起變化.函數值可以由解析式給出,也可以由一個條件給出,這個條件提供了一種尋求全部對應值的方法.函數的這種依賴關系可以存在,但仍然是未知的.」這個定義建立了變數與函數之間的對應關系,是對函數概念的一個重大發展,因為「對應」是函數概念的一種本質屬性與核心部分. 1837年,德國數學家狄里克萊(Dirichlet)認為怎樣去建立x與y之間的關系無關緊要,所以他的定義是:「如果對於x的每一值,y總有完全確定的值與之對應,則y是x的函數.」 根據這個定義,即使像如下表述的,它仍然被說成是函數(狄里克萊函數): f(x)= 1 (x為有理數), 0 (x為無理數). 在這個函數中,如果x由0逐漸增大地取值,則f(x)忽0忽1.在無論怎樣小的區間里,f(x)無限止地忽0忽1.因此,它難用一個或幾個式子來加以表示,甚至究竟能否找出表達式也是一個問題.但是不管其能否用表達式表示,在狄里克萊的定義下,這個f(x)仍是一個函數. 狄里克萊的函數定義,出色地避免了以往函數定義中所有的關於依賴關系的描述,以完全清晰的方式為所有數學家無條件地接受.至此,我們已可以說,函數概念、函數的本質定義已經形成,這就是人們常說的經典函數定義. (四) 生產實踐和科學實驗的進一步發展,又引起函數概念新的尖銳矛盾,本世紀20年代,人類開始研究微觀物理現象.1930年量子力學問世了,在量子力學中需要用到一種新的函數——δ-函數, 即ρ(x)= 0,x≠0, ∞,x=0. 且 δ-函數的出現,引起了人們的激烈爭論.按照函數原來的定義,只允許數與數之間建立對應關系,而沒有把「∞」作為數.另外,對於自變數只有一個點不為零的函數,其積分值卻不等於零,這也是不可想像的.然而,δ-函數確實是實際模型的抽象.例如,當汽車、火車通過橋梁時,自然對橋梁產生壓力.從理論上講,車輛的輪子和橋面的接觸點只有一個,設車輛對軌道、橋面的壓力為一單位,這時在接觸點x=0處的壓強是 P(0)=壓力/接觸面=1/0=∞. 其餘點x≠0處,因無壓力,故無壓強,即 P(x)=0.另外,我們知道壓強函數的積分等於壓力,即 函數概念就在這樣的歷史條件下能動地向前發展,產生了新的現代函數定義:若對集合M的任意元素x,總有集合N確定的元素y與之對應,則稱在集合M上定義一個函數,記為y=f(x).元素x稱為自變元,元素y稱為因變元. 函數的現代定義與經典定義從形式上看雖然只相差幾個字,但卻是概念上的重大發展,是數學發展道路上的重大轉折,近代的泛函分析可以作為這種轉折的標志,它研究的是一般集合上的函數關系. 函數概念的定義經過二百多年來的錘煉、變革,形成了函數的現代定義,應該說已經相當完善了.不過數學的發展是無止境的,函數現代定義的形式並不意味著函數概念發展的歷史終結,近二十年來,數學家們又把函數歸結為一種更廣泛的概念—「關系」. 設集合X、Y,我們定義X與Y的積集X×Y為 X×Y={(x,y)|x∈X,y∈Y}. 積集X×Y中的一子集R稱為X與Y的一個關系,若(x,y)∈R,則稱x與y有關系R,記為xRy.若(x,y)R,則稱x與y無關系. 現設f是X與Y的關系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那麼稱f為X到Y的函數.在此定義中,已在形式上迴避了「對應」的術語,全部使用集合論的語言了. 從以上函數概念發展的全過程中,我們體會到,聯系實際、聯系大量數學素材,研究、發掘、拓廣數學概念的內涵是何等重要.
❸ 有沒有人知道函數是哪個人發明的!
1.早期函數概念——幾何觀念下的函數
十七世紀伽俐略(G.Galileo,意,1564-1642)在《兩門新科學》一書中,幾乎全部包含函數或稱為變數關系的這一概念,用文字和比例的語言表達函數的關系。1673年前後笛卡爾(Descartes,法,1596-1650)在他的解析幾何中,已注意到一個變數對另一個變數的依賴關系,但因當時尚未意識到要提煉函數概念,因此直到17世紀後期牛頓、萊布尼茲建立微積分時還沒有人明確函數的一般意義,大部分函數是被當作曲線來研究的。
1673年,萊布尼茲首次使用「function」 (函數)表示「冪」,後來他用該詞表示曲線上點的橫坐標、縱坐標、切線長等曲線上點的有關幾何量。與此同時,牛頓在微積分的討論中,使用 「流量」來表示變數間的關系。
2.十八世紀函數概念──代數觀念下的函數
1718年約翰
❹ 2的n次方是誰發明的
網路知道充胖子的太多,你問得這玩意太專業,沒人知道啊!
