导航:首页 > 创造发明 > 朱世杰数学创造

朱世杰数学创造

发布时间:2021-07-19 23:10:00

❶ 朱世杰是什么朝代,什么地方的人,代表著作和数学创造

朱世杰是元代燕山(今北京)人,代表著作《算学启蒙》与《四元玉鉴》,数学成就为四元消法。

一、朱世杰

朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。

二、代表著作

1、《算学启蒙》

本书的正文分3卷,20门,259问。卷上8门,113问,包括各种乘除捷算法和歌诀的应用题,以及各种比例算法。许多问题反映了元代的社会经济情况。

卷中7门,71问,是面积、体积及各种算术问题。卷下5门,75问,是关于分数运算、垛积(即高阶等差级数求和)、盈不足术、线性方程组解法、天元术及增乘开方法等问题。还处理了开方过程中系数变号的问题。

2、《四元玉鉴》

《四元玉鉴》分卷首、上卷、中卷、下卷,24门,收录288问,包括天元术232问,二元术36问,三元术13问,四元术7问。卷首四问是例题,有草(解题步骤),其他284问只有术而没有草。

1837年,清代数学家罗士琳补草,刊行《四元玉鉴细草》三卷。所有问题都与方程式或方程组有关。

介绍了朱世杰在多元高次方程组的解法─”四元术”、高阶等差级数的计算─”垛积术”以及”招差术”(有限差分)等方面的研究成果

三、数学创造

朱世杰的主要贡献是创造了一套完整的消未知数方法,称为四元消法.这种方法在世界上长期处于领先地位,直到18世纪,法国数学家贝祖(Bezout)提出一般的高次方程组解法,才超过朱世杰。

除了四元术以外,《四元玉鉴》中还有两项重要成就,即创立了一般的高阶等差级数求和公式及等间距四次内插法公式,后者通常称为招差术。

(1)朱世杰数学创造扩展阅读:

朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向更高的境界,形成宋元时期中国数学的最高峰。

《算学启蒙》是朱世杰在元成宗大德三年(1299)刊印的,它的体系完整,内容深入浅出,通俗易懂,是一部很著名的启蒙读物。这部著作后来流传到朝鲜、日本等国,出版过翻刻本和注释本,产生过一定的影响。

而《四元玉鉴》更是一部成就辉煌的数学名著。它受到近代数学史研究者的高度评价,认为是中国古代数学科学著作中最重要的、最有贡献的一部数学名著。

《四元玉鉴》成书于大德七年(1303),共三卷,24门,288问,介绍了朱世杰在多元高次方程组的解法——四元术,以及高阶等差级数的计算——垛积术、招差术等方面的研究和成果。

“天元术”是设“天元为某某”,即某某为x。但当未知数不止一个的时候,除设未知数天元(x)外,还需设地元(y)、人元(z)及物元(u),再列出二元、三元甚至四元的高次联方程组,然后求解。

这在欧洲,解联立一次方程开始于16世纪,关于多元高次联立方程的研究还是18至19世纪的事了。朱世杰的另一重大贡献是对于“垛积术”的研究。

他对于一系列新的垛形的级数求和问题作了研究,从中归纳为“三角垛”的公式,实际上得到了这一类任意高阶等差级数求和问题的系统、普遍的解法。

朱世杰还把三角垛公式引用到“招差术”中,指出招差公式中的系数恰好依次是各三角垛的积,这样就得到了包含有四次差的招差公式。

参考资料来源:网络——朱世杰

❷ 朱世杰在数学方面有什么成就

朱世杰,字汉卿,号松庭。燕山(今北京附近)人,生卒年不详,中国元代著名数学家。

中国在两汉时期就能解一次方程,古时候称为“方程术”。到了宋元时期又出现了具有世界意义的成就——天元术。那么,当未知数不止一个的时候,如何列出高次联立方程组求解呢?有这样一道古代数学题:“直田积八百六十四步,只云长阔共六十步,问阔及长各几步?答曰:阔二十四步,长三十六步”。这就是说,长方形田地的面积等于八六四平方步,长与宽的和是六十步,长与宽各多少步?此题列成方程式即是:xy=864,x+y=60,其中x、y分别表示田的长和宽,这是一个二元二次方程组问题,此题选自我国南宋数学家杨辉所著《田亩比类乘除算法》一书。这说明,我国宋代数学家就已结合生产实践对多元高次方程组有了研究。那么,有没有三元三次方程组,四元四次方程组呢?当然有。早在宋、元时期,我国数学家就圆满地解决了这个问题。

元代数学家朱世杰,在与他同时代的数学家秦九韶、李治所创立的一元高次方程的数值解法和天元术的基础上,进一步发展了“四元术”,创造了用消元法解二、三、四元高次方程组的方法。

