导航:首页 > 创造发明 > 物理学家发明

物理学家发明

发布时间:2020-12-22 14:47:19

㈠ 请问物理学家.化学家.发明家.科学家有什么异同他们分别需要什么专业的知识从事什么方面的研究

物理学家是抄指以探索袭物质的组成和物质世界的运行规律(即物理学)为目的的科学家。
化学家是指研究在原子、分子水平上研究物质的组成、结构、性质、变化以及变化规律的科学家。
发明家指创造、拥有:新装置、新设计或新方法者能更好地提高和影响人类生活水平、对人类社会未来发展有着巨大帮助,在人类发明史上作出伟大奉献或在发明界有一定影响力的人物。
在所有的定义中,都出现科学家(除发明家外),在某一专业领域,有深入的研究,实验,创造的人,都可以叫科学家。
物理学家需要物理学知识,对于物理学分为理论物理和实验物理,物理学家也可以分为理论物理学家和实验物理学家。当然,物理学中理论和实验都是必不可缺的组成部分,所以有时候这样的分类很难界定。
化学是重要的基础科学之一,在与物理学、生物学、自然地理学、天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。

㈡ l列举10名物理学家并列举出他们的发明创作

牛顿,英国,《三次曲线枚举》
爱因斯坦,德国,《由毛细管现象得到的版推论》,《论动体的电动权力学》,《广义相对论的基础》
伽利略,意大利,《关于两种新科学的对话》,《星空信使》
法拉第,英国,《日记》,《电学实验研究》
阿基米德,西西里岛(今意大利锡拉库萨),《论图形的平衡》、《论浮体》、《论杠杆》、《原理》
开普勒,德国,《新天文学》
笛卡儿,法国,《哲学原理》
麦克斯韦,英国,《论电和磁》
安培,法国,《电动力学现象的数学理论》
惠更斯,荷兰,《光论》

㈢ 居里夫人法国著名的物理学家,她发明了什么

居里夫人 Marie Curie(1867-1934)法国籍波兰科学家,研究放射性现象,发现镭和钋两种放射性元素,一生两度获诺贝尔奖。居里夫人 Marie Curie(1867-1934)法国籍波兰科学家,研究放射性现象,发现镭和钋两种放射性元素,一生两度获诺贝尔奖。作为杰出科学家,居里夫人有一般科学家所没有的社会影响。尤其因为是成功女性的先驱,她的典范激励了很多人。很多人在儿童时代就听到她的故事 但得到的多是一个简化和不完整的印象。世人对居里夫人的认识。很大程度上受其次女在1937年出版的传记《居里夫人》(Madame Curie)所影响。这本书美化了居里夫人的生活,把她一生所遇到的曲折都平淡地处理了。美国传记女作家苏珊·昆(Susan Quinn)花了七年时间,收集包括居里家庭成员和朋友的没有公开的日记和传记资料。於去年出版了一本新书:《玛丽亚· 居里:她的一生》(Maria Curie: A Life),为她艰苦、辛酸和奋斗的生命历程描绘了一幅更详细和深入的图像。

居里夫人:两次荣获诺贝尔奖的伟大科学家

在世界科学史上,玛丽·居里是一个永远不朽的名字。这位伟大的女科学家,以自己的勤奋和天赋,在物理学和化学领域,都作出了杰出的贡献,并因此而成为唯一一位在两个不同学科领域、两次获得诺贝尔奖的著名科学家。

一、靠自学走进巴黎大学

玛丽·居里于1867年出生于波兰华沙,她是家中5个子女中最小的。她的父亲是一名收入十分有限的中学数理教师,妈妈也是中学教员。玛丽的童年是不幸的,她的妈妈得了严重的传染病,是大姐照顾她长大的。后来,妈妈和大姐在她不满10岁时就相继病逝了。她的生活中充满了艰难。这样的生活环境不仅培养了她独立生活的能力,也使她从小就磨炼出了非常坚强的性格。

玛丽从小学习就非常勤奋刻苦,对学习有着强烈的兴趣和特殊的爱好,从不轻易放过任何学习的机会,处处表现出一种顽强的进取精神。从上小学开始,她每门功课都考第一。15岁时,就以获得金奖章的优异成绩从中学毕业。她的父亲早先曾在圣彼得堡大学攻读过物理学,父亲对科学知识如饥似渴的精神和强烈的事业心,也深深地薰陶着小玛丽。她从小就十分喜爱父亲实验室中的各种仪器,长大后她又读了许多自然科学方面的书籍,更使她充满幻想,她急切地渴望到科学世界探索。但是当时的家境不允许她去读大学。19岁那年,她开始做长期的家庭教师,同时还自修了各门功课。这样,直到24岁时,她终于来到巴黎大学理学院学习。她带着强烈的求知欲望,全神贯注地听每一堂课,艰苦的学习使她身体变得越来越不好,但是她的学习成绩却一直名列前茅,这不仅使同学们羡慕,也使教授们惊异,入学两年后,她充满信心地参加了物理学学士学位考试,在30名应试者中,她考了第一名。第二年,她又以第二名的优异成绩,考取了数学学士学位。

1894年初,玛丽接受了法国国家实业促进委员会提出的关于各种钢铁的磁性科研项目。在完成这个科研项目的过程中,她结识了理化学校教师比埃尔·居里,他是一位很有成就的青年科学家。用科学为人类造福的共同意愿使他们结合了。玛丽结婚后,人们都尊敬地称呼她居里夫人。1896年,居里夫人以第一名的成绩,完成了大学毕业生的任职考试。第二年,她又完成了关于各种钢铁的磁性研究。但是,她不满足已取得的成绩,决心考博士,并确定了自己的研究方向。站到了一条新的起跑线上。

二、镭之光

1896年,法国物理学家贝克勒尔发表了一篇工作报告,详细地介绍了他通过多次实验发现的铀元素,铀及其化合物具有一种特殊的本领,它能自动地、连续地放出一种人的肉眼看不见的射线,这种射线和一般光线不同,能透过黑纸使照象底片感光,它同伦琴发现的X射线也不同,在没有高真空气体放电和外加高电压的条件下,却能从铀和铀盐中自动发生。铀及其化合物不断地放出射线,向外辐射能量。这使居里夫人发生了极大的兴趣。这些能量来自于什么地方?这种与众不同的射线的性质又是什么?居里夫人决心揭开它的秘密。1897年,居里夫人选定了自己的研究课题--对放射性物质的研究。这个研究课题,把她带进了科学世界的新天地。她辛勤地开垦了一片处女地,最终完成了近代科学史上最重要的发现之一--发现了放射性元素镭,并奠定了现代放射化学的基础,为人类做出了伟大的贡献。

在实验研究中,居里夫人设计了一种测量仪器,不仅能测出某种物质是否存在射线,而且能测量出射线的强弱。她经过反复实验发现:铀射线的强度与物质中的含铀量成一定比例,而与铀存在的状态以及外界条件无关。

居里夫人对已知的化学元素和所有的化合物进行了全面的检查,获得了重要的发现在:一种叫做钍的元素也能自动发出看不见的射线来,这说明元素能发出射线的现象决不仅仅是铀的特性,而是有些元素的共同特性。她把这种现象称为放射性,把有这种性质的元素叫做放射性元素。它们放出的射线就叫“放射线”。她还根据实验结果预料:含有铀和钍的矿物一定有放射性;不含铀和钍的矿物一定没有放射性。仪器检查完全验证了她的预测。她排除了那些不含放射性元素的矿物,集中研究那些有放射性的矿物,并精确地测量元素的放射性强度。在实验中,她发现一种沥青铀矿的放射性强度比预计的强度大得多,这说明实验的矿物中含有一种人们未知的新放射性元素,且这种元素的含量一定很少,因为这种矿物早已被许多化学家精确地分析过了。她果断地在实验报告中宣布了自己的发现,并努力要通过实验证实它。在这关键的时刻,她的丈夫比埃尔·居里也意识到了妻子的发现的重要性,停下了自己关于结晶体的研究,来和她一道研究这种新元素。经过几个月的努力,他们从矿石中分离出了一种同铋混合在一起的物质,它的放射性强度远远超过铀,这就是后来被列在元素周期表上第84位的钋。几个月以后,他们又发现了另一种新元素,并把它取名为镭。但是,居里夫妇并没有立即获得成功的喜悦。当拿到了一点点新元素的化合物时,他们发现原来所做的估计太乐观了。事实上,矿石中镭的含量还不到百万分之一。只是由于这种混合物的放射性极强,所以含有微量镭盐的物质表现出比铀要强几百倍的放射性。

