导航:首页 > 创造发明 > 庞加莱关于数学创造

庞加莱关于数学创造

发布时间:2021-07-29 02:41:19

❶ 数学家亨利·庞加莱

亨利·庞加莱(Jules Henri Poincaré)是法国数学家,1854年4月29日生于南锡,1912年7月17日卒于巴黎。庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域。他被公认是19世纪后四分之一和二十世纪初的领袖数学家,是对于数学和它的应用具有全面知识的最后一个人。
研究方向
庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域,最重要的工作是在分析学方面。他早期的主要工作是创立自守函数理论(1878)。他引进了富克斯群和克莱因群,构造了更一般的基本域。他利用后来以他的名字命名的级数构造了自守函数,并发现这种函数作为代数函数的单值化函数的效用。 1883年,庞加莱提出了一般的单值化定理(1907年,他和克贝相互独立地给出完全的证明)。同年,他进而研究一般解析函数论,研究了整函数的亏格及其与泰勒展开的系数或函数绝对值的增长率之间的关系,它同皮卡定理构成后来的整函数及亚纯函数理论发展的基础。他又是多复变函数论的先驱者之一。 庞加莱为了研究行星轨道和卫星轨道的稳定性问题,在1881~1886年发表的四篇关于微分方程所确定的积分曲线的论文中,创立了微分方程的定性理论。他研究了微分方程的解在四种类型的奇点(焦点、鞍点、结点、中心)附近的性态。他提出根据解对极限环(他求出的一种特殊的封闭曲线)的关系,可以判定解的稳定性。 1885年,瑞典国王奥斯卡二世设立“n体问题”奖,引起庞加莱研究天体力学问题的兴趣。他以关于当三体中的两个的质量比另一个小得多时的三体问题的周期解的论文获奖,还证明了这种限制性三体问题的周期解的数目同连续统的势一样大。这以后,他又进行了大量天体力学研究,引进了渐进展开的方法,得出严格的天体力学计算技术。 庞加莱还开创了动力系统理论,1895年证明了“庞加莱回归定理”。他在天体力学方面的另一重要结果是,在引力作用下,转动流体的形状除了已知的旋转椭球体、不等轴椭球体和环状体外,还有三种庞加莱梨形体存在。 庞加莱对数学物理和偏微分方程也有贡献。他用括去法证明了狄利克雷问题解的存在性,这一方法后来促使位势论有新发展。他还研究拉普拉斯算子的特征值问题,给出了特征值和特征函数存在性的严格证明。他在积分方程中引进复参数方法,促进了弗雷德霍姆理论的发展。 庞加莱对现代数学最重要的影响是创立组合拓扑学。1892年他发表了第一篇论文,1895~1904年,他在六篇论文中建立了组合拓扑学。他还引进贝蒂数、挠系数和基本群等重要概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关联系数矩阵等工具,借助它们推广欧拉多面体定理成为欧拉—庞加莱公式,并证明流形的同调对偶定理。 庞加莱的思想预示了德·拉姆定理和霍奇理论。他还提出庞加莱猜想,在“庞加莱的最后定理”中,他把限制性三体问题的周期解的存在问题,归结为满足某种条件的平面连续变换不动点的存在问题。 庞加莱在数论和代数学方面的工作不多,但很有影响。他的《有理数域上的代数几何学》一书开创了丢番图方程的有理解的研究。他定义了曲线的秩数,成为丢番图几何的重要研究对象。他在代数学中引进群代数并证明其分解定理。第一次引进代数中的左理想和右理想的概念。证明了李代数第三基本定理及坎贝尔—豪斯多夫公式。还引进李代数的包络代数,并对其基加以描述,证明了庞加莱—伯克霍夫—维特定理。 庞加莱对经典物理学有深入而广泛的研究,对狭义相对论的创立有贡献。他从1899年开始研究电子理论,首先认识到洛伦茨变换构成群。 庞加莱的哲学著作《科学与假设》、《科学的价值》、《科学与方法》也有着重大的影响。他是约定主义的代表人物,认为科学公理是方便的定义或约定,可以在一切可能的约定中进行选择,但需以实验事实为依据,避开一切矛盾。在数学上,他不同意罗素、希尔伯特的观点,反对无穷集合的概念,赞成潜在的无穷,认为数学最基本的直观概念是自然数,反对把自然数归结为集合论。这使他成为直觉主义的先驱者之一。 1905年,匈牙利科学院颁发一项奖金为l0000金克朗的鲍尔约奖。这个奖是要奖给在过去25年为数学发展作出过最大贡献的数学家。由于庞加莱从1879年就开始从事数学研究,并在数学的几乎整个领域都作出了杰出贡献,因而此项奖又非他莫属。
评价
阿达马这位曾在函数论、数论、微分方程、泛函分析、微分几何、集合论、数学基础等领域作出过杰出贡献的法国数学家认为,庞加莱“整个地改变了数学科学的状况,在一切方向上打开了新的道路。” 庞加莱逝世80年来的历史告诉我们,罗素、西尔维斯特、阿达马等的论断是多么正确!庞加莱一生发表的科学论文约500篇、科学著作约30部,几乎涉及到数学的所有领域以及理论物理、天体物理等的许多重要领域。

