❶ 誰知道導數是怎麼發現(明)的啊
x的n次方的導數是n乘以x的n-1次方 sinx的導數是cosxcosx的倒數是-sinx基本就這幾個
❷ 當初發明導數是干什麼用的
導數的起源(一)早期導數概念----特殊的形式大約在1629年,法國數學家費馬研究了作曲線的切線和求函數極值的方法;1637年左右,他寫一篇手稿《求最大值與最小值的方法》.在作切線時,他構造了差分f(A+E)-f(A),發現的因子E就是我們現在所說的導數f'(A).(二)17世紀----廣泛使用的「流數術」17世紀生產力的發展推動了自然科學和技術的發展,在前人創造性研究的基礎上,大數學家牛頓
、萊布尼茨等從不同的角度開始系統地研究微積分.牛頓的微積分理論被稱為「流數術」,他稱變數為流量,稱變數的變化率為流數,相當於我們所說的導數.牛頓的有關「流數術」的主要著作是《求曲邊形面積》、《運用無窮多項方程的計演算法》和《流數術和無窮級數》,流數理論的實質概括為:他的重點在於一個變數的函數而不在於多變數的方程;在於自變數的變化與函數的變化的比的構成;最在於決定這個比當變化趨於零時的極限.(三)19世紀導數----逐漸成熟的理論1750年達朗貝爾在為法國科學家院出版的《網路全書》第四版寫的「微分」條目中提出了關於導數的一種觀點,可以用現代符號簡單表示:{dy/dx)=lim(oy/ox).1823年,柯西在他的《無窮小分析概論》中定義導數:如果函數y=f(x)在變數x的兩個給定的界限之間保持連續,並且我們為這樣的變數指定一個包含在這兩個不同界限之間的值,那麼是使變數得到一個無窮小增量.19世紀60年代以後,魏爾斯特拉斯創造了ε-δ語言,對微積分中出現的各種類型的極限重加表達,導數的定義也就獲得了今天常見的形式.(四)實無限將異軍突起,微積分第二輪初等化或成為可能 微積分學理論基礎,大體可以分為兩個部分.一個是實無限理論,即無限是一個具體的東西,一種真實的存在;另一種是潛無限,指一種意識形態上的過程,比如無限接近.
就數學歷史來看,兩種理論都有一定的道理.其中實無限用了150年,後來極限論就是現在所使用的.
光是電磁波還是粒子是一個物理學長期爭論的問題,後來由波粒二象性來統一.微積分無論是用現代極限論還是150年前的理論,都不是最好的手段.
❸ 求導是誰發明的微分和積分呢是誰發明的呢
微分和積分是由英國的牛頓和德國的萊布尼茨一起總結的。
❹ 中國第一個翻譯導數的人為什麼用這個詞命名導數
derivative 本意是衍生的,導出的,系出的
而導數,亦名紀數、微商,由速度變化問題和曲線的切線問題而抽象出來的數學概念。又稱變化率。
那麼,「變化率」是不是就是「導數」
同理,變化衍生導出的結果是不是就是函數「變化率」的曲線
導數只是變化率的一個同義詞稱呼,derivative function 就是變化率曲線函數,也就是導數函數。
並非所有數學原理和名稱都以人起名的,難不成代數就是姓代的發明的?