朱世杰这一重大发明,都记录在他的杰作《四元玉鉴》一书中。

所谓四元术,就是用天元(x)、地元(y)、人元(z)、物元(u)等四元表示四元高次方程组。朱世杰不仅提出了多元(最高到四元)高次联立方程组的算筹摆置记述方法,而且把《九章算术》等书中四元一次联立方程解法推广到四元高次联立方程组。四元术用四元消法解题,把四元四式消去一元变成三元三式,再消去一元变成二元二式,再消去一元,就得到一个只含一元的天元开方式,然后用增乘开方法求正根。这和现代解方程组的方法基本一致。

在西方,在16世纪以前,人们长期把不同的未知数用同一个符号来表示,以至含混不清。直到公元1559年,法国数学家彪特才开始用不同的字母A、B、C……来表示不同的未知数。而我国,朱世杰早在公元1303年就巧妙地解决了这个问题,他用天、地、人、物这四元来表示四个未知数,即相当于现在的x、y、z、u。

而关于四元高次联立方程的求解,欧洲直到1775年,法国数学家别朱在他的《代数方程的一般理论》一书中才得以系统地解决。但这已比朱世杰晚了四五百年。

四元术是我国数学家的又一辉煌成就。它达到了当时世界数学发展的高峰。

❸ 宋元数学四大家的朱世杰

朱世杰长期从事数学研究和教育事业,以数学名家周游各地20多年,四方登门来学习的人很多。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)。
朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向更高的境界,形成宋元时期中国数学的最高峰。《算学启蒙》是朱世杰在元成宗大德三年(1299)刊印的,全书共三卷,20门,总计259个问题和相应的解答。这部书从乘除运算起,一直讲到当时数学发展的最高成就“天元术”,全面介绍了当时数学所包含的各方面内容。
它的体系完整,内容深入浅出,通俗易懂,是一部很著名的启蒙读物。这部著作后来流传到朝鲜、日本等国,出版过翻刻本和注释本,产生过一定的影响。而《四元玉鉴》更是一部成就辉煌的数学名著。它受到近代数学史研究者的高度评价,认为是中国古代数学科学著作中最重要的、最有贡献的一部数学名著。《四元玉鉴》成书于大德七年(1303),共三卷,24门,288问,介绍了朱世杰在多元高次方程组的解法——四元术,以及高阶等差级数的计算——垛积术、招差术等方面的研究和成果。
“天元术”是设“天元为某某”,即某某为x。但当未知数不止一个的时候,除设未知数天元(x)外,还需设地元(y)、人元(z)及物元(u),再列出二元、三元甚至四元的高次联方程组,然后求解。这在欧洲,解联立一次方程开始于16世纪,关于多元高次联立方程的研究还是18至19世纪的事了。朱世杰的另一重大贡献是对于“垛积术”的研究。他对于一系列新的垛形的级数求和问题作了研究,从中归纳为“三角垛”的公式,实际上得到了这一类任意高阶等差级数求和问题的系统、普遍的解法。朱世杰还把三角垛公式引用到“招差术”中,指出招差公式中的系数恰好依次是各三角垛的积,这样就得到了包含有四次差的招差公式。
他还把这个招差公式推广为包含任意高次差的招差公式,这在世界数学史上是第一次,比欧洲牛顿的同样成就要早近4个世纪。正因为如此,朱世杰和他的著作《四元玉鉴》才享有巨大的国际声誉。近代日本、法国、美国、比利时以及亚、欧、美许多国家都有人向本国介绍《四元玉鉴》。美国已故的著名的科学史家萨顿是这样评说朱世杰的:“(朱世杰)是中华民族的、他所生活的时代的、同时也是贯穿古今的一位最杰出的数学科学家。”“《四元玉鉴》是中国数学著作中最重要的,同时也是中世纪最杰出的数学著作之一。它是世界数学宝库中不可多得的瑰宝。”从此中可以看出,宋元时期的科学家及其著作,在世界数学史上起到了不可估量的作用。 朱世杰的主要贡献是创造了一套完整的消未知数方法,称为四元消法.这种方法在世界上长期处于领先地位,直到18世纪,法国数学家贝祖(Bezout)提出一般的高次方程组解法,才超过朱世杰。除了四元术以外,《四元玉鉴》中还有两项重要成就,即创立了一般的高阶等差级数求和公式及等间距四次内插法公式,后者通常称为招差术.此书代表着宋元数学的最高水平,美国科学史家萨顿(G.Sarton)称赞它“是中国数学著作中最重要的一部,同时也是中世纪的杰出数学著作之一”。朱世杰处于中国传统数学发展的鼎盛时期,当时社会上“尊崇算学,科目渐兴”,数学著作广为传播。
从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。《四元玉鉴》成书于1303年。全书共3卷,24门,288问,主要论述高次方程组的解法(这也是朱世杰的最大贡献)、高阶等差级数求和以及高次内插法等内容。是流传至今且对四元术进行系统论述的重要代表作。
在天元术的基础上,朱世杰建立了“四元高次方程理论”,他把常数项放在中央(即“太”),然后“立天元一于下,地元一于左,人元一于右,物元一于上”,“天、地、人、物”这四“元”代表未知数,(即相当于现在的x、y、z、w,)四元的各次幂放在上、下、左、右四个方向上,其它各项放在四个象限中。如果用现代的x、y、z、w表示天、地、人、物,那我们可以把朱世杰列高次多元方程的方法表示:而上面的两个图形“四元一次筹式”与“四元二次筹式”所表示的方程分别为:x+y+z+w=0,
用上述方法列出四元高次方程后,再联立方程组进行解方程组,方法是用消元方法解答,先择一元为未知数,其它元组成的多项式作为这未知数的系数,然后把四元四式消去一元,变成三元三式,再消去一元变二元二式,再消去一元,就得到只含一元的天元开方式,然后用增乘开方法求得正根。这是线性方法组解法的重大发展,在西方,较有系统地研究多元方程组要等到16世纪。高阶等差级数求和与高次内插法也是《四元玉鉴》的重要内容。由许多求和问题中的一系列三角垛公式可归纳得公式。朱世杰给出了上式中当p=1,2,……6时的公式。此外,还有其它高阶等差级数求和公式。在招差法方面,朱世杰相当于给出了招差公式,这比西方要早400多年。
美国著名的科学史家萨顿评论说:“朱世杰是他所生存时代的,同时也是贯穿古今的一位最杰出的数学家”,《四元玉鉴》是“中国数学著作中最重要的一部,同时也是整个中世纪最杰出的数学著作之一。”朱世杰不仅是一名杰出的数学家,他还是一位数学教育家,曾周游四方各地,教授生徒20余年。并亲自编著数学入门书,称为《算学启蒙》。在《算学启蒙》卷下中,朱世杰提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。