❷ 庞加莱关于数学创造的故事是怎样的

如果要在19世纪末到20世纪初这个时间段选出一名数学界的领袖人物,那么亨利·庞加莱一定会高票当选。庞加莱被后人评价为法国最伟大的数学家之一,对数学、物理、天体力学做出了很多创造性的贡献。他的工作对当今的数学造成了极其深远的影响。庞加莱出生在法国一个显赫世家,从小智力超常,据说这遗传自他父母的高智商。他接受知识极为迅速,口才也很流利,这让他在同龄人中鹤立鸡群。如果走进他住的小区,一定会听见邻居在教育自己的孩子:“你看看别人庞加莱,什么都会!家世好,智商高,也许庞加莱太出色了,上天也嫉妒,在他5岁的时候患了一场白喉病。这场病让他的喉头坏掉了,口头表达能力大幅下降,并且变得体弱多病。尽管如此,他还是热衷于玩游戏和舞蹈,没有变成宅在家里的书呆子。庞加莱8岁的时候进入南锡中学,他的优秀天赋在学校里展露无遗。liuxue86.com在南锡中学度过的11年里,庞加莱垄断了“优秀生”的头衔,每门功课都是优秀。他对数学的兴趣也是从学校里开始的。庞加莱的数学老师将他描述为“数学怪兽”,在法国中学生的数学竞赛里,庞加莱把一等奖拿到手软。他甚至养成了一边散步一边在脑中解题的习惯,这种高级解题技能连纸和笔都不用,真是低碳又环保。1870年由于普法战争,庞加莱不得不中断学业。在不上课的日子里,他也没有停止学习。学业恢复后,他以第一名的成绩考入了巴黎综合理工学院。据说,在他的入学考试上,学校还特意设计了一道难度系数非常高的数学题来考他,当然,这对他来说只是小菜一碟。

❸ 庞加莱猜想是数学猜想吗

被称为“七大世纪数学难题”之一的庞加莱猜想近日被科学家完全破解,而且是中国科学家完成“最后封顶”工作。中山大学朱熹平教授和旅美数学家

以一篇长达300多页的论文,给出了庞加莱猜想的完全证明,该论文发表在《亚洲数学期刊》上。

❹ 关于"庞加莱猜想"这类数学难题,对现实科学进步有啥明显意义么

通俗地说:在物理学里面,描述宏观世界很成功的有相对论,微观世界有量子力学,这两门学问夸大应用范围的时候总有一些与现实相互冲突的地方。
为求完美,有人希望用一门学问来描述我们的整个宇宙运行的规律,从而真正破解宇宙的本质,那个彭加莱猜想就是构建这套理论过程中遇到的一个有待解决的难题。

❺ 庞加莱的数学+物理是不是比高斯还强

牛顿是这个星球上诞生过的所有科学(包括数学)巨人中最最伟大的,也是最最接近神的。而庞加莱是唯一一个最最接近牛顿的巨人。在数学上,庞加莱和高斯争第二(个人认为庞加莱稍微占一点点优势,因为庞加莱在数论上面的成就不能与高斯相提并论,但在函数论上面的成就至少可以与高斯媲美,就算是说到椭圆函数理论和模函数理论也是这样,尽管庞加莱在生前没有发表这些。高斯还是微分几何之父,但庞加莱也是拓扑学之父。同时,庞加莱还是整个微分方程领域里最杰出的大师。)高斯的手稿有好多内容没发表,但那些手稿里的内容基本都是新领域的开了个头的文章,比如手稿里的复变函数论公式(和柯西碰头了)、椭圆函数理论(阿贝尔、雅可比号称椭圆双雄、勒让德也有)。在天文学上,庞加莱和牛顿并列第一,庞加莱的天体力学成就是继牛顿之后的第二个巅峰,再说了,除了庞加莱和牛顿之外,在天体力学成就上最大的也不是高斯,是有法兰西牛顿之称的拉普拉斯和世界数学史第七位的拉格朗日。
最后提到物理学,高斯提出了电的高斯定理,高斯对电磁理论也感兴趣,但无奈他是最高境界的数学家,但却不是最高境界的物理学家,黎曼已经推导出来了麦克斯韦方程组中的3个,黎曼甚至已经知道电磁波是以光速传播,黎曼最终因为物理直觉不够加上短命而死了。现在来看庞加莱,庞加莱是狭义相对论仅仅次于爱因斯坦的人,狭义相对论的几乎所有数学公式庞加莱都推导出来过(当然了,他的理解和爱因斯坦不一样)。可能因为当时年龄大了再加上他也不是那种最伟大的物理学家那一类别,导致庞加莱没有真正意义上的理解狭义相对论(庞加莱对时间的同时性这个问题犹豫了)。
但高斯毕竟活了78岁,庞加莱活了58岁。综上所述,单比数学庞加莱和高斯是要争夺第二名的(黎曼肯定是毫无疑问的第一,不过个人认为庞加莱可以排名第二)、在天体力学成就上,高斯肯定是前十,但排名前五够呛,而牛顿和庞加莱可是并列第一的。在物理学上,庞加莱是所有数学家中(除了牛顿)成就最大的了(当然啦,肯定不能和十大物理学家比)。所以庞加莱的综合成就在高斯之上,所以才说庞加莱是这个星球上最接近牛顿的最终大神。

