⑴ 初中物理实验的小发明制作品
材料:
塑料药来瓶两个,橡筋源圈两根,5号废电池一个,玻璃胶带,øl.2mm左右铁丝,小木块。
制作:
1.按图一将两个塑料瓶的底割掉,在两个瓶盖中心分别钻两个ø2mm的孔。
2.锯两段塑料笔杆、笔杆外按图二套上橡筋,笔杆里面穿根铁丝,铁丝从瓶盖内侧穿入两孔在瓶盖顶将铁丝绞紧。另一瓶盖同样做好。
3.按图一锯一块15×10×4(mm)的木块,将木块用玻璃胶带按图三固定在5号废电池上。
4.按图四盖上瓶盖,拧紧后拉出橡筋,分别嵌入电池和木块左右的缝隙里,再用玻璃胶带固定。
5.两个瓶底按图五合在一起,用玻璃胶带粘合,最后画上箭头做记号,外贴玻璃胶。
玩法:如图六找块板斜放,先将瓶按箭头方向用手旋转10余下,将瓶放于斜板低处,箭头指向低处,松开手,由于重心变化,瓶就开始爬坡了。
这里面有很多的 http://llfxw.cn/
⑵ 近期科学家发明了一种形状类似扁面条
A、该材料受温度变化影响后就会发生形状上的变化,说明该材料对热敏感,是一种热敏感材料,故A正确;
B、材料是由很多彼此重复或类似的分子组成的聚合物,而合金的组成中有金属,故B错误;
C、材料是由很多彼此重复或类似的分子组成的聚合物,属于高分子材料,故C错误;
D、因为该材料通过改变温度就可改变其形状,不耐高温,不适宜用于制造厨房灶具,故D错误.
故选A.
⑶ 关于瓶子扁了的实验怎么做
先制取一可乐瓶的二氧化碳,用燃着的木条检验是否收集满。之后向瓶中迅速倒入少量水,马上盖上瓶盖。这时瓶子会立刻变瘪。原理:二氧化碳极易溶于水。
向瓶中加入少量白磷,盖上瓶盖之后泡在热水里,这时白磷燃烧,同时瓶子变瘪,原因,白磷燃烧消耗掉瓶子中的氧气。
⑷ 小学生科技小发明
一:在教室里打扫卫生时,最难对付的是日光灯灯管,它高高地装在天花板上,只有架起梯子,或把课桌椅高高叠起,爬上去才能够得着,但是擦洗还是很不方便的,而且有危险。
有一次,一个发明火花闪过我的脑海:应该设计制作一个不用爬高就能清洁日光灯的小工具。我找来一个大号饮料瓶,截取带着瓶口的一段,高度约为15厘米,在截口两边用剪刀各剪一个U形凹口,宽度稍稍比日光灯管直径大一些:接下来在瓶内塞人海绵并粘牢。最后找一根直径与瓶口相同的棍子,插进瓶口,并用销钉销牢。一把目光灯洁洁器就做好了。
用法很简单:举起清洁器,将U形凹口对准日光灯管,来回移动几次,灯管上的灰尘就擦干净了。清洗器的海绵也能用水清洗。
二:马路上尘土很多,自行车骑了一两个星期就会沾上一层灰,脏兮兮的,需要擦洗一番。车身、把手还算容易擦洗,最麻烦的是把车轮弄干净。车轮的钢圈、纵横交叉的辐条,很难擦洗,如果用高压水流喷,会浪费大量清水。考虑到这个情况,我发明了重量轻、符合环保要求的车轮清洗器,它用铝合金片、塑料板、海绵组装而成。把它固定在挡泥板与刹车边上,只要转动车轮,就能带动清洗器一起转动,用截面为齿轮形的海绵柱对车轮辐条、钢圈进行擦洗。
对清洗器结构稍作调整,还能适合不同尺寸的自行车轮。海绵柱使用一段时间后,可以更换。
三:打乒乓球时,乒乓球球往往会滚得到处都是,弯腰去捡,费时费力,今天我们就来制作一个简易、实用的乒乓球捡球工具。
首先我们要准备材料:一个矿泉水瓶、一根塑料空心管、胶水。
科技小制作
然后将矿泉水瓶的瓶底剪掉,在瓶底部分把瓶壁剪成3厘米的片片条状(四周内折乒乓球不外掉即可),接着在矿泉水瓶口下放剪一个乒乓球可以滚出来的洞,这个洞是用来方便我们取球的。
小发明
然后我们将塑料空心管插进矿泉水瓶瓶口并用胶水固定。
科技发明
好了我们的制作完成了,一个简易、实用的乒乓球捡球器诞生了
⑸ 小学生实验小发明要有趣的求啊 很急啊啊啊啊啊啊啊啊啊
1、自制羽毛球
准备材料:空饮料瓶一只,网套两只,橡皮筋一根,玻璃弹子一颗。
制作过程:
1.取250毫升空饮料瓶一只,将瓶子的上半部分剪下;
2.将剪下的部分均分为8份,用剪刀剪至瓶颈处,然后,将每一份剪成大小一致的花瓣形状;
3.将泡沫水果网套套在瓶身外,用橡皮筋固定在瓶口处;
4.将另一只泡沫水果网套裹住一粒玻璃弹子,塞进瓶口,塞紧并露出1厘米左右;
5.剪下半只乒乓球,将半球底面覆在瓶口上,四边剪成须状,盖住瓶口后用橡皮筋固定住。
6.美化修饰后,一只自制羽毛球完成了。用羽毛球拍打一打,看看效果怎么样?
