导航:首页 > 创造发明 > 格林公式的创造者

格林公式的创造者

发布时间:2021-08-12 01:38:58

㈠ 格林公式的理解

格林公式把第二类曲面积分转换为二重积分。
因为第二类曲线积分的积分路径是有方向的,所以格林公式需要考虑正、反向,书上公式是在正向也就是逆时针方向条件下给出的。如果积分曲线的路径是顺时针方向,那么最后结果得加个负号

㈡ 格林公式是什么意思怎么得来的

,格林公式 一元微积分学中最基本的公式 — 牛顿,莱布尼兹公式 表明:函数在区间上的定积分可通过原函数在这个区间的两个端点处的值来表示. 无独有偶,在平面区域上的二重积分也可以通过沿区域的边界曲线上的曲线积分来表示,这便是我们要介绍的格林公式. 1,单连通区域的概念 设为平面区域,如果内任一闭曲线所围的部分区域都属于,则称为平面单连通区域;否则称为复连通区域. 通俗地讲,单连通区域是不含"洞"(包括"点洞")与"裂缝"的区域. 2,区域的边界曲线的正向规定 设是平面区域的边界曲线,规定的正向为:当观察者沿的这个方向行走时,内位于他附近的那一部分总在他的左边. 简言之:区域的边界曲线之正向应适合条件,人沿曲线走,区域在左手. 3,格林公式 【定理】设闭区域由分段光滑的曲线围成,函数及在上具有一阶连续偏导数,则有 (1) 其中是的取正向的边界曲线. 公式(1)叫做格林(green)公式. 【证明】先证 假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点) 易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可. 另一方面,据对坐标的曲线积分性质与计算法有 因此 再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证 综合有 当区域的边界曲线与穿过内部且平行于坐标轴( 轴或轴 )的任何直线的交点至多是两点时,我们有 , 同时成立. 将两式合并之后即得格林公式 注:若区域不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立. 格林公式沟通了二重积分与对坐标的曲线积分之间的联系,因此其应用十分地广泛. 若取,, ,则格林公式为 故区域的面积为 【例1】求星形线 所围成的图形面积. 解:当从变到时,点依逆时针方向描出了整个封闭曲线,故 【例2】设是任意一条分段光滑的闭曲线,证明 证明:这里 , 从而 这里是由所围成的区域. 二,平面曲线积分与路径无关的条件 1,对坐标的曲线积分与路径无关的定义 【定义一】设是一个开区域, 函数,在内具有一阶连续偏导数,如果对于内任意两点,以及内从点到点的任意两条曲线,,等式 恒成立,就称曲线积分在内与路径无关;否则,称与路径有关. 定义一还可换成下列等价的说法 若曲线积分与路径无关, 那么 即: 在区域内由所构成的闭合曲线上曲线积分为零.反过来,如果在区域内沿任意闭曲线的曲线积分为零,也可方便地导出在内的曲线积分与路径无关. 【定义二】曲线积分在内与路径无关是指,对于内任意一条闭曲线,恒有 . 2,曲线积分与路径无关的条件 【定理】设开区域是一个单连通域, 函数,在内具有一阶连续偏导数,则在内曲线积分与路径无关的充分必要条件是等式 在内恒成立. 证明:先证充分性 在内任取一条闭曲线,因单连通,故闭曲线所围成的区域全部在内.从而 在上恒成立. 由格林公式,有 依定义二,在内曲线积分与路径无关. 再证必要性(采用反证法) 假设在内等式不恒成立,那么内至少存在一点,使 不妨设 由于在内连续,在内存在一个以为圆心,半径充分小的圆域,使得在上恒有 由格林公式及二重积分性质有 这里是的正向边界曲线,是的面积. 这与内任意闭曲线上的曲线积分为零的条件相矛盾.故在内等式 应恒成立. 注明:定理所需要的两个条件 缺一不可. 【反例】讨论 ,其中是包围原点的一条分段光滑曲线且正向是逆时针的. 这里 , 除去原点外,在所围成的区域内存在,连续,且 . 在内,作一半径充分小的圆周 在由与所围成的复连通域内使用格林公式有 三,二元函数的全微分求积 若曲线积分在开区域内与路径无关,那它仅与曲线的起点与终点的坐标有关.假设曲线的起点为,终点为,可用记号 或 来表示,而不需要明确地写出积分路径. 显然,这一积分形式与定积分非常相似, 事实上,我们有下列重要定理 【定理一】设是一个单连通的开区域,函数,在内具有一阶连续偏导数,且 ,则 是的单值函数,这里为内一固定点,且 亦即 【证明】依条件知,对内任意一条以点为起点,点为终点的曲线,曲线积分 与路径无关,仅与的起点和终点的坐标有关,亦即, 确为点的单值函数. 下面证明 由于可以认为是从点沿内任何路径到点的曲线积分,取如下路径,有 类似地可证明 因此 【定理二】设是单连通的开区域,,在上具有一阶连续偏导数,则在内为某一函数全微分的充要条件是 在内恒成立. 【证明】显然,充分性就是定理一 下面证明必要性 若存在使得 ,则 由于,在 内连续, 则二阶混合偏导数适合等式 从而 【定理三】设是一个单连通的开区域, 函数,在内具有一阶连续偏导数, 若存在二元函数使得 则 其中,是内的任意两点. 【证明】由定理1知,函数 适合 于是 或 因此(是某一常数 ) 即 而 这是因为由点沿任意内的路径回到点构成一条封闭曲线,故 因此□ 【确定的全微分函数的方法】 因为,而右端的曲线积分与路径无关,为了计算简便,可取平行于坐标轴的直线段所连成的折线作为积分路径(当然折线应完全属于单连通区域). ------------------------------------------------------- 上面这个词条无公式,无图,完全不可能看得懂,本人附上详细的格林公式及其证明的Word版,请自己下载观看。 格林公式证明链接(Word版): http://www.jyu.e.cn/shuxue/math/kecheng/course/shuxuefenxi/jiaoan/21/21_3.doc