科学的道路从来就不平坦。钋和镭的发现,以及这些放射性新元素的特性,动摇了几世纪以来的一些基本理论和基本概念。科学家们历来都认为,各种元素的原子是物质存在的最小单元,原子是不可分割的、不可改变的。按照传统的观点是无法解释钋和镭这些放射性元素所发出的放射线的。因此,无论是物理学家,还是化学家,虽然对居里夫人的研究工作都感到有兴趣,但是心中都有疑问。尤其是化学家们的态度更为严谨。为了最终证实这一科学发现,也为了进一步研究镭的各种性质,居里夫妇必须从沥青矿石中分离出更多的、并且是纯净的镭盐。

一切未知的世界都是神秘的。在分离新元素的研究工作开始时,他们并不知道新元素的任何化学性质。寻找新元素的唯一线索是它有很强的放射性。他们据此创造了一种新的化学分析方法。但是他们没有钱,没有真正的实验室,只有一些自己购买或设计的简单的仪器。他们出于工作效率的考虑,分头开展研究。由居里先生试验确定镭的特性;居里夫人则继续提炼纯镭盐。

有志者事竟成!大自然的任何奥秘都会都会被那些向它顽强攻关的人们揭开。1902年年底,居里夫人提炼出了十分之一克极纯净的氯化镭,并准确地测定了它的原子量。从此镭的存在得到了证实。镭是一种极难得到的天然放射性物质,它的形体是有光泽的、象细盐一样的白色结晶。在光谱分析中,它与任何已知的元素的谱线都不相同。镭虽然不是人类第一个发现的放射性元素,但却是放射性最强的元素。利用它的强大放射性,能进一步查明放射线的许多新性质。以使许多元素得到进一步的实际应用。医学研究发现,镭射线对于各种不同的细胞和组织,作用大不相同,那些繁殖快的细胞,一经镭的照射很快都被破坏了。这个发现使镭成为治疗癌症的有力手段。癌瘤是由繁殖异常迅速的细胞组成的,镭射线对于它的破坏远比周围健康组织的破坏作用大的多。这种新的治疗方法很快在世界各国发展起来。在法国,镭疗术被称为居里疗法。镭的发现从根本上改变了物理学的基本原理,对于促进科学理论的发展和在实际中的应用,都有十分重要的意义。

三、金子一般的心灵

由于居里夫妇的惊人发现,1903年12月,他们和贝克勒尔一起获得了诺贝尔物理学奖。他们夫妇的科学功勋盖世,然而他们却极端藐视名利,最厌烦那些无聊的应酬。他们把自己的一切都献给了科学事业,而不捞取任何个人私利。在镭提炼成功以后,有人劝他们向政府申请专利权,垄断镭的制造以此发大财。居里夫人对此说:“那是违背科学精神的,科学家的研究成果应该公开发表,别人要研制,不应受到任何限制”。“何况镭是对病人有好处的,我们不应当借此来谋利”。居里夫妇还把得到的诺贝尔奖金,大量地赠送别人。

1906年,居里先生不幸因车祸而去世,居里夫人承受着巨大的痛苦,她决心加倍努力,完成两个人共同的科学志愿。巴黎大学决定由居里夫人接替居里先生讲授物理课。居里夫人成为著名的巴黎大学有史以来第一位女教授,还是在他们夫妇分离出第一批镭盐的时候,就开始了对放射线各种性质的研究。仅1889年到1904年间,他们就先后发表了32篇学术报告,记录了他们在放射科学上探索的足迹。1910年,居里夫人又完成了《放射性专论》一书。她还与人合作,成功地制取了金属镭。1911年,居里夫人又获得诺贝尔化学奖。一位女科学家,在不到10年的时间里,两次在两个不同的科学领域里获得世界科学的最高奖,这在世界科学史上是独一无二的事情!

1914年,巴黎建成了镭学研究院,居里夫人担任了学院的研究指导。以后她继续在大学里授课,并从事放射性元素的研究工作。她毫不吝啬地把科学知识传播给一切想要学习的人。她从16岁开始,成年累月地学习、工作,整整50年了。但她仍不改变那严格的生活方式。她从小就有高度的自我牺牲精神,早年她为了供姐姐上学,甘愿去别人家里做佣人。在巴黎求学期间,为了节约灯油和取暧开支,她每天晚上都在图书馆读书,一直到图书馆关门才走。提取纯镭所需要的沥青铀矿,在当时是很贵重的,他们从自己的生活费中一点一滴地节省,先后买了8、9吨,在居里先生去世后,居里夫人把千辛万苦提炼出来的,价值高达100万金法郎以上的镭,无偿地赠送给了研究治癌的实验室。

1932年,65岁的居里夫人回到祖国,参加“华沙镭研究所”的开幕典礼。居里夫人从青年时代起就远离祖国,到法国求学。但是她时刻也没有忘记自己的祖国。小时候,她的祖国波兰被沙俄侵占,她就非常痛恨侵略者。当他们夫妇从矿物中分离出新元素以后,她把新元素命名为钋。这是因为钋的词根与波兰国名的词根一样。她以此表示对惨遭沙俄奴役的祖国的深切怀念。

1937年7月14日,居里夫人病逝了。她最后死于恶性贫血症。她一生创造、发展了放射科学,长期无畏地研究强烈放射性物质,直至最后把生命贡献给了这门科学。她一生中,共得过包括诺贝尔奖等在内的10种著名奖金,得到国际高级学术机构颁发的奖章16枚;世界各国政府和科研机构授予的各种头衔多达100多个。但是她一如既往地那样谦虚谨慎。伟大的科学家爱因斯坦评价说:“在我认识的所有著名人物里面,居里夫人是唯一不为盛名所颠倒的人。”好了再见。

㈣ CT,MRI的发明人是物理学家,工程专家说明了什么

我先说几句,CT成像是在X射线的基础上运用计算机技术,使平面重叠的X像可以清晰一个平面一个平面的扫描.磁共振是原子核在强磁场中共振所得到的信号,然后经过图象重建得到的,它可以在人体的各个平面成像.说白了,它的成像和扫描部位质子的多少有关.他们的区别主要是原理,设备,其成像特点,检查技术,图象的分析与诊断,及他们在临床的应用.
CT的基本原理一、CT成像过程

X线成像是利用人体对X线的选择性吸收原理,当X线透过人体后在荧光屏上或胶片上形成组织和器官的图像,CT的成像也与之相仿。

CT扫描的过程是由高度准直的X线束环绕人体某一检查部位作360度的横断面扫描的过程。检查床平移时,X线从不同方向照射病人,穿过人体的X线束因有部分光子被人体吸收而发生衰减,未被吸收的光子穿透人体再经后准直由探测器接收。探测器接受了穿过人体以后的强弱不同的X线,转换为自信号由数据采集系统(data acquisition system,DAS)进行采集。大量接收到模拟信号信息通过模数(A/D)转换器转换为数字信号输入电子计算机进行处理运算。经过初步处理的成为采集的原始数据(raw data),原始数据经过卷曲、滤过处理,其后称为滤过后的原始数据(6lteredrawdata)。由数模(D/A)转换器通过不同的灰阶在显示屏上显像从而获得该部位横断面的解剖结构图象,即CT横断面图象。

因此,CT检查得到的是反应人体组织结构分布的数字影象,从根本上克服了常规X线检查图像前后重叠的缺陷,使医学影像诊断学检查有了质的飞跃。

二、CT成像的基本原理

通常,探测器所接受到的射线信号的强弱,取决于该部位的人体截面内组织的密度。密度高的组织,例如骨骼吸收X线较多,探测器接收到的信号较弱;密度较低的组织,例如脂肪、空腔脏器等吸收X线较少,探测器获得的信号较强。这种不同组织对X线吸收值不同的性质可用组织的吸收系数μ来表示,所以探测器所接收到的信号强弱所反映的是人体组织不同的μ值。而CT正是利用X线穿透人体后的衰减特性作为其诊断疾病的依据。