2、自制香皂纸
制作材料和工具:
吸湿性较好的白纸,小块香皂,一支毛笔和一次性饮料罐。
制作方法:
先把香皂切碎后放在罐里,盛上适量的水后把杯子放在炉上加热,等香皂融化,将白纸裁成火柴盒大小,一张张涂透皂液,再取出阴干就成了香皂纸。
3、自制热气球
1.首先我们用软纸裁出6~8个叶状的纸片。
2.将它们对折并用胶水将它们的边粘在一起作成一个气球。
3.用胶带将四根连线粘到气球底部。用橡皮泥将线的另外一端固定在桌子上。
4.尽量将电吹风的速度调的很慢。将吹风口向上对准底部的开口并且打开开关。气球会慢慢变大拉紧细线并且离开桌面。
4、自制手电筒
具体制作方法是:将一只废易拉罐(如露露饮料罐)起掉一头盖子,另一头用圆头榔头敲凹。用厚瓦楞纸板卷起两节一号电池,电池正极朝上、负极朝下装入罐中。找一个合适的塑料盖(如神奇大大卷的盒盖正好可以扣在露露饮料罐上),在盒盖中央挖一个圆形小洞,洞的大小以使灯泡插紧为宜。将灯泡底座插入小洞。取一段导线两端剥去线皮,一端绕在灯座上,另一端从塑料盖侧面扎一个小孔穿出。将塑料盖盖在易拉罐上。检查一下,灯泡、电池是不是紧密接触。到这里一次性手电筒就做好了。使用时,用大拇指把从侧壁穿出的导线按在从拉罐无油漆的焊缝上,手电筒就会发光,大拇指离开导线跳起,手电筒就灭了,使用非常方便。
5、自制太阳灶
找一个大号手电筒上的凹面反光碗,用硬质泡沫塑料或木料削一根长约4厘米的圆柱体,直径以正好能紧紧塞进反光碗的圆孔为宜。在圆柱的一端横向钻一个细孔,穿入一根直径相当于孔径的铁丝,然后将露在圆柱外的铁丝两头扳折成90°,各留5厘米即可。把圆柱塞入反光碗的圆孔内,再将铁丝两端插在一块泡沫塑料或木质底板上。将一根细竹签的两头削尖,一头插在反光碗中央的圆柱上,另一头插上一小块土豆。把该装置放在太阳下,让反光碗朝着太阳方向,然后,耐心调节竹签长度,让插上去的土豆正好位于发光焦点上。要不了多久,土豆就会被太阳光烤熟,发出香味。
6、自制指南针
指南针,是我国古代四大发明之一。它在日常生活中有很大用途,它是根据磁学原理制作的。
取三合板一块, 锯一直径为120毫米的底板。把表面和边缘用砂纸磨光。在一张铅画纸上标好符号,按尺寸把盘面剪下,贴在底盘下,取一枚大头针或缝衣针,从底盘背面中心穿过,将尖头露出盘面做轴。根据尺寸把一块白铁皮剪成指针形状,并钻一个直径2毫米的孔,把一颗纽扣固定在指针上。用一块永久磁铁触指针数次,使指针磁化。最后,把指针放在轴上。注意哪头指向北,就这头涂成红色。
科技小制作的特点
科技小制作的特点就在于一个“小”字。“小”在哪里呢? (1)结构简单。一般只要制做几个零件,再组装起来就做好了。 (2)材料好找。很多材料在家里就可以找到,如空纸盒、牙膏皮、泡沫塑料、罐头筒、废圆珠笔芯、坏了的玩具、铁丝、铁片等。 (3)加工容易。多数项目工艺技术要求低,小学生可以掌握。 (4)花钱少。有些项目甚至可以不花钱,不会增加家庭负担。 (5)见成果快。不少项目只要一天、半天就可以做成,这符合少年儿童心理,容易推广普及。 2.活动形式 (1)开设科技课,使学生普遍受到科学教育,并辅导学生制作。 (2)建立兴趣小组,辅导学生制作。 (3)鼓励学生自己选题,独立完成小制作,必要时给予适当的辅导。 3.活动内容和辅导方法 (1)依照图纸、说明,或印制好的材料进行制作。 (2)以培养创造能力,发展智力为中心的科技小制作。主要以制做儿童喜爱的玩具为主,有下列几种形式: ①教师介绍一种小制作的方法和科学道理,并用实物演示,引起学生兴趣,学生根据这个道理自己去创新制作。如“小鸡吃米”,是利用杠杆原理制作的抽拉玩具,抽拉时两只鸡头运动方向一致或相反,是由于杠杆力点、支点的位置不同。学生在了解道理之后,各自设计、制作了许多新颖的杠杆抽拉玩具,如我坐火箭去太空、小猫钓鱼、打乒乓球、过峡谷等。 ②变废为宝的科技小制作。教师利用实物讲解如何利用废旧钟表的齿轮和废旧玩具设计制作新的玩具。有些学生受到启发,自己完成了构思新颖、质量较高的活动玩具,如手操纵电动旱船、电动碰碰车、机器人、滑稽人跳舞、猫头鹰和老鼠等。 ③专题科技制作竞赛。根据不同年级提出不同专题要求,各班学生人人设计制作,班内选拔出代表队,再进行年级竞赛。如一次四、五、六年级进行风力车比赛。我们规定赛车的轮子必须是用厚纸自制的,不能用现成轮子或其他代用品,其他大小、重量、样式不限。又一次进行橡皮筋动力车比赛,只限定必须用统一规格和长度的橡皮筋,其他不限。这样学生的积极性很高,设计制作的赛车多种多样,充分发挥了他们的聪明才智,培养了他们的创造能力。 4.注意事项 (1)要按年龄、知识水平、动手能力、兴趣爱好分开档次,选择不同的制作内容。低年级要选择很容易制作成功的内容,如小降落伞;中、高年级则要从难度上有所提高。 (2)要提倡创新。 (3)不包办代替。 (4)强调制作中要注意安全
⑹ 扭秤是谁发明的“库伦扭秤实验”的百度百科说是库伦发明的,“扭秤实验”百度百科说是卡文迪许发明的。
扭秤是比库仑和卡文迪许都早就有的。库仑用它来测静电引力和斥力,卡文迪许用它来测万有引力
⑺ 实验、发明、游戏、创造、试验中哪一个不一样
游戏不一样
⑻ 随便的一些有关初二物理的小实验,小发明
做水果电池:
工具和材料
⑼ 从植物中的实验和发明
在第一次世界大战时期,出于军事上的需要,为使舰艇在水下隐蔽航行而制造出潜水艇。当工程技术人员在设计原始的潜艇时,是先用石块或铅块装在潜艇上使它下沉,如果需要升至水面,就将携带的石块或铅块扔掉,使艇身回到水面来。以后经过改进,在潜艇上采用浮箱交替充水和排水的方法来改变潜艇的重量。以后又改成压载水舱,在水舱的上部设放气阀,下面设注水阀,当水舱灌满海水时,艇身重量增加使可它潜入水中。需要紧急下潜时,还有速潜水舱,待艇身潜入水中后,再把速潜水舱内的海水排出。如果一部分压载水舱充水,另一部分空着,潜水艇可处于半潜状态。潜艇要起浮时,将压缩空气通入水舱排出海水,艇内海水重量减轻后潜艇就可以上浮。如此优越的机械装置实现了潜艇的自由沉浮。但是后来发现鱼类的沉浮系统比人们的发明要简单得多,鱼的沉浮系统仅仅是充气的鱼鳔。鳔内不受肌肉的控制,而是依靠分泌氧气进入鳔内或是重新吸收鳔内一部分氧气来调节鱼鳔中气体含量,促使鱼体自由沉浮。然而鱼类如此巧妙的沉浮系统,对于潜艇设计师的启发和帮助已经为时过迟了。