❺ 導數是如何發現的
牛頓和萊布尼茨開始研究的
亦名紀數、微商,由速度變化問題和曲線的切線問題而抽象出來的數學概念。又稱變化率。
如一輛汽車在10小時內走了 600千米,它的平均速度是60千米/小時,但在實際行駛過程中,是有快慢變化的,不都是60千米/小時。為了較好地反映汽車在行駛過程中的快慢變化情況,可以縮短時間間隔,設汽車所在位置s與時間t的關系為s=f(t),那麼汽車在由時刻t0變到t1這段時間內的平均速度是[f(t1)-f(t0)]/[t1-t0],當 t1與t0很接近時,汽車行駛的快慢變化就不會很大,平均速度就能較好地反映汽車在t0 到 t1這段時間內的運動變化情況 ,自然就把極限[f(t1)-f(t0)]/[t1-t0] 作為汽車在時刻t0的瞬時速度,這就是通常所說的速度。一般地,假設一元函數 y=f(x )在 x0點的附近(x0-a ,x0 +a)內有定義,當自變數的增量Δx= x-x0→0時函數增量 Δy=f(x)- f(x0)與自變數增量之比的極限存在且有限,就說函數f在x0點可導,稱之為f在x0點的導數(或變化率)。若函數f在區間I 的每一點都可導,便得到一個以I為定義域的新函數,記作 f′,稱之為f的導函數,簡稱為導數。函數y=f(x)在x0點的導數f′(x0)的幾何意義:表示曲線l 在P0〔x0,f(x0)〕 點的切線斜率。
❻ 李群和李導數是誰發明的
李群和李導數是 Lie 發明的。
❼ 求導是誰發明的微分和積分呢
牛頓發明的
微積分學的建立
從微積分成為一門學科來說,是在十七世紀,但是,微分和積分的思想在古代就已經產生了。
公元前三世紀,古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉雙曲體的體積的問題中,就隱含著近代積分學的思想。作為微分學基礎的極限理論來說,早在古代以有比較清楚的論述。比如我國的莊周所著的《莊子》一書的「天下篇」中,記有「一尺之棰,日取其半,萬世不竭」。三國時期的劉徽在他的割圓術中提到「割之彌細,所失彌小,割之又割,以至於不可割,則與圓周和體而無所失矣。」這些都是樸素的、也是很典型的極限概念。
到了十七世紀,有許多科學問題需要解決,這些問題也就成了促使微積分產生的因素。歸結起來,大約有四種主要類型的問題:第一類是研究運動的時候直接出現的,也就是求即時速度的問題。第二類問題是求曲線的切線的問題。第三類問題是求函數的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用於另一物體上的引力。
十七世紀的許多著名的數學家、天文學家、物理學家都為解決上述幾類問題作了大量的研究工作,如法國的費爾瑪、笛卡爾、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;義大利的卡瓦列利等人都提出許多很有建樹的理論。為微積分的創立做出了貢獻。
十七世紀下半葉,在前人工作的基礎上,英國大科學家牛頓和德國數學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創立工作,雖然這只是十分初步的工作。他們的最大功績是把兩個貌似毫不相關的問題聯系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。
牛頓和萊布尼茨建立微積分的出發點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現在數學中分析學這一大分支名稱的來源。牛頓研究微積分著重於從運動學來考慮,萊布尼茨卻是側重於幾何學來考慮的。
牛頓在1671年寫了《流數法和無窮級數》,這本書直到1736年才出版,它在這本書里指出,變數是由點、線、面的連續運動產生的,否定了以前自己認為的變數是無窮小元素的靜止集合。他把連續變數叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。