❺ 函數是誰發明的
函數不是誰發明的,它是一個數學概念! 1673年,萊布尼茲首次使用函數一詞表示「冪」18世紀中葉,達朗貝爾與歐拉先後引出了「任意的函數」的說法在函數概念發展史上,法國數學家富里埃的工作影響最大1834年,俄國數學家羅巴切夫斯基提出函數的定義1.國際著名數學大師,沃爾夫數學獎得主,陳省身2.享有國際盛譽的大數學家,新中國數學事業發展的重要奠基人,華羅庚 3.僅次於哥德爾的邏輯數學大師,王浩4.著名數學家力學家,美國科學院院士,林家翹5.我國泛函分析領域研究先驅者,曾遠榮6.我國最早提倡應用數學與計算數學的學者,趙訪熊7.著名數學家,數學教育家,吳大任8.著名數學家,北大教授,庄圻泰9.著名數學家,數學教育家,四川大學校長,柯召10.中央研究院院士,首批學部委員,許寶騄11.中科院院士,原北大數學系主任,段學復 12.我國拓撲學的奠基人 江澤涵
❻ 函數,對數函數是什麼時候發明的,是誰發明的
對數函數的歷史:
16世紀末至17世紀初的時候,當時在自然科學領域(特別是天文學)的發展上經常遇到大量精密而又龐大的數值計算,於是數學家們為了尋求化簡的計算方法而發明了對數.
德國的史提非(1487-1567)在1544年所著的《整數算術》中,寫出了兩個數列,左邊是等比數列(叫原數),右邊是一個等差數列(叫原數的代表,或稱指數,德文是Exponent ,有代表之意).
欲求左邊任兩數的積(商),只要先求出其代表(指數)的和(差),然後再把這個和(差)對向左邊的一個原數,則此原數即為所求之積(商),可惜史提非並未作進一步探索,沒有引入對數的概念.
納皮爾對數值計算頗有研究.他所製造的「納皮爾算籌」,化簡了乘除法運算,其原理就是用加減來代替乘除法.他發明對數的動機是為尋求球面三角計算的簡便方法,他依據一種非常獨等的與質點運動有關的設想構造出所謂對數方 法,其核心思想表現為算術數列與幾何數列之間的聯系.在他的《奇妙的對數表的描述》中闡明了對數原理,後人稱為 納皮爾對數,記為Nap.㏒x,它與自然對數的關系為
Nap.㏒x=107㏑(107/x)
由此可知,納皮爾對數既不是自然對數,也不是常用對數,與現今的對數有一定的距離.
瑞士的彪奇(1552-1632)也獨立地發現了對數,可能比納皮爾較早,但發表較遲(1620).
英國的布里格斯在1624年創造了常用對數.
1619年,倫敦斯彼得所著的《新對數》使對數與自然對數更接近(以e=2.71828為底).
對數的發明為當時社會的發展起了重要的影響,正如科學家伽利略(1564-1642)說:「給我時間,空間和對數,我可以創造出一個宇宙」.又如十八世紀數學家拉普拉斯( 1749-1827)亦提到:「對數用縮短計算的時間來使天文學家的壽命加倍」.
最早傳入我國的對數著作是《比例與對數》,它是由波蘭的穆尼斯(1611-1656)和我國的薛鳳祚在17世紀中葉合 編而成的.當時在lg2=0.3010中,2叫「真數」,0.3010叫做「假數」,真數與假數對列成表,故稱對數表.後來改用 「假數」為「對數」.
我國清代的數學家戴煦(1805-1860)發展了多種的求對數的捷法,著有《對數簡法》(1845)、《續對數簡法》(1846)等.1854年,英國的數學家艾約瑟(1825-1905) 看到這些著作後,大為嘆服.