X线穿透人体后的衰减遵守指数衰减规律I=I0e-μd。

式中:I为通过人体吸收后衰减的X线强度;I0为入射X线强度;μ为接收X线照射组织的线性吸收系数;d为受检部位人体组织的厚度。

通过电子计算机运算列出人体组织受检层面的吸收系数,并将之分布在合成图象的栅状阵列即矩阵的方格(阵元)内。矩阵上每个阵元相当于重建图象上的一个图象点,称为像素(pixel)。CT的成像过程就是求出每个像素的衰减系数的过程。如果像素越小、探测器数目越多,计算机所测出的衰减系数就越多、越精确,重建出的图象也就越清晰。目前,CT机的矩阵多为256×256,512×512,其乘积即为每个矩阵所包含的像素数
核磁共振成像
维基网络,自由的网络全书
跳转到: 导航, 搜索

人脑纵切面的核磁共振成像核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像、磁振造影(Magnetic Resonance Imaging,简称MRI),是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。

将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。

从核磁共振现象发现到MRI技术成熟这几十年期间,有关核磁共振的研究领域曾在三个领域(物理、化学、生理学或医学)内获得了6次诺贝尔奖,足以说明此领域及其衍生技术的重要性。

目录 [隐藏]
1 物理原理
1.1 原理概述
1.2 数学运算
2 系统组成
2.1 NMR实验装置
2.2 MRI系统的组成
2.2.1 磁铁系统
2.2.2 射频系统
2.2.3 计算机图像重建系统
2.3 MRI的基本方法
3 技术应用
3.1 MRI在医学上的应用
3.1.1 原理概述
3.1.2 磁共振成像的优点
3.1.3 MRI的缺点及可能存在的危害
3.2 MRI在化学领域的应用
3.3 磁共振成像的其他进展
4 诺贝尔获奖者的贡献
5 未来展望
6 相关条目
6.1 磁化准备
6.2 取像方法
6.3 医学生理性应用
7 参考文献

[编辑]
物理原理

通过一个磁共振成像扫描人类大脑获得的一个连续切片的动画,由头顶开始,一直到基部。[编辑]
原理概述
核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。医生考虑到患者对“核”的恐惧心理,故常将这门技术称为磁共振成像。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。

原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。

核磁共振成像的“核”指的是氢原子核,因为人体的约70%是由水组成的,MRI即依赖水中氢原子。当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像。

[编辑]
数学运算
原子核带正电并有自旋运动,其自旋运动必将产生磁矩,称为核磁矩。研究表明,核磁矩μ与原子核的自旋角动量S 成正比,即

式中γ 为比例系数,称为原子核的旋磁比。在外磁场中,原子核自旋角动量的空间取向是量子化的,它在外磁场方向上的投影值可表示为

m为核自旋量子数。依据核磁矩与自旋角动量的关系,核磁矩在外磁场中的取向也是量子化的,它在磁场方向上的投影值为

对于不同的核,m分别取整数或半整数。在外磁场中,具有磁矩的原子核具有相应的能量,其数值可表示为

式中B为磁感应强度。可见,原子核在外磁场中的能量也是量子化的。由于磁矩和磁场的相互作用,自旋能量分裂成一系列分立的能级,相邻的两个能级之差ΔE = γhB。用频率适当的电磁辐射照射原子核,如果电磁辐射光子能量hν恰好为两相邻核能级之差ΔE,则原子核就会吸收这个光子,发生核磁共振的频率条件是:

式中ν为频率,ω为角频率。对于确定的核,旋磁比γ可被精确地测定。可见,通过测定核磁共振时辐射场的频率ν,就能确定磁感应强度;反之,若已知磁感应强度,即可确定核的共振频率。

[编辑]
系统组成
[编辑]
NMR实验装置
采用调节频率的方法来达到核磁共振。由线圈向样品发射电磁波,调制振荡器的作用是使射频电磁波的频率在样品共振频率附近连续变化。当频率正好与核磁共振频率吻合时,射频振荡器的输出就会出现一个吸收峰,这可以在示波器上显示出来,同时由频率计即刻读出这时的共振频率值。核磁共振谱仪是专门用于观测核磁共振的仪器,主要由磁铁、探头和谱仪三大部分组成。磁铁的功用是产生一个恒定的磁场;探头置于磁极之间,用于探测核磁共振信号;谱仪是将共振信号放大处理并显示和记录下来。

[编辑]
MRI系统的组成
[编辑]
磁铁系统
静磁场:当前临床所用超导磁铁,磁场强度有0.5到4.0T,常见的为1.5T和3.0T,另有匀磁线圈(shim coil)协助达到高均匀度。
梯度场:用来产生并控制磁场中的梯度,以实现NMR信号的空间编码。这个系统有三组线圈,产生x、y、z三个方向的梯度场,线圈组的磁场叠加起来,可得到任意方向的梯度场。
[编辑]
射频系统
射频(RF)发生器:产生短而强的射频场,以脉冲方式加到样品上,使样品中的氢核产生NMR现象。
射频(RF)接收器:接收NMR信号,放大后进入图像处理系统。
[编辑]
计算机图像重建系统
由射频接收器送来的信号经A/D转换器,把模拟信号转换成数学信号,根据与观察层面各体素的对应关系,经计算机处理,得出层面图像数据,再经D/A转换器,加到图像显示器上,按NMR的大小,用不同的灰度等级显示出欲观察层面的图像。

[编辑]
MRI的基本方法
选片梯度场Gz
相编码和频率编码
图像重建
[编辑]
技术应用

3D MRI[编辑]
MRI在医学上的应用
[编辑]
原理概述
氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因。NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就是氢核密度的核磁共振图像。人体不同组织之间、正常组织与该组织中的病变组织之间氢核密度、弛豫时间T1、T2三个参数的差异,是MRI用于临床诊断最主要的物理基础。

当施加一射频脉冲信号时,氢核能态发生变化,射频过后,氢核返回初始能态,共振产生的电磁波便发射出来。原子核振动的微小差别可以被精确地检测到,经过进一步的计算机处理,即可能获得反应组织化学结构组成的三维图像,从中我们可以获得包括组织中水分差异以及水分子运动的信息。这样,病理变化就能被记录下来。

人体2/3的重量为水分,如此高的比例正是磁共振成像技术能被广泛应用于医学诊断的基础。人体内器官和组织中的水分并不相同,很多疾病的病理过程会导致水分形态的变化,即可由磁共振图像反应出来。

MRI所获得的图像非常清晰精细,大大提高了医生的诊断效率,避免了剖胸或剖腹探查诊断的手术。由于MRI不使用对人体有害的X射线和易引起过敏反应的造影剂,因此对人体没有损害。MRI可对人体各部位多角度、多平面成像,其分辨力高,能更客观更具体地显示人体内的解剖组织及相邻关系,对病灶能更好地进行定位定性。对全身各系统疾病的诊断,尤其是早期肿瘤的诊断有很大的价值。

[编辑]
磁共振成像的优点
与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography, CT)相比,磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。具体说来有以下几点:

对人体没有游离辐射损伤;
各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息,这使得医疗诊断和对人体内代谢和功能的研究方便、有效。例如肝炎和肝硬化的T1值变大,而肝癌的T1值更大,作T1加权图像,可区别肝部良性肿瘤与恶性肿瘤;
通过调节磁场可自由选择所需剖面。能得到其它成像技术所不能接近或难以接近部位的图像。对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等。能获得脑和脊髓的立体图像,不像CT(只能获取与人体长轴垂直的剖面图)那样一层一层地扫描而有可能漏掉病变部位;
能诊断心脏病变,CT因扫描速度慢而难以胜任;
对软组织有极好的分辨力。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;
原则上所有自旋不为零的核元素都可以用以成像,例如氢(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。

人类腹部冠状切面磁共振影像[编辑]
MRI的缺点及可能存在的危害
虽然MRI对患者没有致命性的损伤,但还是给患者带来了一些不适感。在MRI诊断前应当采取必要的措施,把这种负面影响降到最低限度。其缺点主要有:

和CT一样,MRI也是解剖性影像诊断,很多病变单凭核磁共振检查仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;
对肺部的检查不优于X射线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;
对胃肠道的病变不如内窥镜检查;
扫描时间长,空间分辨力不够理想;
由于强磁场的原因,MRI对诸如体内有磁金属或起搏器的特殊病人却不能适用。
MRI系统可能对人体造成伤害的因素主要包括以下方面:

强静磁场:在有铁磁性物质存在的情况下,不论是埋植在患者体内还是在磁场范围内,都可能是危险因素;
随时间变化的梯度场:可在受试者体内诱导产生电场而兴奋神经或肌肉。外周神经兴奋是梯度场安全的上限指标。在足够强度下,可以产生外周神经兴奋(如刺痛或叩击感),甚至引起心脏兴奋或心室振颤;
射频场(RF)的致热效应:在MRI聚焦或测量过程中所用到的大角度射频场发射,其电磁能量在患者组织内转化成热能,使组织温度升高。RF的致热效应需要进一步探讨,临床扫瞄仪对于射频能量有所谓“特定吸收率”(specific absorption rate, SAR)的限制;
噪声:MRI运行过程中产生的各种噪声,可能使某些患者的听力受到损伤;
造影剂的毒副作用:目前使用的造影剂主要为含钆的化合物,副作用发生率在2%-4%。
[编辑]
MRI在化学领域的应用
MRI在化学领域的应用没有医学领域那么广泛,主要是因为技术上的难题及成像材料上的困难,目前主要应用于以下几个方面:

在高分子化学领域,如碳纤维增强环氧树脂的研究、固态反应的空间有向性研究、聚合物中溶剂扩散的研究、聚合物硫化及弹性体的均匀性研究等;
在金属陶瓷中,通过对多孔结构的研究来检测陶瓷制品中存在的砂眼;
在火箭燃料中,用于探测固体燃料中的缺陷以及填充物、增塑剂和推进剂的分布情况;
在石油化学方面,主要侧重于研究流体在岩石中的分布状态和流通性以及对油藏描述与强化采油机理的研究。
[编辑]
磁共振成像的其他进展
核磁共振分析技术是通过核磁共振谱线特征参数(如谱线宽度、谱线轮廓形状、谱线面积、谱线位置等)的测定来分析物质的分子结构与性质。它可以不破坏被测样品的内部结构,是一种完全无损的检测方法。同时,它具有非常高的分辨本领和精确度,而且可以用于测量的核也比较多,所有这些都优于其它测量方法。因此,核磁共振技术在物理、化学、医疗、石油化工、考古等方面获得了广泛的应用。

磁共振显微术(MR micros, MRM/μMRI)是MRI技术中稍微晚一些发展起来的技术,MRM最高空间分辨率是4μm,已经可以接近一般光学显微镜像的水平。MRM已经非常普遍地用作疾病和药物的动物模型研究。
活体磁共振能谱(in vivo MR spectros, MRS)能够测定动物或人体某一指定部位的NMR谱,从而直接辨认和分析其中的化学成分。
[编辑]
诺贝尔获奖者的贡献
2003年10月6日,瑞典卡罗林斯卡医学院宣布,2003年诺贝尔生理学或医学奖授予美国化学家保罗·劳特布尔(Paul C. Lauterbur)和英国物理学家彼得·曼斯菲尔德(Peter Mansfield),以表彰他们在医学诊断和研究领域内所使用的核磁共振成像技术领域的突破性成就。

劳特布尔的贡献是,在主磁场内附加一个不均匀的磁场,把梯度引入磁场中,从而创造了一种可视的用其他技术手段却看不到的物质内部结构的二维结构图像。他描述了怎样把梯度磁体添加到主磁体中,然后能看到沉浸在重水中的装有普通水的试管的交叉截面。除此之外没有其他图像技术可以在普通水和重水之间区分图像。通过引进梯度磁场,可以逐点改变核磁共振电磁波频率,通过对发射出的电磁波的分析,可以确定其信号来源。

曼斯菲尔德进一步发展了有关在稳定磁场中使用附加的梯度磁场理论,推动了其实际应用。他发现磁共振信号的数学分析方法,为该方法从理论走向应用奠定了基础。这使得10年后磁共振成像成为临床诊断的一种现实可行的方法。他利用磁场中的梯度更为精确地显示共振中的差异。他证明,如何有效而迅速地分析探测到的信号,并且把它们转化成图像。曼斯菲尔德还提出了极快速的梯度变化可以获得瞬间即逝的图像,即平面回波扫描成像(echo-planar imaging, EPI)技术,成为20世纪90年代开始蓬勃兴起的功能磁共振成像(functional MRI, fMRI)研究的主要手段。

雷蒙德·达马蒂安的“用于癌组织检测的设备和方法”值得一提的是,2003年诺贝尔物理学奖获得者们在超导体和超流体理论上做出的开创性贡献,为获得2003年度诺贝尔生理学或医学奖的两位科学家开发核磁共振扫描仪提供了理论基础,为核磁共振成像技术铺平了道路。由于他们的理论工作,核磁共振成像技术才取得了突破,使人体内部器官高清晰度的图像成为可能。

此外,在2003年10月10日的《纽约时报》和《华盛顿邮报》上,同时出现了佛纳(Fonar)公司的一则整版广告:“雷蒙德·达马蒂安(Raymond Damadian),应当与彼得·曼斯菲尔德和保罗·劳特布尔分享2003年诺贝尔生理学或医学奖。没有他,就没有核磁共振成像技术。”指责诺贝尔奖委员会“篡改历史”而引起广泛争议。事实上,对MRI的发明权归属问题已争论了许多年,而且争得颇为激烈。而在学界看来,达马蒂安更多是一个生意人,而不是科学家。

[编辑]
未来展望
人脑是如何思维的,一直是个谜。而且是科学家们关注的重要课题。而利用MRI的脑功能成像则有助于我们在活体和整体水平上研究人的思维。其中,关于盲童的手能否代替眼睛的研究,是一个很好的样本。正常人能见到蓝天碧水,然后在大脑里构成图像,形成意境,而从未见过世界的盲童,用手也能摸文字,文字告诉他大千世界,盲童是否也能“看”到呢?专家通过功能性MRI,扫描正常和盲童的大脑,发现盲童也会像正常人一样,在大脑的视皮质部有很好的激活区。由此可以初步得出结论,盲童通过认知教育,手是可以代替眼睛“看”到外面世界的。

快速扫描技术的研究与应用,将使经典MRI成像方法扫描病人的时间由几分钟、十几分钟缩短至几毫秒,使因器官运动对图像造成的影响忽略不计;MRI血流成像,利用流空效应使MRI图像上把血管的形态鲜明地呈现出来,使测量血管中血液的流向和流速成为可能;MRI波谱分析可利用高磁场实现人体局部组织的波谱分析技术,从而增加帮助诊断的信息;脑功能成像,利用高磁场共振成像研究脑的功能及其发生机制是脑科学中最重要的课题。有理由相信,MRI将发展成为思维阅读器。

20世纪中叶至今,信息技术和生命科学是发展最活跃的两个领域,专家相信,作为这两者结合物的MRI技术,继续向微观和功能检查上发展,对揭示生命的奥秘将发挥更大的作用。