德國的萊布尼茨是一個博才多學的學者,1684年,他發表了現在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用於分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一片說理也頗含糊的文章,卻有劃時代的意義。他以含有現代的微分符號和基本微分法則。1686年,萊布尼茨發表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創設的微積分符號,遠遠優於牛頓的符號,這對微積分的發展有極大的影響。現在我們使用的微積分通用符號就是當時萊布尼茨精心選用的。
微積分學的創立,極大地推動了數學的發展,過去很多初等數學束手無策的問題,運用微積分,往往迎刃而解,顯示出微積分學的非凡威力。
前面已經提到,一門科學的創立決不是某一個人的業績,他必定是經過多少人的努力後,在積累了大量成果的基礎上,最後由某個人或幾個人總結完成的。微積分也是這樣。
不幸的事,由於人們在欣賞微積分的宏偉功效之餘,在提出誰是這門學科的創立者的時候,竟然引起了一場悍然大波,造成了歐洲大陸的數學家和英國數學家的長期對立。英國數學在一個時期里閉關鎖國,囿於民族偏見,過於拘泥在牛頓的「流數術」中停步不前,因而數學發展整整落後了一百年。
其實,牛頓和萊布尼茨分別是自己獨立研究,在大體上相近的時間里先後完成的。比較特殊的是牛頓創立微積分要比萊布尼詞早10年左右,但是整是公開發表微積分這一理論,萊布尼茨卻要比牛頓發表早三年。他們的研究各有長處,也都各有短處。那時候,由於民族偏見,關於發明優先權的爭論竟從1699年始延續了一百多年。
應該指出,這是和歷史上任何一項重大理論的完成都要經歷一段時間一樣,牛頓和萊布尼茨的工作也都是很不完善的。他們在無窮和無窮小量這個問題上,其說不一,十分含糊。牛頓的無窮小量,有時候是零,有時候不是零而是有限的小量;萊布尼茨的也不能自圓其說。這些基礎方面的缺陷,最終導致了第二次數學危機的產生。
直到19世紀初,法國科學學院的科學家以柯西為首,對微積分的理論進行了認真研究,建立了極限理論,後來又經過德國數學家維爾斯特拉斯進一步的嚴格化,使極限理論成為了微積分的堅定基礎。才使微積分進一步的發展開來。
任何新興的、具有無量前途的科學成就都吸引著廣大的科學工作者。在微積分的歷史上也閃爍著這樣的一些明星:瑞士的雅科布·貝努利和他的兄弟約翰·貝努利、歐拉、法國的拉格朗日、科西……
歐氏幾何也好,上古和中世紀的代數學也好,都是一種常量數學,微積分才是真正的變數數學,是數學中的大革命。微積分是高等數學的主要分支,不只是局限在解決力學中的變速問題,它馳騁在近代和現代科學技術園地里,建立了數不清的豐功偉績。
❽ 數學中導數的來歷
可以肯定,任何一本高等代數的教材都沒出現過 「導數」 這個概念,不信翻出來看看?
導數指的是一種變化率的極限,是從許多具體問題(如切線斜率、速度,等)的研究中提煉出來的一個數學概念,誰也不清楚具體是研究什麼發現的,正如不清楚 1+1 到底是從數手指頭發現的還是從數腳趾頭發現的一樣。
❾ 全導數是誰發現的
大約在1629年,法國數學家費馬研究了作曲線的切線和求函數極值的方法;1637年左右,他寫一篇手稿《求最大值與最小值的方法》。在作切線時,他構造了差分f(A+E)-f(A),發現的因子E就是我們所說的導數f'(A)。
全導數
全導數是在復合函數中的概念,。
u=a(t),v=b(t)
z=f[a(t),b(t)]
dz/dt 就是全導數,這是復合函數求導中的一種情況,只有這時才有全導數的概念。
❿ 導數和微分的概念產生的歷史背景
這個准確的說是微積分的產生背景,導數其實就是微商,即f'(x)=dy/dx。
從微積分成為一門學科來說,是在十七世紀,但是,微分和積分的思想在古代就已經產生了。
公元前三世紀,古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉雙曲體的體積的問題中,就隱含著近代積分學的思想。作為微分學基礎的極限理論來說,早在古代以有比較清楚的論述。比如我國的莊周所著的《莊子》一書的「天下篇」中,記有「一尺之棰,日取其半,萬世不竭」。三國時期的劉徽在他的割圓術中提到「割之彌細,所失彌小,割之又割,以至於不可割,則與圓周和體而無所失矣。」這些都是樸素的、也是很典型的極限概念。
到了十七世紀,有許多科學問題需要解決,這些問題也就成了促使微積分產生的因素。歸結起來,大約有四種主要類型的問題:第一類是研究運動的時候直接出現的,也就是求即時速度的問題。第二類問題是求曲線的切線的問題。第三類問題是求函數的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用於另一物體上的引力。