声音是人们生活中不可缺少的要素。通过语言,人们交流思想和感情,优美的音乐使人们获得艺术的享受,工程技术人员还把声学系统应用在工业生产和军事技术中,成为颇为重要的信息之一。自从潜水艇问世以来,随之而来的就是水面的舰船如何发现潜艇的位置以防偷袭;而潜艇沉入水中后,也须准确测定敌船方位和距离以利攻击。因此,在第一次世界大战期间,在海洋上,水面与水中敌对双方的斗争采用了各种手段。海军工程师们也利用声学系统作为一个重要的侦察手段。首先采用的是水听器,也称噪声测向仪,通过听测敌舰航行中所发出的噪声来发现敌舰。只要周围水域中有敌舰在航行,机器与螺旋桨推进器便发出噪声,通过水听器就能听到,能及时发现敌人。但那时的水听器很不完善,一般只能收到本身舰只的噪声,要侦听敌舰,必须减慢舰只航行速度甚至完全停车才能分辨潜艇的噪音,这样很不利于战斗行动。不久,法国科学家郎之万(1872~1946)研究成功利用超声波反射的性质来探测水下舰艇。用一个超声波发生器,向水中发出超声波后,如果遇到目标便反射回来,由接收器收到。根据接收回波的时间间隔和方位,便可测出目标的方位和距离,这就是所谓的声纳系统。人造声纳系统的发明及在侦察敌方潜水艇方面获得的突出成果,曾使人们为之惊叹不已。岂不知远在地球上出现人类之前,蝙蝠、海豚早已对“回声定位”声纳系统应用自如了。
生物在漫长的年代里就是生活在被声音包围的自然界中,它们利用声音寻食,逃避敌害和求偶繁殖。因此,声音是生物赖以生存的一种重要信息。意大利人斯帕兰赞尼很早以前就发现蝙蝠能在完全黑暗中任意飞行,既能躲避障碍物也能捕食在飞行中的昆虫,但是堵塞蝙蝠的双耳后,它们在黑暗中就寸步难行了。面对这些事实,帕兰赞尼提出了一个使人们难以接受的结论:蝙蝠能用耳朵“看东西”。第一次世界大战结束后,1920年哈台认为蝙蝠发出声音信号的频率超出人耳的听觉范围。并提出蝙蝠对目标的定位方法与第一次世界大战时郎之万发明的用超声波回波定位的方法相同。遗憾的是,哈台的提示并未引起人们的重视,而工程师们对于蝙蝠具有“回声定位”的技术是难以相信的。直到1983年采用了电子测量器,才完完全全证实蝙蝠就是以发出超声波来定位的。但是这对于早期雷达和声纳的发明已经不能有所帮助了。
另一个事例是人们对于昆虫行为为时过晚的研究。在利奥那多·达·芬奇研究鸟类飞行造出第一个飞行器400年之后,人们经过长期反复的实践,终于在1903年发明了飞机,使人类实现了飞上天空的梦想。由于不断改进,30年后人们的飞机不论在速度、高度和飞行距离上都超过了鸟类,显示了人类的智慧和才能。但是在继续研制飞行更快更高的飞机时,设计师又碰到了一个难题,就是气体动力学中的颤振现象。当飞机飞行时,机翼发生有害的振动,飞行越快,机翼的颤振越强烈,甚至使机翼折断,造成飞机坠落,许多试飞的飞行员因而丧生。飞机设计师们为此花费了巨大的精力研究消除有害的颤振现象,经过长时间的努力才找到解决这一难题的方法。就在机翼前缘的远端上安放一个加重装置,这样就把有害的振动消除了。可是,昆虫早在三亿年以前就飞翔在空中了,它们也毫不例外地受到颤振的危害,经过长期的进化,昆虫早已成功地获得防止颤振的方法。生物学家在研究蜻蜓翅膀时,发现在每个翅膀前缘的上方都有一块深色的角质加厚区——翼眼或称翅痣。如果把翼眼去掉,飞行就变得荡来荡去。实验证明正是翼眼的角质组织使蜻蜓飞行的翅膀消除了颤振的危害,这与设计师高超的发明何等相似。假如设计师们先向昆虫学习翼眼的功用,获得有益于解决颤振的设计思想,就可似避免长期的探索和人员的牺牲了。面对蜻蜓翅膀的翼眼,飞机设计师大有相见恨晚之感!