㈢ 格林公式的历史

一,格林公式
一元微积分学中最基本的公式 — 牛顿,莱布尼兹公式
表明:函数在区间上的定积分可通过原函数在这个区间的两个端点处的值来表示.
无独有偶,在平面区域上的二重积分也可以通过沿区域的边界曲线上的曲线积分来表示,这便是我们要介绍的格林公式.
1,单连通区域的概念
设为平面区域,如果内任一闭曲线所围的部分区域都属于,则称为平面单连通区域;否则称为复连通区域.
通俗地讲,单连通区域是不含"洞"(包括"点洞")与"裂缝"的区域.
2,区域的边界曲线的正向规定
设是平面区域的边界曲线,规定的正向为:当观察者沿的这个方向行走时,内位于他附近的那一部分总在他的左边.
简言之:区域的边界曲线之正向应适合条件,人沿曲线走,区域在左手.
3,格林公式
【定理】设闭区域由分段光滑的曲线围成,函数及在上具有一阶连续偏导数,则有
(1)
其中是的取正向的边界曲线.
公式(1)叫做格林(green)公式.
【证明】先证
假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点)
易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可.

另一方面,据对坐标的曲线积分性质与计算法有
因此
再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证
综合有
当区域的边界曲线与穿过内部且平行于坐标轴( 轴或轴 )的任何直线的交点至多是两点时,我们有
,
同时成立.
将两式合并之后即得格林公式
注:若区域不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立.
格林公式沟通了二重积分与对坐标的曲线积分之间的联系,因此其应用十分地广泛.
若取,, ,则格林公式为
故区域的面积为
【例1】求星形线 所围成的图形面积.
解:当从变到时,点依逆时针方向描出了整个封闭曲线,故

【例2】设是任意一条分段光滑的闭曲线,证明
证明:这里 ,
从而
这里是由所围成的区域.
二,平面曲线积分与路径无关的条件
1,对坐标的曲线积分与路径无关的定义
【定义一】设是一个开区域, 函数,在内具有一阶连续偏导数,如果对于内任意两点,以及内从点到点的任意两条曲线,,等式
恒成立,就称曲线积分在内与路径无关;否则,称与路径有关.
定义一还可换成下列等价的说法
若曲线积分与路径无关, 那么
即: 在区域内由所构成的闭合曲线上曲线积分为零.反过来,如果在区域内沿任意闭曲线的曲线积分为零,也可方便地导出在内的曲线积分与路径无关.
【定义二】曲线积分在内与路径无关是指,对于内任意一条闭曲线,恒有
.
2,曲线积分与路径无关的条件
【定理】设开区域是一个单连通域, 函数,在内具有一阶连续偏导数,则在内曲线积分与路径无关的充分必要条件是等式
在内恒成立.
证明:先证充分性
在内任取一条闭曲线,因单连通,故闭曲线所围成的区域全部在内.从而 在上恒成立.
由格林公式,有
依定义二,在内曲线积分与路径无关.
再证必要性(采用反证法)
假设在内等式不恒成立,那么内至少存在一点,使
不妨设
由于在内连续,在内存在一个以为圆心,半径充分小的圆域,使得在上恒有
由格林公式及二重积分性质有
这里是的正向边界曲线,是的面积.
这与内任意闭曲线上的曲线积分为零的条件相矛盾.故在内等式
应恒成立.
注明:定理所需要的两个条件
缺一不可.
【反例】讨论 ,其中是包围原点的一条分段光滑曲线且正向是逆时针的.
这里
,
除去原点外,在所围成的区域内存在,连续,且 .
在内,作一半径充分小的圆周
在由与所围成的复连通域内使用格林公式有
三,二元函数的全微分求积
若曲线积分在开区域内与路径无关,那它仅与曲线的起点与终点的坐标有关.假设曲线的起点为,终点为,可用记号