十七世紀的許多著名的數學家、天文學家、物理學家都為解決上述幾類問題作了大量的研究工作,如法國的費爾瑪、笛卡爾、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;義大利的卡瓦列利等人都提出許多很有建樹的理論。為微積分的創立做出了貢獻。
十七世紀下半葉,在前人工作的基礎上,英國大科學家牛頓和德國數學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創立工作,雖然這只是十分初步的工作。他們的最大功績是把兩個貌似毫不相關的問題聯系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。
牛頓和萊布尼茨建立微積分的出發點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現在數學中分析學這一大分支名稱的來源。牛頓研究微積分著重於從運動學來考慮,萊布尼茨卻是側重於幾何學來考慮的。
牛頓在1671年寫了《流數法和無窮級數》,這本書直到1736年才出版,它在這本書里指出,變數是由點、線、面的連續運動產生的,否定了以前自己認為的變數是無窮小元素的靜止集合。他把連續變數叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。
德國的萊布尼茨是一個博才多學的學者,1684年,他發表了現在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用於分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一片說理也頗含糊的文章,卻有劃時代的意義。他以含有現代的微分符號和基本微分法則。1686年,萊布尼茨發表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創設的微積分符號,遠遠優於牛頓的符號,這對微積分的發展有極大的影響。現在我們使用的微積分通用符號就是當時萊布尼茨精心選用的。
微積分學的創立,極大地推動了數學的發展,過去很多初等數學束手無策的問題,運用微積分,往往迎刃而解,顯示出微積分學的非凡威力。
前面已經提到,一門科學的創立決不是某一個人的業績,他必定是經過多少人的努力後,在積累了大量成果的基礎上,最後由某個人或幾個人總結完成的。微積分也是這樣。
不幸的事,由於人們在欣賞微積分的宏偉功效之餘,在提出誰是這門學科的創立者的時候,竟然引起了一場悍然大波,造成了歐洲大陸的數學家和英國數學家的長期對立。英國數學在一個時期里閉關鎖國,囿於民族偏見,過於拘泥在牛頓的「流數術」中停步不前,因而數學發展整整落後了一百年。
其實,牛頓和萊布尼茨分別是自己獨立研究,在大體上相近的時間里先後完成的。比較特殊的是牛頓創立微積分要比萊布尼詞早10年左右,但是整是公開發表微積分這一理論,萊布尼茨卻要比牛頓發表早三年。他們的研究各有長處,也都各有短處。那時候,由於民族偏見,關於發明優先權的爭論竟從1699年始延續了一百多年。
應該指出,這是和歷史上任何一項重大理論的完成都要經歷一段時間一樣,牛頓和萊布尼茨的工作也都是很不完善的。他們在無窮和無窮小量這個問題上,其說不一,十分含糊。牛頓的無窮小量,有時候是零,有時候不是零而是有限的小量;萊布尼茨的也不能自圓其說。這些基礎方面的缺陷,最終導致了第二次數學危機的產生。
直到19世紀初,法國科學學院的科學家以柯西為首,對微積分的理論進行了認真研究,建立了極限理論,後來又經過德國數學家維爾斯特拉斯進一步的嚴格化,使極限理論成為了微積分的堅定基礎。才使微積分進一步的發展開來。
任何新興的、具有無量前途的科學成就都吸引著廣大的科學工作者。在微積分的歷史上也閃爍著這樣的一些明星:瑞士的雅科布·貝努利和他的兄弟約翰·貝努利、歐拉、法國的拉格朗日、科西……
歐氏幾何也好,上古和中世紀的代數學也好,都是一種常量數學,微積分才是真正的變數數學,是數學中的大革命。微積分是高等數學的主要分支,不只是局限在解決力學中的變速問題,它馳騁在近代和現代科學技術園地里,建立了數不清的豐功偉績。