① 加减法的验算用几种方法
1、加法的验算方法:一种是交换加数的位置,再计算一次;一种是和减一个加数等于另一个加数。
2、减法的验算方法:一种是差加减数等于被减数;一种是被减数减差等于减数。
3、减法用加减混合验算,例如54-18=36,验算36+20-2=56-2=54。
4、加法用加减混合验算,例如79+89=168,验算168-90+1=78+1=79。
(1)加减的创造方法扩展阅读:
减法验算安排在加法的几种验算方法之后,主要是利用算式各部分的关系和加减法互逆关系的策略解决,即用被减数减去差,用差加减数。另外,从生活中的实际问题入手,更好地理解验算的策略,体现了数学计算的实用价值。
使用弃九法,在检验多位数四则运算时,也有一定的局限性,遇到下列情况,往往检验不出计算结果的错误。
② 小学数学一年级加减法有哪些方法
一年级加减法主要有:10以内的加减法,20以内的加减法,100以内的不进位加法,和整十数加一位数和两位数,以及相应的减法。
③ 加减快速口算方法
第一讲 加法速算
一、凑整加法
凑整加法就是凑整加差法,先凑成整数后加差数,就能算的快。8+7=15 计算时先将8凑成10 8加2等于10 7减2等于5 10+5=15
如17+9=26 计算程序是17+3=20 9-3=6 20+6=26
二、补数加法
补数加法速度快,主要是没有逐位进位的麻烦。补数就是两个数的和为10 100 1000 等等。8+2=10 78+22=100 8是2的补数,2也是8的补数,78是22的补数,22也是78的补数。利用补数进行加法计算的方法是十位加1,个位减补。例如6+8=14 计算时在6的十位加上1,变成16,再从16中减去8的补数2就得14
如6+7=13 先6+10=16 后16-3=13
如27+8=35 27+10=37 37-2=35
如25+85=110 25+100=125 125-15=110
如867+898=1765 867+1000=1867 1867-102=1765
三、调换位置的加法
两个十位数互换位置,有速算方法是:十位加个位,和是一位和是双,和是两位相加排中央。例如61+16=77,计算程序是6+1=7 7是一位数,和是双,就是两个7,61+16=77 再如83+38=121 计算程序是8+3=11 11就是两位数,两位数相加1+1=2排中央,将2排在11中间,就得121。
第二讲 减法速算
一、两位减一位补数减法
两位数减一位数的补数减法是:十位减1,个位加补。如15-8=7,15减去10等于5,5加个位8的补数2等于7。
二、多位数补数减法
补数减法就是减1加补,三位减两位的方法:百位减1,十位加补,如268-89=179,计算程序是268减100等于168,168加89的补数11就等于179。
三、调换位置的减法
两个十位数互换位置,有速算方法:十位数减个位数,然后乘以9,就是差数。如86-68=18,计算程序是8-6=2,2乘以9等于18。
四、多位数连减法
多位数连减,采用补数加减数的方法达到速算。先找到被减数的补数,然后将所有的减数当成加数连加,再看和的补数是多少,和的补数就是所求之差数。举例说明:653-35-67-43-168=340,先找被减数653的补数,653的补数是347,然后连加减数347+35+67+43+168=660,660的补数为340,差数就得340。
④ 加减法的运算方法有哪些
加法交换律:a+b=b+a
结合律:(a+b)+c=a+(b+c)
减法忘了,对不起
⑤ 加减法是怎么来的
人们在生活中经常会遇到各种相反意义的量。比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。
据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。
我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。
刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。
我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。
用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”
这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。
用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。
负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。
在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。
除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中
负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。
与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。16、17世纪欧洲大多数数学家不承认负数是数。帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。他用以下的例子说明这一点:“父亲56岁,其子29岁。问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2。他称此解是荒唐的。当然,欧洲18世纪排斥负数的人已经不多了。随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。
建议你提问之前可以先搜索一下,这个答案也是从网络知道里面找到的,已经有人问过这个问题了
⑥ 加减法的验算有几种方法
加法的验算方法:一种是交换加数的位置,再计算一次;一种是和减一个加数等于另一个加数。
减法的验算方法:一种是差加减数等于被减数;一种是被减数减差等于减数。
加法是基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。表达加法的符号为加号(+)。进行加法时以加号将各项连接起来。把和放在等号(=)之后。例:1、2和3之和是6,就写成︰1+2+3=6。加法也分小数加法,分数加法及整数加法等。
主要性质
A、加法交换律:a+b=b+a 例:8+1=1+8=9
B、加法结合律:a+b+c=a+(b+c) 例:7+4+1=7+(4+1)=(7+4)+1=12
减法是四则运算之一,从一个数量中减去另一个数量的运算叫做减法;已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。表示减法的符号是"-",读作减号。用来计算减量!