[编辑]
相关条目
核磁共振
射频
射频线圈
梯度磁场
[编辑]
磁化准备
反转回复(inversion recovery)
饱和回覆(saturation recovery)
驱动平衡(driven equilibrium)
[编辑]
取像方法
自旋回波(spin echo)
梯度回波(gradient echo)
平行成像(parallel imaging)
面回波成像(echo-planar imaging, EPI)
定常态自由进动成像(steady-state free precession imaging, SSFP)
[编辑]
医学生理性应用
磁振血管摄影(MR angiography)
磁振胆胰摄影(MR cholangiopancreatogram, MRCP)
扩散权重影像(diffusion-weighted image)
扩散张量影像(diffusion tensor image)
灌流权重影像(perfusion-weighted image)
功能性磁共振成像(functional MRI, fMRI)
[编辑]
参考文献
傅杰青〈核磁共振——获得诺贝尔奖次数最多的一个科学专题〉《自然杂志》, 2003, (06):357-261
别业广、吕桦〈再谈核磁共振在医学方面的应用〉《物理与工程》, 2004, (02):34, 61
金永君、艾延宝〈核磁共振技术及应用〉《物理与工程》, 2002, (01):47-48, 50
刘东华、李显耀、孙朝晖〈核磁共振成像〉《大学物理》, 1997, (10):36-39, 29
阮萍〈核磁共振成像及其医学应用〉《广西物理》, 1999, (02):50-53, 28
Lauterbur P C Nature, 1973, 242:190
黄卫华〈走近核磁共振〉《医药与保健》, 2004, (03):15
叶朝辉〈磁共振成像新进展〉《物理》, 2004, (01):12-17
田建广、刘买利、夏照帆、叶朝辉〈磁共振成像的安全性〉《波谱学杂志》, 2002, (06):505-511
蒋子江〈核磁共振成像NMRI在化学领域中的应用〉《化学世界》, 1995, (11):563-565
樊庆福〈核磁共振成像与诺贝尔奖〉《上海生物医学工程》, 2003, (04):封三