来表示,而不需要明确地写出积分路径.
显然,这一积分形式与定积分非常相似, 事实上,我们有下列重要定理
【定理一】设是一个单连通的开区域,函数,在内具有一阶连续偏导数,且 ,则
是的单值函数,这里为内一固定点,且
亦即
【证明】依条件知,对内任意一条以点为起点,点为终点的曲线,曲线积分 与路径无关,仅与的起点和终点的坐标有关,亦即, 确为点的单值函数.
下面证明
由于可以认为是从点沿内任何路径到点的曲线积分,取如下路径,有

类似地可证明
因此
【定理二】设是单连通的开区域,,在上具有一阶连续偏导数,则在内为某一函数全微分的充要条件是
在内恒成立.
【证明】显然,充分性就是定理一
下面证明必要性
若存在使得 ,则
由于 ,在 内连续, 则二阶混合偏导数适合等式
从而
【定理三】设是一个单连通的开区域, 函数,在内具有一阶连续偏导数, 若存在二元函数使得


其中,是内的任意两点.
【证明】由定理1知,函数
适合
于是 或
因此 (是某一常数 )


这是因为由点沿任意内的路径回到点构成一条封闭曲线,故
因此 □
【确定的全微分函数的方法】
因为,而右端的曲线积分与路径无关,为了计算简便,可取平行于坐标轴的直线段所连成的折线作为积分路径(当然折线应完全属于单连通区域).

㈣ 格林公式的含义是什么 怎么理解

1.格林公式的含义是:平面区域 上的二重积分也可以通过沿区域的边界曲线上的曲线积分来表示,这便是格林公式。
2.格林公式的理解:P和Q组成了W,即一个水流流速图。如果某个点水流的流速和周围不是连续的,它就是一个出水口或者入水口,他的C-R方程值是流入流出水流的速度。
3.单连通区域的概念:设D为平面区域,如果D内任一闭曲线所围的部分区域都属于D,则D称为平面单连通区域;否则称为复连通区域。
4.区域的边界曲线的正向规定:设 是平面区域的边界曲线,规定的正向为:当观察者沿的这个方向行走时,平面区域(也就是上面的D)内位于他附近的那一部分总在他的左边。

㈤ 求 格林公式的绪论 是要介绍格林公式的,不是格林这个人的。

一、格林公式

牛顿—莱布尼兹公式 表示: 在区间 上的定积分可以通过它的原函数 在这个区间端点的值来表达.而格林公式表示:在平面区域 上的二重积分可以通过沿闭区域 的边界曲线 的曲线积分来表达.这样,牛顿——莱布尼兹公式成为格林公式的特殊情形.

平面单连通域的概念.设 为平面区域,如果 内任一闭曲线所围的部分都属于 ,则称 为平面单连通区域,否则称为复连通区域.

例如:平面上的圆形区域 ,上半平面 都是单连通区域,圆环形区域 都是复连通区域.

对平面区域 的边界曲线 ,规定 的正向如下:当观察者沿 的方向行走时, 总在他的左边.例如 是边界曲线 及 所围成的复连通域(图8),作为 的正向边界, 的正向是逆时针方向,而 的正向是顺时针方向.

定理1 设闭区域 由分段光滑的曲线 围成,函数 及 在 上具有一阶连续偏导数,则有

, (1)

其中 是 的取正向的边界曲线.公式(1)叫做格林公式.