20世纪40年代电子计算机的问世,更是给人类科学技术的宝库增添了可贵的财富,它以可靠和高效的本领处理着人们手头上数以万计的各种信息,使人们从汪洋大海般的数字、信息中解放出来,使用计算机和自动装置可以使人们在繁杂的生产工序面前变得轻松省力,它们准确地调整、控制着生产程序,使产品规格精确。但是,自动控制装置是按人们制定的固定程序进行工作的,这就使它的控制能力具有很大的局限性。自动装置对外界缺乏分析和进行灵活反应的能力,如果发生任何意外的情况,自动装置就要停止工作,甚至发生意外事故,这就是自动装置本身所具有的严重缺点。要克服这种缺点,无非是使机器各部件之间,机器与环境之间能够“通讯”,也就是使自动控制装置具有适应内外环境变化的能力。要解决这一难题,在工程技术中就要解决如何接受、转换。利用和控制信息的问题。因此,信息的利用和控制就成为工业技术发展的一个主要矛盾。如何解决这个矛盾呢?生物界给人类提供了有益的启示。
人类要从生物系统中获得启示,首先需要研究生物和技术装置是否存在着共同的特性。1940年出现的调节理论,将生物与机器在一般意义上进行对比。到1944年,一些科学家已经明确了机器和生物体内的通讯、自动控制与统计力学等一系列的问题上都是一致的。在这样的认识基础上,1947年,一个新的学科——控制论产生了。
控制论(Cybernetics)是从希腊文而来,原意是“掌舵人”。按照控制论的创始人之一维纳(Norbef Wiener,1894~1964)给予控制论的定义是“关于在动物和机器中控制和通讯”的科学。虽然这个定义过于简单,仅仅是维纳关于控制论经典著作的副题,但它直截了当地把人们对生物和机器的认识联系在了一起。
控制论的基本观点认为,动物(尤其是人)与机器(包括各种通讯、控制、计算的自动化装置)之间有一定的共体,也就是在它们具备的控制系统内有某些共同的规律。根据控制论研究表明,各种控制系统的控制过程都包含有信息的传递、变换与加工过程。控制系统工作的正常,取决于信息运 行过程的正常。所谓控制系统是指由被控制的对象及各种控制元件、部件、线路有机地结合成有一定控制功能的整体。从信息的观点来看,控制系统就是一部信息通道的网络或体系。机器与生物体内的控制系统有许多共同之处,于是人们对生物自动系统产生了极大的兴趣,并且采用物理学的、数学的甚至是技术的模型对生物系统开展进一步的研究。因此,控制理论成为联系生物学与工程技术的理论基础。成为沟通生物系统与技术系统的桥梁。
生物体和机器之间确实有很明显的相似之处,这些相似之处可以表现在对生物体研究的不同水平上。由简单的单细胞到复杂的器官系统(如神经系统)都存在着各种调节和自动控制的生理过程。我们可以把生物体看成是一种具有特殊能力的机器,和其它机器的不同就在于生物体还有适应外界环境和自我繁殖的能力。也可以把生物体比作一个自动化的工厂,它的各项功能都遵循着力学的定律;它的各种结构协调地进行工作;它们能对一定的信号和刺激作出定量的反应,而且能像自动控制一样,借助于专门的反馈联系组织以自我控制的方式进行自我调节。例如我们身体内恒定的体温、正常的血压、正常的血糖浓度等都是肌体内复杂的自控制系统进行调节的结果。控制论的产生和发展,为生物系统与技术系统的连接架起了桥梁,使许多工程人员自觉地向生物系统去寻求新的设计思想和原理。于是出现了这样一个趋势,工程师为了和生物学家在共同合作的工程技术领域中获得成果,就主动学习生物科学知识。
苍蝇与宇宙飞船
令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。
苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。
每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。
仿生学家由此得到启发,根据苍蝇嗅觉器的结构和功能,仿制成功一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。
这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。
从萤火虫到人工冷光
自从人类发明了电灯,生活变得方便、丰富多了。但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼。那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然。
在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”。
在众多的发光动物中,萤火虫是其中的一类。萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同。萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。因此,生物光是一种人类理想的光。