㈤ 请列举10名物理学家的发明创造

公元前400年,墨翟(公元前478?—前392?)在《墨经》中记载并论述了杠杆、滑轮、平衡、斜面、小孔成像及光色与温度的关系。
公元前4世纪,亚里士多德(Aristotle,前384—前322)在其所著《物理学》中总结了若干观察到的事实和实际的经验。他的自然哲学支配西方近2000年。
公元前3世纪,欧几里得(Euclid,前330?—前260?)论述光的直线传播和反射定律。
公元前3世纪,阿基米德(Archimedes,前287?—前212)发明许多机械,包括阿基米德螺旋;发现杠杆原理和浮力定律;研究过重心。
公元前3世纪,古书《韩非子》记载有司南;《吕氏春秋》记有慈石召铁。
公元前2世纪,刘安《前179—前122》著《准南子》,记载用冰作透镜,用反射镜作潜望镜,还提到人造磁铁和磁极斥力等。
1世纪,古书《汉书》记载尖端放电、避雷知识和有关的装置。王充(27—97)著《论衡》,记载有关力学、热学、声学、磁学等方面的物理知识。希龙(Heron,62—150)创制蒸汽旋转器,是利用蒸汔动力的最早尝试,他还制造过虹吸管。
2世纪,托勒密(C.Ptolemaeus,100?—170?)发现大气折射。张衡(78—139)创制地动仪,可以测报地震方位,创制浑天仪。王符(85—162)著《潜夫论》分析人眼的作用。
5世纪,祖冲之(429—500),改造指南车,精确推算л值,在天文学上精确编制《大明历》。
8世纪,王冰(唐代人)记载并探讨了大气压力现象。
11世纪,沈括(1031—1095)著《梦溪笔谈》,记载地磁偏角的发现,凹面镜成像原理和共振现象等。
13世纪,赵友钦(1279—1368)著《革象新书》,记载有他作过的光学实验以及光的照度、光的直线传播、视角与小孔成象等问题。
15世纪,达·芬奇(L.da Vinci,1452—1519)设计了大量机械,发明温度计和风力计,最早研究永动机不可能问题。
16世纪,诺曼(R.Norman)在《新奇的吸引力》一书中描述了磁倾角的发现。
1583年,伽利略(Galileo Galilei,1564—1642)发现摆的等时性。
1586年,斯梯芬(S.Stevin,1542—1620)著《静力学原理》,通过分析斜面上球链的平衡论证了力的分解。
1593年,伽利略发明空气温度计。
1600年,吉尔伯特(W.Gilbert,1548—1603)著《磁石》一书,系统地论述了地球是个大磁石,描述了许多磁学实验,初次提出摩擦吸引轻物体不是由于磁力。
1605年,弗·培根(F.Bacon,1561—1626)著《学术的进展》,提倡实验哲学,强调以实验为基础的归纳法,对17世纪科学实验的兴起起了很大的号召作用。
1609年,伽利略,初次测光速,未获成功。1609年,开普勒(J.Kepler,1571—1630)著《新天文学》,提出开普勒第一、第二定律。
1619年,开普勒著《宇宙谐和论》,提出开普勒第三定律。
1620年,斯涅耳(W.Snell,1580—1626)从实验归纳出光的反射和折射定律。
1632年,伽利略《关于托勒密和哥白尼两大世界体系的对话》出版,支持了地动学说,首先阐明了运动的相对性原理。
1636年,麦森(M.Mersenne,1588—1648)测量声的振动频率,发现谐音,求出空气中的声速。
1638年,伽利略的《两门新科学的对话》出版,讨论了材料抗断裂、媒质对运动的阻力、惯性原理、自由落体运动、斜面上物体的运动、抛射体的运动等问题,给出了匀速运动和匀加速运动的定义。
1643年,托里拆利(E.Torricelli,1608—1647)和维维安尼(V.Viviani,1622—1703)提出气压概念,发明了水银气压计。
年,帕斯卡(B.Pascal,1623—1662)发现静止流体中压力传递的原理(即帕斯卡原理)。
1654年,盖里克(O.V.Guericke,1602—1686)发明抽气泵,获得真空。
1761年,布莱克提出潜热概念,奠定了量热学基础。
1767年,普列斯特利(J.Priestley,1733—1804)根据富兰克林所做的“导体内不存在静电荷的实验”,推得静电力的平方反比定律。
1775年,伏打(A.Volta,1745—1827)发明起电盘。
1775年,法国科学院宣布不再审理永动机的设计方案。
1780年,伽伐尼(A.Galvani,1737—1798)发现蛙腿筋肉收缩现象,认为是动物电所致,
1791年才发表。1785年,库仑(C.A.Coulomb,1736—1806)用他自己发明的扭秤,从实验得到静电力的平方反比定律。在这以前,米切尔(J.Michell,1724—1793)已有过类似设计,并于1750年提出磁力的平方反比定律。
1787年,查理(J.A.C.Charles,1746—1823)发现气体膨胀的查理—盖·吕萨克定律。盖·吕萨克(Gay-lussac,1778—1850)的研究发表于1802年。
1788年,拉格朗日(J.L.Lagrange,1736—1813)的《分析力学》出版。
1792年,伏打研究伽伐尼现象,认为是两种金属接触所致。
1798年,卡文迪什(H.Cavendish,1731—1810)用扭秤实验测定万有引力常数G。伦福德(Count Rumford,即B.Thompson,1753—1841)发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。
1799年,戴维(H.Davy,1778—1829)做真空中的摩擦实验,以证明热是物体微粒的振动所致。
1800年,伏打发明伏打电堆。赫谢尔(W.Herschel,1788—1822)从太阳光谱的辐射热效应发现红外线。
1801年,里特尔(J.W.Ritter,1776—1810)从太阳光谱的化学作用,发现紫线。杨(T.Young,1773—1829)用干涉法测光波波长,提出光波干涉原理。
1802年,沃拉斯顿(W.H.Wollaston,1766—1828)发现太阳光谱中有暗线。
1808年,马吕斯(E.J.Malus,1775—1812)发现光的偏振现象。
1811年,布儒斯特(D.Brewster,1781—1868)发现偏振光的布儒斯特定律。
1815年,夫琅和费(J.V.Fraunhofer,1787—1826)开始用分光镜研究太阳光谱中的暗线。
1815年,菲涅耳(A.J.Fresnel,1788—1827)以杨氏干涉实验原理补充惠更斯原理,形成惠更斯——菲涅耳原理,圆满地解释了光的直线传播和光的衍射问题。
1819年,杜隆(P.1.Dulong,1785—1838)与珀替(A.T.Petit,1791—1820)发现克原子固体比热是一常数,约为6卡/度·克原子,称杜隆·珀替定律。
1820年,奥斯特(H.C.Oersted,1771—1851)发现导线通电产生磁效应。毕奥(J.B.Biot,1774—1862)和沙伐(F.Savart,1791—1841)由实验归纳出电流元的磁场定律。安培(A.M.Ampère,1775—1836)由实验发现电流之间的相互作用力,1822年进一步研究电流之间的相互作用,提出安培作用力定律。
1821年,塞贝克(T.J.Seebeck,1770—1831)发现温差电效应(塞贝克效应)。菲涅耳发表光的横波理论。夫琅和费发明光栅。傅里叶(J.B.J.Fourier,1768—1830)的《热的分析理论》出版,详细研究了热在媒质中的传播问题。
1824年,S.卡诺(S.Carnot,1796—1832)提出卡诺循环。
1826年,欧姆(G.S.Ohm,1789—1854)确立欧姆定律。
1827年,布朗(R.Brown,1773—1858)发现悬浮在液体中的细微颗粒不断地作杂乱无章运动。这是分子运动论的有力证据。
1830年,诺比利(L.Nobili,1784—1835)发明温差电堆。
1831年,法拉第(M.Faraday,1791—1867)发现电磁感应现象。
1833年,法拉第提出电解定律。
1834年,楞次(H.F.E.Lenz,1804—1865)建立楞次定律。珀耳帖(J.C.A.Peltier,1785—1845)发现电流可以致冷的珀耳帖效应。克拉珀龙(B.P.E.Clapeyron,1799—1864)导出相应的克拉珀龙方程。哈密顿(W.R.Hamilton,1805—1865)提出正则方程和用变分法表示的哈密顿原理。
1835年,亨利(J.Henry,1797—1878)发现自感,1842年发现电振荡放电。
1840年,焦耳(J.P.Joule,1818—1889)从电流的热效应发现所产生的热量与电流的平方、电阻及时间成正比,称焦耳-楞次定律(楞次也独立地发现了这一定律)。其后,焦耳先后于1843,1845,1847,1849,直至1878年,测量热功当量,历经40年,共进行四百多次实验。1841年,高斯(C.F.Gauss,1777—1855)阐明几何光学理论。
1842年,多普勒(J.C.Doppler,1803—1853)发现多普勒效应。迈尔(R.Mayer,1814—1878)提出能量守恒与转化的基本思想。勒诺尔(H.V.Regnault,1810—1878)从实验测定实际气体的性质,发现与波意耳定律及盖·吕萨克定律有偏离。
1843年,法拉第从实验证明电荷守恒定律。
1845年,法拉第发现强磁场使光的偏振面旋转,称法拉第效应。
1846年,瓦特斯顿(J.J.Waterston,1811—1883)根据分子运动论假说,导出了理想气体状态方程,并提出能量均分定理。
1849年,斐索(A.H.Fizeau,1819—1896)首次在地面上测光速。
1851年,傅科(J.L.Foucault,1819—1868)做傅科摆实验,证明地球自转。
1852年,焦耳与W.汤姆生(W.Thomson,1824—1907)发现气体焦耳——汤姆生效应(气体通过狭窄通道后突然膨胀引起温度变化)。
1853年,维德曼(G.H.Wiedemann,1826—1899)和夫兰兹(R.Franz)发现,在一定温度下,许多金属的热导率和电导率的比值都是一个常数(即维德曼——夫兰兹定律)。
1855年,傅科发现涡电流(即傅科电流)。1857年,韦伯(W.E.Weber,1804—1891)与柯尔劳胥(R.H.A.Kohlrausch,1809—1858)测定电荷的静电单位和电磁单位之比,发现该值接近于真空中的光速。
1858年,克劳修斯(R.J.E.Claüsius,1822—1888)引进气体分子的自由程概念。普吕克尔(J.Plücker,1801—1868)在放电管中发现阴极射线。
1859年,麦克斯韦(J.C.Maxwell,1831—1879)提出气体分子的速度分布律。基尔霍夫(G.R.Kirchhoff,1824—1887)开创光谱分析,其后通过光谱分析发现铯、铷等新元素。他还发现发射光谱和吸收光谱之间的联系,建立了辐射定律。
1860年,麦克斯韦发表气体中输运过程的初级理论。
1861年,麦克斯韦引进位移电流概念。
1864年,麦克斯韦提出电磁场的基本方程组(后称麦克斯韦方程组),并推断电磁波的存在,预测光是一种电磁波,为光的电磁理论奠定了基础。
1866年,昆特(A.Kundt,1839—1894)做昆特管实验,用以测量气体或固体中的声速。
1868年,玻尔兹曼(L.Boltzmann,1844—1906)推广麦克斯韦的分子速度分布律,建立了平衡态气体分子的能量分布律——玻尔兹曼分布律。
1869,安德纽斯(T.Andrews,1813—1885)由实验发现气——液相变的临界现象。希托夫(J.W.Hittorf,1824—1914)用磁场使阴极射线偏转。
1871年,瓦尔莱(C.F.Varley,1828—1883)发现阴极射线带负电。
1872年,玻尔兹曼提出输运方程(后称为玻尔兹曼输运方程)、H定理和熵的统计诠释。
1873年,范德瓦耳斯(J.D.Van der Waals,1837—1923)提出实际气体状态方程。
1875年,克尔(J.Kerr,1824—1907)发现在强电场的作用下,某些各向同性的透明介质会变为各向异性,从而使光产生双折射现象,称克尔电光效应。
1876年,哥尔茨坦(E.Goldstein,1850—1930)开始大量研究阴极射线的实验,导致极坠射线的发现。1876—1878年,吉布斯(J.W.Gibbs,1839—1903)提出化学势的概念、相平衡定律,建立了粒子数可变系统的热力学基本方程。
1877年,瑞利(J.W.S.Rayleigh,1842—1919)的《声学原理》出版,为近代声学奠定了基础。
1879年,克鲁克斯(W.Crookes,1832—1919)开始一系列实验,研究阴极射线。斯忒藩(J.Stefan,1835—1893)建立了黑体的面辐射强度与绝对温度关系的经验公式,制成辐射高温计,测得太阳表面温度约为6000摄氏度;1884年玻尔兹曼从理论上证明了此公式,后称为斯忒藩—玻尔兹曼定律。霍尔(E.H.Hall,1855—1938)发现电流通过金属,在磁场作用下产生横向电动势的霍尔效应。
1880年,居里兄弟(P.Curie,1859—1906;J.Curie,1855—1941)发现晶体的压电效应。
1881年,迈克耳孙(A.A.Michelson,1852—1931)首次做以太漂移实验,得零结果。由此产生迈克耳孙干涉仪,灵敏度极高。
1885年,迈克耳孙与莫雷(E.W.Morley,1838—1923)合作改进斐索流水中光速的测量。巴耳末(J.J.Balmer,1825—1898)发表已发现的氢原子可见光波段中4根谱线的波长公式。
1887年,迈克耳孙与莫雷再次做以太漂移实验,又得零结果。赫兹(H.Hertz,1857—1894)作电磁波实验,证实麦克斯韦的电磁场理论。同时,赫兹发现光电效应。
1890年,厄沃(B.R.Eotvos)作实验证明惯性质量与引力质量相等。里德伯(R.J.R.Rydberg,1854—1919)发表碱金属和氢原子光谱线通用的波长公式。
1893年,维恩(W.Wien,1864—1928)导出黑体辐射强度分布与温度关系的位移定律。勒纳德(P.Lenard,1862—1947)研究阴极射线时,在射线管上装一薄铝窗,使阴极射线从管内穿出进入空气,射程约1厘米,人称勒纳德射线。