當今中學數學教科書是先講「指數」,後以反函數形式引出「對數」的概念.但在歷史上,恰恰相反,對數概念不是來自指數,因為當時尚無分指數及無理指數的明確概念.布里格斯曾向納皮爾提出用冪指數表示對數的建議.1742年 ,J.威廉(1675-1749)在給G.威廉的《對數表》所寫的前言中作出指數可定義對數.而歐拉在他的名著《無窮小 分析尋論》(1748)中明確提出對數函數是指數函數的逆函數,和現在教科書中的提法一致.
追問:
請問還有指數函數和冪函數嗎,
追
指數函數 指數函數的一般形式為y=a^x(a>0且不=1) ,從上面我們對於冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得 如圖所示為a的不同大小影響函數圖形的情況。 在函數y=a^x中可以看到: (1) 指數函數的定義域為所有實數的集合,這里的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮, 同時a等於0一般也不考慮。 (2) 指數函數的值域為大於0的實數集合。 (3) 函數圖形都是下凹的。 (4) a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。 (5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。 (6) 函數總是在某一個方向上無限趨向於X軸,永不相交。 (7) 函數總是通過(0,1)這點 (8) 顯然指數函數無界。 (9) 指數函數既不是奇函數也不是偶函數。 (10)當兩個指數函數中的a互為倒數是,此函數圖像是偶函數 冪函數個人暫時無資料,有性質你要不要
❼ 步槍冪誰發明的
世界上第一支能夠連發的步槍由美國人克里斯托夫·斯潘塞於1860年發明的。內這支槍槍托內有一直通槍膛的容洞,洞內即彈倉,容彈10發,洞口有彈簧,以簧力推子彈入膛。於1862年12月31日正式裝備聯邦軍。
1866年、奧利弗·溫切斯特也研製了一種連發槍,稱為「溫切斯特步槍」。但是這時的連發槍只是能夠從彈倉中接連推彈入膛而已,開鎖和退殼等動作還需手動操作來完成。
第一支真正的自動步槍是1883年由美國工程師H·S·馬克沁發明的。步槍射擊時,產生的氣體除了將子彈射出槍管外,同時還使槍產生後坐力。馬克沁就是利用部分氣體的動力使槍完成開鎖、退殼、送彈和重新閉鎖等一系列動作的,從而實現了步槍的自動連續射擊,並減輕了槍支對射手撞擊的後坐力。馬克沁將「溫切斯特步槍」進行改裝和試驗。終於在1883年成功地製造出世界上第一支自動步槍。
❽ 數學上的冪這個詞是誰發明的
1673年,萊布尼茲首次使用函數一詞表示「冪」
戈特弗里德·威廉·萊布尼茨(Gottfried Wilhelm Leibniz,1646年7月1日-1716年11月14日),德國猶太族哲學家、數學家,歷史上少見的通才,被譽為十七世紀的亞里士多德。他本人是一名律師,經常往返於各大城鎮,他許多的公式都是在顛簸的馬車上完成的,他也自稱具有男爵的貴族身份。
萊布尼茨在數學史和哲學史上都佔有重要地位。在數學上,他和牛頓先後獨立發明了微積分,而且他所使用的微積分的數學符號被更廣泛的使用,萊布尼茨所發明的符號被普遍認為更綜合,適用范圍更加廣泛。萊布尼茨還對二進制的發展做出了貢獻。
在哲學上,萊布尼茨的樂觀主義最為著名;他認為,「我們的宇宙,在某種意義上是上帝所創造的最好的一個」。他和笛卡爾、巴魯赫·斯賓諾莎被認為是十七世紀三位最偉大的理性主義哲學家。萊布尼茨在哲學方面的工作在預見了現代邏輯學和分析哲學誕生的同時,也顯然深受經院哲學傳統的影響,更多地應用第一性原理或先驗定義,而不是實驗證據來推導以得到結論。
萊布尼茨在政治學、法學、倫理學、神學、哲學、歷史學、語言學諸多方向都留下了著作
❾ 祖暅原理是誰發明的,怎樣發明的
亦名祖氏原理,一個涉及幾何求積的著名命題。公元656年,唐代李淳風注《九章》時提到祖暅的開立圓術。祖暅在求球體積時,使用一個原理:「冪勢既同,則積不容異」。「冪」是截面積,「勢」是立體的高。意思是兩個同高的立體,如在等高處的截面積恆相等,則體積相等。更詳細點說就是,界於兩個平行平面之間的兩個立體,被任一平行於這兩個平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等。上述原理在中國被稱為祖暅原理。