科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。
早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。
现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。
电鱼与伏特电池
自然界中有许多生物都能产生电,仅仅是鱼类就有500余种 。人们将这些能放电的鱼,统称为“电鱼”。
各种电鱼放电的本领各不相同。放电能力最强的是电鳐、电鲶和电鳗。中等大小的电鳐能产生70伏左右的电压,而非洲电鳐能产生的电压高达220伏;非洲电鲶能产生350伏的电压;电鳗能产生500伏的电压,有一种南美洲电鳗竟能产生高达880伏的电压,称得上电击冠军,据说它能击毙像马那样的大动物。
电鱼放电的奥秘究竟在哪里?经过对电鱼的解剖研究, 终于发现在电鱼体内有一种奇特的发电器官。这些发电器是由许多叫电板或电盘的半透明的盘形细胞构成的。由于电鱼的种类不同,所以发电器的形状、位置、电板数都不一样。电鳗的发电器呈棱形,位于尾部脊椎两侧的肌肉中;电鳐的发电器形似扁平的肾脏,排列在身体中线两侧,共有200万块电板;电鲶的发电器起源于某种腺体,位于皮肤与肌肉之间,约有500万块电板。单个电板产生的电压很微弱,但由于电板很多,产生的电压就很大了。
电鱼这种非凡的本领,引起了人们极大的兴趣。19世纪初,意大利物理学家伏特,以电鱼发电器官为模型,设计出世界上最早的伏打电池。因为这种电池是根据电鱼的天然发电器设计的,所以把它叫做“人造电器官”。对电鱼的研究,还给人们这样的启示:如果能成功地模仿电鱼的发电器官,那么,船舶和潜水艇等的动力问题便能得到很好的解决。
水母的顺风耳
“燕子低飞行将雨,蝉鸣雨中天放晴。”生物的行为与天气的变化有一定关系。沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临。
水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了。这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了。
原来,在蓝色的海洋上,由空气和波浪摩擦而产生的次声波 (频率为每秒8—13次),总是风暴来临的前奏曲。这种次声波人耳无法听到,小小的水母却很敏感。仿生学家发现,水母的耳朵的共振腔里长着一个细柄,柄上有个小球,球内有块小小的听石,当风暴前的次声波冲击水母耳中的听石时,听石就剌激球壁上的神经感受器,于是水母就听到了正在来临的风暴的隆隆声。
仿生学家仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官。把这种仪器安装在舰船的前甲板上,当接受到风暴的次声波时,可令旋转360°的喇叭自行停止旋转,它所指的方向,就是风暴前进的方向;指示器上的读数即可告知风暴的强度。这种预测仪能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。
⑽ 扭称实验都谁做过测出了什么扭称是谁发明
在物理学发展的前期,人们对微弱作用的测量感到困难,因为这些微弱的作用人们通常都感觉不到。后来,物理学家们想到了悬丝,要把一根丝拉断需要较大的力,而要使一根悬丝扭转,有一个很小的力就可以做到了。根据这个设想,法国物理学家库仑和英国的科学怪杰卡文迪许于1785年和1789年分别独立地发明了扭秤。扭秤实验可以测量微弱的作用,关键在于它把微弱的作用效果经过了两次放大:一方面微小的力通过较长的力臂可以产生较大的力矩,使悬丝产生一定角度的扭转;另一方面在悬丝上固定一平面镜,它可以把入射光线反射到距离平面镜较远的刻度尺上,从反射光线射到刻度尺上的光点的移动,就可以把悬丝的微小扭转显现出来。
1 库仑定律的发现
法国物理学家库仑于1785年利用他发明的扭秤实验,测定了电荷之间的作用力。扭秤如图1所示。库仑在实验中发现静电力与距离平方成反比,同时他也认识到了静电力与电量的乘积成正比,从而得到了完整的库仑定律。库仑定律第一次打开了电的数学理论的大门,使静电学进入了定量研究的新阶段,也为泊松等人发展电学理论奠定了基础。库仑还曾用扭秤证明了地磁场对磁针有力矩的作用,力矩大小与磁针对子午线偏斜角的正弦成正比,这构成了磁矩概念的基础。
2 验证万有引力定律,测定引力常量
英国科学怪杰卡文迪许于1789年用他发明的扭秤,验证了牛顿的万有引力定律的正确性,并测出了引力常量,扭秤如图2所示。卡文迪许的实验结果跟现代测量结果是很接近的,它使得万有引力定律有了真正的实用价值,卡文迪许也被人们称为第一个“能称出地球质量的人”。