性质:减去一个数,等于加这个数的相反数。a-b-c=a-(b+c)。
"-"是减号,减号前面的数是被减数,减号后面的数是减数,"="是等于号,等于号后面的数是差。10000(被减数) -(减号) 6000(减数) =(等于号) 4000(差)
⑦ 加减巧算的主要方法
加减巧算的主要方法例子演示78-(93-122)
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
78-(93-122)
=78+122-93
=200-93
=107
(7)加减的创造方法扩展阅读【竖式计算-计算过程】:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:8+2=0 向高位进1
步骤二:7+2+1=0 向高位进1
步骤三:0+1+1=2
根据以上计算步骤组合计算结果为200
存疑请追问,满意请采纳
⑧ 加减法的简便方法
加减法的简便运算一般利用加法交换律,加法结合律凑整十整百的数。
比如:333+245+667+255=(333+667)+(245+255)=1000+500=1500
⑨ 加减法心算技巧
一、加法心算
1、分裂再凑整数:
比如8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;
2、变整数再减去:
比如26+18=44,把“18”变成“20-2”,那么就是26+20-2=44;
3、错位数相加:
个位加十位得数是个位的,如51+15=66,这样算:5+1得6;1+5得6;两6合拼;
个位加十位得数是十位的,如78+87=165,这样算:7+8=15,再把“15”两个数字“1”和“5”相加得6,把这个“6”放在“15”的中间,得出“165”。
二、减法心算
1、减凑整数再加上:
比如52-7=45,这样算:把“7”变成“10-3”;那么,52-10+3=45;
2、错位数相减
比如83-38=45,这样算,8-3=5,5X9=45;
3、多位数连续相减
比如387-50-42-31=264;先算容易的,387-50=337,然后,再把42与31再加得73;然后,337-73,可以变成337-80+7=264。
(9)加减的创造方法扩展阅读:
加法有几个重要的属性。 它是可交换的,这意味着顺序并不重要,它又是相互关联的,这意味着当添加两个以上的数字时,执行加法的顺序并不重要。 重复加1与计数相同; 加0不改变结果。
减法遵循几个重要的模式。它是反交换的,意味着改变顺序改变了答案的符号。它不具有结合性,也就是说,当一个减数超过两个数字时,减法的顺序是重要的。减法0不改变一个数字。
减法也遵循与加法和乘法等相关运算的可预测规则。所有这些规则都可以被证明,从整数的减法开始,并通过真实的数字和其他东西来概括。继续这些模式的一般二元运算在抽象代数中学习。
⑩ 整数加减法方法
减法是四则运算之一,从一个数量中减去另一个数量的运算叫做减法; 已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。表示减法的符号是“-”,读作减号。用来计算减量。借位计算减法不一定要硬算,也可以简算。这个方法适用于学前班、一年级的小孩学。例如:24-8=16 可以这样想:借位14-8,先用10-8=2,再用2+4=6,差个位一定就是6,十位算就简单了。就是说,借位后,去掉个位的数字先减,然后用减出来的数去加少减的个位的数,十位就不难了。不过前提是被减数个位一定要比减数个位小才能简算。