❻ 庞加莱猜想是怎么证明出来的世界七大数学难题还有哪六个,各个问题的进展如何

难题的提出

20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决, 如费马大定理的证明,有限单群分类工作的完成等, 从而使数学的基本理论得到空前发展。

计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫·希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。

效法希尔伯特, 许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。 这些数学家知名度是高的, 但他们的这项行动并没有引起世界数学界的共同关注。

2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向, 而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖.

世界七大数学难题

这七个“千年大奖问题”是: NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。

其中,庞加莱猜想,已被我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东破解了。

“千年大奖问题”公布以来, 在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。 可以预期, “千年大奖问题” 将会改变新世纪数学发展的历史进程。
“千禧难题”之一:P(多项式算法)问题对NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。

“千禧难题”之二:霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

“千禧难题”之三:庞加莱(Poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

6月3日,新华社报道,中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东破解了国际数学界关注上百年的重大难题——庞加莱猜想。

“千禧难题”之四:黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

“千禧难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

“千禧难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

“千禧难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想

数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

❼ Poincare对数学做了哪些贡献

亨利·庞加莱(Jules Henri Poincaré) 是法国数学家、天体力学家、数学物理 学家、科学哲学家,1854年4月29日生 于法国南锡,1912年7月17日卒于巴 黎。庞加莱的研究涉及数论、代数学、 几何学、拓扑学、天体力学、数学物

多复变函数论、科学哲学等许多领 域。他被公认是19世纪后四分之一和二 十世纪初的领袖数学家,是对于数学和 它的应用具有全面知识的最后一个人。

❽ 希尔伯特,庞加莱,康托尔,哥德尔,谁对现代数学的贡献最大

希尔伯特 德国数学家,是19世纪和20世纪初最具影响力的数学家之一.希尔伯特1862年出生于哥尼斯堡,1943年在德国哥廷根逝世.他因为发明和发展了大量的思想观念(例如:不变量理论、公理化几何、希尔伯特空间)而被尊为伟大的数学家、科学家.希尔伯特和他的学生为形成量子力学和广义相对论的数学基础做出了重要的贡献.他还是证明论、数理逻辑、区分数学与元数学之差别的奠基人之一.

❾ 法国数学家庞加莱取得了哪些重大成就

提及庞加莱关于数学创造,就不得不说起组合拓扑学。他曾在6篇论文里创造了组合拓扑学,并且,通过引进贝蒂数、挠系数和基本群等一些概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关联系数矩阵等工具,并且凭借这些概念成立了欧拉—庞加莱公式,并对流形的同调对偶定理进行了证明。除此之外,庞加莱对数学方面的创造还表现在数学物理和偏微分方程方面所取得的成就。庞加莱使用括去法(sweepingout)证明了狄利克雷问题解的存在。让人感到惊喜的是,后来竟然推动位势论发展到了一个新的阶段。在1881~1886年,庞加莱发表四篇论文,内容是关于微分方程所确定的积分曲线,从而创立了微分方程的定性理论。他指出可以依据解对极限环的关系,来判定解的稳定性。 1883年,庞加莱提出了一个定理,即一般的单值化定理,并且在同一年间,庞加莱进一步的去研究一般解析函数论,他的这一研究贡献巨大,它和皮卡定理组成了整函数及亚纯函数理论发展的

阅读全文

与庞加莱关于数学创造相关的资料

热点内容
沈阳冠君知识产权事务所 浏览:342
知识产权保障制度总结 浏览:950
榆次区工商局电话 浏览:981
马鞍山新康达 浏览:448
学校矛盾纠纷处理制度 浏览:342
创造性的提出了思想建党的原则 浏览:890
品管圈成果汇报书 浏览:381
京韵花园纠纷 浏览:895
卫生服务站公共卫生考核方案 浏览:62
快递时效投诉 浏览:782
世纪创造绝缘有限公司 浏览:600
聚投诉珍爱网 浏览:47
公共卫生服务协议书2017 浏览:805
改革工作成果汇报 浏览:49
医疗纠纷管理伦理的主要要求不包括 浏览:959
工业光魔创造不可能720p 浏览:243
君主立宪制是法国大革命的成果 浏览:13
王成果青岛科技大学 浏览:519
护理品管圈成果汇报书 浏览:875
使用权获取途径 浏览:759