㈥ 这个格林公式怎么来的

等式中间那里有个二重积分哈,两个积分号看见没有?二重积分的被积函数不就是1吗。说明代表面积。公式最右边,格林公式说明了这个积分又可以用这个曲线积分描述,所以它的意义就是用曲线积分计算围线的面积咯。
:)

㈦ 格林公式是什么

知道了牛顿-莱布尼兹的定积分公式,就可以引申到格林公式。
从最简单的解释就是:牛顿-莱布尼兹公式是一维的,而格林公式是二维的(重积分)。

㈧ 关于高斯公式、格林公式、斯托克斯公式三者的关系

首先要知道三个公式的区别了
格林公式研究的是把平面第二类曲线积分转化为二重积分来做,但是要注意正方向的选取,以及平面单连通和平面复连通,有时需要取辅助线构成封闭曲线的,但是要计算辅助曲线的曲线积分,因为此时的格林公式值是由两条曲线叠加后产生的,这个很重要,因为积分与路径无关都要涉及到平面复连通和单连通的计算……
斯托克斯公式就是格林公式在空间内的推广,既然格林公式研究的是平面内的第二类曲线积分,那么斯托克斯公式研究的就是空间内的第二类曲线积分,要知道边界曲线正方向和曲面正方向成右手定则关系的……区分什么是空间线单连通,什么是空间面单连通,这个考试不考,但是很重要,空心球的模型和圆环模型要注意区别了,把这两个弄懂了就好了
高斯公式就是把第二类曲面积分转化成三重积分来做了,但是要注意正方向的选取,是取边界曲面外法线方向,从物理上说,就是流量从内向外……
这3个公式在运用之前,有时要代换的,就是把曲线方程或者是曲面方程带入被积函数,达到化简计算的目的,但这只是对于一种曲面的情况,因为被积函数上的每一个点都在曲面、曲线方程上,可带入,对于多个曲面、曲线构成的分片或者分段的边界,不可以带入,因为不是每一个被积函数的点都满足曲面、曲线方程,这时曲面、曲线方程有很多的,有的点满足这个,有的点满足那个,不一定,所以不能带入……另外通过公式化成二重积分和三重积分后也不能带入,因为此时不是曲线积分或者曲面积分的题目了,转变为普通的二三重积分了,带入肯定出错的……
希望写的对你要帮助……

㈨ 格林公式是什么如题,格林公式的意义是什么

高斯公式和、格林公式在现实中还可以容易的找到例子 但是斯托克斯公式就是解决物理问题的理论因为你要知道 很多数学知识都是从物理学科中抽象出来的 当初正是为了解决物理问题才提出的这个公式 所以从现实的日常生活中根本找不到例子只要知道 可以通过这个公式 用曲线积分求解曲面积分即可不要太苛求了就好希望帮到你 有问题欢迎补充

㈩ 格林公式是什么

在物理学与数学中, 格林定理连结了一个封闭曲线上的线积分与一个边界为�6�5C�6�5且平面区域为�6�5D�6�5的双重积分。 格林定理是斯托克斯定理的二维特例,以英国数学家乔治·格林(George Green)命名。设闭区域D由分段光滑的曲线�6�5L�6�5围成,函数�6�5P(x,y)及�6�5Q(x,y)在�6�5D�6�5上具有一阶连续偏导数,则有其中L是D的取正向的边界曲线。格林公式还可以用来计算平面图形的面积。此公式叫做格林公式,它给出了沿着闭曲线C的曲线积分与C所包围的区域D上的二重积分之间的关系。另见格林第一公式、格林第二公式。p好q是�6�5P(x,y)及�6�5Q(x,y)在�6�5D�6�5上具有一阶连续偏导数

阅读全文

与格林公式的创造者相关的资料

热点内容
西安私人二手挖机转让 浏览:698
债务股权转让 浏览:441
食堂转让合同范本 浏览:335
广西华航投资纠纷 浏览:902
萌分期投诉 浏览:832
金软pdf期限破解 浏览:730
马鞍山学化妆 浏览:41
胶州工商局姜志刚 浏览:786
了解到的发明创造的事例 浏览:391
2012年中国知识产权发展状况 浏览:773
合肥徽之皇知识产权代理有限公司 浏览:636
天津企兴知识产权待遇 浏览:31
二项基本公共卫生服务项目试题 浏览:305
基本公共卫生服务考核标准 浏览:543
公共卫生服务考核评估办法 浏览:677
上海工商局咨询热线 浏览:177
马鞍山二中叶张平 浏览:214
机动车交通事故责任纠纷被告代理词 浏览:603
医院固定资产折旧年限 浏览:702
商标注册网先咨政岳知识产权放心 浏览:658