1895年,洛仑兹(H.A.Lorentz,1853—1928)发表电磁场对运动电荷作用力的公式,后称该力为洛伦兹力。P.居里发现居里点和居里定律。伦琴(W.K.Rontgen,1845—1923)发现X射线。
1896年,维恩发表适用于短波范围的黑体辐射的能量分布公式。贝克勒尔(A.H.Becquerel,1852—1908)发现放射性。塞曼(P.Zeeman,1865—1943)发现磁场使光谱线分裂,称塞曼效应。洛仑兹创立经典电子论。
1897年,J.J.汤姆生(J.J.Thomson,1856—1940)从阴极射线证实电子的存在,测出的荷质比与塞曼效应所得数量级相同。其后他又进一步从实验确证电子存在的普遍性,并直接测量电子电荷。
1898年,卢瑟福(E.Rutherford,1871—1937)揭示铀辐射组成复杂,他把“软”的成分称为α射线,“硬”的成分称为β射线。居里夫妇(P.Curie与M.S.Curie,1867—1934)发现放射性元素镭和钋。
1899年,列别捷夫(A.A.Лeóeдeв,1866—1911)实验证实光压的存在。卢梅尔(O.Lummer,1860—1925)与鲁本斯(H.Rubens,1865—1922)等人做空腔辐射实验,精确测得辐射以量分布曲线。
1900年,瑞利发表适用于长波范围的黑体辐射公式。普朗克(M.Planck,1858—1947)提出了符合整个波长范围的黑体辐射公式,并用能量量子化假设从理论上导出了这个公式。维拉尔德(P.Villard,1860—1934)发现ν射线。
1901年,考夫曼(W.Kaufmann,1871—1947)从镭辐射线测β射线在电场和磁场中的偏转,从而发现电子质量随速度变化。理查森(O.W.Richardson,1879—1959)发现灼热金属表面的电子发射规律。后经多年实验和理论研究,又对这一定律作进一步修正。
1902年,勒纳德从光电效应实验得到光电效应的基本规律:电子的最大速度与光强无关,为爱因斯坦的光量子假说提供实验基础。吉布斯出版《统计力学的基本原理》,创立统计系综理论。
1903年,卢瑟福和索迪(F.Soddy,1877—1956)发表元素的嬗变理论。
1905年,爱因斯坦(A.Einstein,1879—1955)发表关于布朗运动的论文,并发表光量子假说,解释了光电效应等现象。1905年,朗之万(P.Langevin,1872—1946)发表顺磁性的经典理论。爱因斯坦发表《关于运动媒质的电动力学》一文,首次提出狭义相对论的基本原理,发现质能之间的相当性。
1906年,爱因斯坦发表关于固体热容的量子理论。
1907年,外斯(P.E.Weiss,1865—1940)发表铁磁性的分子场理论,提出磁畴假设。
1908年,昂纳斯(H.Kammerlingh—Onnes,1853—1926)液化了最后一种“永久气体”氦。佩兰(J.B.Perrin,1870—1942)实验证实布朗运动方程,求得阿佛伽德罗常数。
1908—1910年,布雪勒(A.H.Bucherer,1863—1927)等人,分别精确测量出电子质量随速度的变化,证实了洛仑兹-爱因斯坦的质量变化公式。1908年,盖革(H.Geiger,1882—1945)发明计数管。卢瑟福等人从α粒子测定电子电荷е值。
1906—1917年,密立根(R.A.Millikan,1868—1953)测单个电子电荷值,前后历经11年,实验方法做过三次改革,做了上千次数据。1909年,盖革与马斯登(E.Marsden)在卢瑟福的指导下,从实验发现α粒子碰撞金属箔产生大角度散射,导致1911年卢瑟福提出有核原子模型的理论。这一理论于1913年为盖革和马斯登的实验所证实。1911年,昂纳斯发现汞、铅、锡等金属在低温下的超导电性。
1911年,威尔逊(C.T.R.Wilson,1869—1959)发明威尔逊云室,为核物理的研究提供了重要实验手段。1911年,赫斯(V.F.Hess,1883—1964)发现宇宙射线。
1912年,劳厄(M.V.Laue,1879—1960)提出方案,弗里德里希(W.Friedrich),尼平(P.Knipping,1883—1935)进行X射线衍射实验,从而证实了X射线的波动性。能斯特(W.Nernst,1864—1941)提出绝对零度不能达到定律(即热力学第三定律)。
1913年,斯塔克(J.Stark,1874—1957)发现原子光谱在电场作用下的分裂现象(斯塔克效应)。玻尔(N.Bohr,1885—1962)发表氢原子结构理论,解释了氢原子光谱。布拉格父子(W.H.Bragg,1862—1942;W.L.Bragg,1890—1971)研究X射线衍射,用X射线晶体分光仪,测定X射线衍射角,根据布拉格公式:2dsinθ=ν算出晶格常数d。
1914年,莫塞莱(H.G.J.Moseley,1887—1915)发现原子序数与元素辐射特征线之间的关系,奠定了X射线光谱学的基础。弗朗克(J.Franck,1882—1964)与G.赫兹(G.Hertz,1887—1957)测汞的激发电位。查德威克(J.Chadwick,1891—1974)发现β能谱。西格班(K.M.G.Siegbahn,1886—1978)开始研究X射线光谱学。
1915年,在爱因斯坦的倡议下,德哈斯(W.J.de Haas,1878—1960)首次测量回转磁效应。爱因斯坦建立了广义相对论。
1916年,密立根用实验证实了爱因斯坦光电方程。爱因斯坦根据量子跃迁概念推出普朗克辐射公式,同时提出了受激辐射理论,后发展为激光技术的理论基础。德拜(P.J.S.Debye,1884—1966)提出X射线粉末衍射法。
1919年,爱丁顿(A.S.Eddington,1882—1944)等人在日食观测中证实了爱因斯坦关于引力使光线弯曲的预言。阿斯顿(F.W.Aston,1877—1945)发明质谱仪,为同位素的研究提供重要手段。卢瑟福首次实现人工核反应。巴克豪森(H.G.Barkhausen)发现磁畴。
1921年,瓦拉塞克发现铁电性。
1922年,斯特恩(O.Stern,1888—1969)与盖拉赫(W.Gerlach,1889—1979)使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。
1923年,康普顿(A.H.Compton,1892—1962)用光子和电子相互碰撞解释X射线散射中波长变长的实验结果,称康普顿效应。
1924年,德布罗意(L.de Broglie,1892—1987)提出微观粒子具有波粒二象性的假设。
1924年,玻色(S.Bose,1894—1974)发表光子所服从的统计规律,后经爱因斯坦补充建立了玻色-爱因斯坦统计。
1925年,泡利(W.Pauli,1900—1976)发表不相容原理。海森伯(W.K.Heisenberg,1901—1976)创立矩阵力学。乌伦贝克(G.E.Uhlenbeck,1900—)和高斯密特(S.A.Goudsmit,1902—1979)提出电子自旋假设。
1926年,薛定谔(E.Schrodinger,1887—1961)发表波动力学,证明矩阵力学和波动力学的等价性。费米(E.Fermi,1901—1954)与狄拉克(P.A.M.Dirac,1902—1984)独立提出费米—狄拉克统计。玻恩(M.Born,1882—1970)发表波函数的统计诠释。海森伯发表不确定原理。
1927年,玻尔提出量子力学的互补原理。戴维森(C.J.Davisson,1881—1958)与革末(L.H.Germer,1896—1971)用低速电子进行电子散射实验,证实了电子衍射。同年,G.P.汤姆生(G.P.Thomson,1892—1970)用高速电子获电子衍射花样。
1928年,拉曼(C.V.Raman,1888—1970)等人发现散射光的频率变化,即拉曼效应。狄拉克发表相对论电子波动方程,把电子的相对论性运动和自旋、磁矩联系了起来。
1928—1930年,布洛赫(F.Bloch,1905—1983)等人为固体的能带理论奠定了基础。
1930—1931年,狄拉克提出正电子的空穴理论和磁单极子理论。
1931年,A.H.威尔逊(A.H.Wilson)提出金属和绝缘体相区别的能带模型,并预言介于两者之间存在半导体,为半导体的发展提供了理论基础。劳伦斯(E.O.Lawrence,1901—1958)等人建成第一台回旋加速器。
1932年,考克拉夫特(J.D.Cockcroft,1897—1967)与沃尔顿(E.T.Walton)发明高电压倍加器,用以加速质子,实现人工核蜕变。尤里(H.C.Urey,1893—1981)将天然液态氢蒸发浓缩后,发现氢的同位素—氘的存在。查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒子,质量大体与质子相等。据此曾安排实验,但未获成果。1930年,玻特(W.Bothe,1891—1957)等人在α射线轰击铍的实验中,发现过一种穿透力极强的射线,误认为ν射线,1931年约里奥(F.Joliot,1900—1958)与伊伦·居里(Curie,1897—1956)让这种穿透力极强的射线,通过石蜡,打出高速质子。查德威克接着做了大量实验,并用威尔逊云室拍照,以无可辩驳的事实说明这一射线即是卢瑟福预言的中子。安德森(C.D.Anderson,1905—)从宇宙线中发现正电子,证实狄拉克的预言。诺尔(M.Knoll)和鲁斯卡(E.Ruska)发明透射电子显微镜。海森伯、伊万年科(д.д.ивaнeнкo)独立发表原子核由质子和中子组成的假说。
1933年,泡利在索尔威会议上详细论证中微子假说,提出β衰变。盖奥克(W.F.Giauque)完成了顺磁体的绝热去磁降温实验,获得千分之几的低温。迈斯纳(W.Mcissner,1882—1974)和奥克森菲尔德(R.Ochsenfeld)发现超导体具有完全的抗磁性。费米发表β衰变的中微子理论。图夫(M.A.Tuve)建立第一台静电加速器。布拉开特(P.M.S.Blackett,1897—1974)等人从云室照片中发现正负电子对。
1934年,切仑柯夫(П.A.Чepeнkoв)发现液体在β射线照射下发光的一种现象,称切仑柯夫辐射。约里奥-居里夫妇发现人工放射性。
1935年,汤川秀树发表了核力的介子场论,预言了介子的存在。F.伦敦和H.伦敦发表超导现象的宏观电动力学理论。N.玻尔提出原子核反应的液滴核模型。
1938年,哈恩(O.Hahn,1879—1968)与斯特拉斯曼(F.Strassmann)发现铀裂变。卡皮查(∏.Л.kaпичa,1894—)实验证实氦的超流动性。F.伦敦提出解释超流动性的统计理论。
1939年,迈特纳(L.Meitner,1878—1968)和弗利胥(O.Jrisch)根据液滴核模型指出,哈恩-斯特拉斯曼的实验结果是一种原子核的裂变现象。奥本海默(J.R.Oppenheimer,1904—1967)根据广义相对论预言了黑洞的存在。拉比(I.I.Rabi,1898—1987)等人用分子束磁共振法测核磁矩。
1940年,开尔斯特(D.W.Kerst)建造第一台电子感应加速器。
1940—1941年,朗道(Л.Д.Лaндay,1908—1968)提出氦Ⅱ超流性的量子理论。
1941年,布里奇曼(P.W.Bridgeman,1882—1961)发明能产生10万巴高压的装置。
1942年,在费米主持下美国建成世界上第一座裂变反应堆。
1944—1945年,韦克斯勒(B.И.Bеkcлер,1907—1966)和麦克米伦(E.M.McMillan,1907—)各自独立提出自动稳相原理,为高能加速器的发展开辟了道路。
1946年,阿尔瓦雷兹(L.W.Alvarez,1911—)制成第一台质子直线加速器。珀塞尔(E.M.Purcell)用共振吸收法测核磁矩,布洛赫(F.Bloch,1905—1983)用核感应法测核磁矩,两人从不同的角度实现核共振。这种方法可以使核磁矩和磁场的测量精度大大提高。
1947年,库什(P.Kusch)精确测量电子磁矩,发现实验结果与理论预计有微小偏差。兰姆(W.E.Lamb,Jr.)与雷瑟福(R.C.Retherford)用微波方法精确测出氢原子能级的差值,发现狄拉克的量子理论仍与实际有不符之处。这一实验为量了电动力学的发展提供了实验依据。鲍威尔(C.F.Powell,1903—1969)等用核乳胶的方法在宇宙线中发现л介子。罗彻斯特和巴特勒(C.Butler,1922—)在宇宙线中发现奇异粒子。H.P.卡尔曼和J.W.科尔特曼等发明闪烁计数器。普里高金(I.Prigogine,1917—)提出最小熵产生原理。
1948年,奈耳(L.E.F.Neel,1904—)建立和发展了亚铁磁性的分子场理论。张文裕发现μ子系弱作用粒子,并发现了μ-子原子。肖克利(W.Shockley),巴丁(J.Bardeen)与布拉顿(W.H.Brattain)发明晶体三极管。伽柏(D.Gabor,1900—1979)提出现代全息照相术前身的波阵面再现原理。朝永振一郎、施温格(J.Schwinger)费因曼(R.P.Feynman,1918—1988)等分别发表相对论协变的重正化量子电动力学理论,逐步形成消除发散困难的重正化方法。
1949年,迈耶(M.G.Mayer)和简森(J.H.D.Jensen)等分别提出核壳层模型理论。
1952年,格拉塞(D.A.Glaser)发明气泡室,比威尔逊云室更为灵敏。A.玻尔和莫特尔逊(B.B.Mottelson)提出原子核结构的集体模型。
1954年,杨振宁和密耳斯(R.L.Mills)发表非阿贝耳规范场理论。汤斯(C.H.Townes)等人制成受激辐射的微波放大器——脉塞。
1955年,张伯伦(O.Chamberlain)与西格雷(E.G.Segrè,1905—)等人发现反质子。
1956年,李政道、杨振宁提出弱相互作用中宇称不守恒。关健雄等人实验验证了李政道杨振宁提出的弱相互作用中宇宙不守恒的理论。
1957年,巴丁、施里弗和库珀发表超导微观理论(即BCS理论)。
1958年,穆斯堡尔(R.L.Mossbauer)实现ν射线的无反冲共振吸收(穆斯堡尔效应)。

㈥ 早期最出色的光学显微镜是英国物理学家______发明的,并用它观察到了“细胞”,中学常用的显微镜是______

英国物理学家罗伯特?虎克研制出能够放大140倍的显微镜,并用它来观察软木薄片,专看到了软木薄片是由许属许多多的“小房间”组成的,他把这些小房间叫做为细胞,细胞一词即由他命名.所以早期最出色的光学显微镜是英国物理学家罗伯特.胡克发明的,并用它观察到了“细胞”.
中学常用的显微镜是单筒式光学显微镜,如图:

故答案为:罗伯特.胡克;单筒式光学显微镜.

㈦ 发明电子的核物理学家是谁

约瑟夫·约翰·汤姆逊编辑
约瑟夫·约翰·汤拇逊(Thomson,Joseph John.1856年(丙辰年)—版—1940年(庚辰年)),著名的英国权物理学家,以其对电子和同位素的实验著称.他是第三任卡文迪许实险室主任.一幅他正在研究阴极射线管的肖像挂在实验室的麦克斯韦讲演厅里.
中文名
约瑟夫·约翰·汤拇逊
外文名
Thomson,Joseph John
国 籍
英国
出生地
英国曼彻斯特
出生日期
1856年12月28日(丙辰年)
逝世日期
1940年8月30日(庚辰年)
职 业
物理学家
毕业院校
曼彻斯特大学
主要成就
发现电子
获诺贝尔物理学奖

㈧ 英国物理学家法拉弟发明了什么现象

从1821 年到1831 年,法拉第抄整袭整耗费了10 年时间,从设想到实验,漫长的岁月,失败的痛苦,生活的艰辛,法拉第饱尝了各种辛酸,经过无数次反复的研究实验,终于发现了电磁感应现象,于1831 年确定了电磁感应的基本定律,取得了磁感应生电的重大突破.

㈨ 能量的单位是英国物理学家谁发明的

由物理基础知识可知,焦耳命名为能量的单位,同时也是功和热量的单位;
列车失去动专力后,由于惯性仍能属继续前进,带动发电机转动,会转化为电能;同时,电阻发热,还会有一部分转化为内能.所以此过程中机械能最终转化为电能和内能.
故答案为:能量;电能和内.

阅读全文

与物理学家发明相关的资料

热点内容
我爱发明自动钓鱼 浏览:199
龚发明重庆 浏览:413
我为你许下爱的期限 浏览:734
我想发明的200字 浏览:989
动漫角色版权保护 浏览:72
密蜜直播投诉 浏览:701
马鞍山博望天气 浏览:352
成都唐邦知识产权 浏览:737
基本公共卫生服务项目测算 浏览:898
暴走漫画有版权么 浏览:512
农业信用卡积分有效期 浏览:172
马鞍山上门服务 浏览:889
校本研修成果摘抄 浏览:332
谁发明了明天 浏览:864
购买版权开发票一般开票内容写什么 浏览:817
九台工商局电话是多少 浏览:429
网培研修成果 浏览:127
股东认缴出资额期限 浏览:236
土地使用权转让协议书范本 浏览:877
银川工商局上班时间 浏览:666