❹ 朱世杰在数学方面的造诣有哪些

朱世杰,字汉卿,号松庭。燕山(今北京附近)人,生卒年不详,中国元代著名数学家。

中国在两汉时期就能解一次方程,古时候称为“方程术”。到了宋元时期又出现了具有世界意义的成就——天元术。那么,当未知数不止一个的时候,如何列出高次联立方程组求解呢?有这样一道古代数学题:“直田积八百六十四步,只云长阔共六十步,问阔及长各几步?答曰:阔二十四步,长三十六步”。这就是说,长方形田地的面积等于八六四平方步,长与宽的和是六十步,长与宽各多少步?此题列成方程式即是:xy=864,x+y=60,其中x、y分别表示田的长和宽,这是一个二元二次方程组问题,此题选自我国南宋数学家杨辉所著《田亩比类乘除算法》一书。这说明,我国宋代数学家就已结合生产实践对多元高次方程组有了研究。那么,有没有三元三次方程组,四元四次方程组呢?当然有。早在宋、元时期,我国数学家就圆满地解决了这个问题。元代数学家朱世杰,在与他同时代的数学家秦九韶、李治所创立的一元高次方程的数值解法和天元术的基础上,进一步发展了“四元术”,创造了用消元法解二、三、四元高次方程组的方法。朱世杰这一重大发明,都记录在他的杰作《四元玉鉴》一书中。

❺ 元代数学家朱世杰在数学方面做了怎样的贡献

元代最有名的大数学家朱世杰(约1280~约1350)是河北人,他“周流四方,复游广陵(扬州),踵门而学者云集”(莫若:《四元玉鉴序》)。朱世杰是一位集当时数学之大成的民间数学家。他的成就不必多举,仅《四元玉鉴》一部就够了。这是一部讲多元高次方程组和高阶等差级数问题的书,其中高次招差的一般公式和后来牛顿的公式完全一致。他的研究水平已超出了秦九韶和李冶。

❻ 朱世杰是怎样创造四元术的

朱世杰,字汉卿,号松庭。燕山(今北京附近)人,生卒年不详,中国元代著名数学家。

中国在两汉时期就能解一次方程,古时候称为“方程术”。到了宋元时期又出现了具有世界意义的成就——天元术。那么,当未知数不止一个的时候,如何列出高次联立方程组求解呢?有这样一道古代数学题:“直田积八百六十四步,只云长阔共六十步,问阔及长各几步?答曰:阔二十四步,长三十六步”。这就是说,长方形田地的面积等于八六四平方步,长与宽的和是六十步,长与宽各多少步?此题列成方程式即是:xy=864,x+y=60,其中x、y分别表示田的长和宽,这是一个二元二次方程组问题,此题选自我国南宋数学家杨辉所著《田亩比类乘除算法》一书。这说明,我国宋代数学家就已结合生产实践对多元高次方程组有了研究。那么,有没有三元三次方程组,四元四次方程组呢?当然有。早在宋、元时期,我国数学家就圆满地解决了这个问题。

元代数学家朱世杰,在与他同时代的数学家秦九韶、李治所创立的一元高次方程的数值解法和天元术的基础上,进一步发展了“四元术”,创造了用消元法解二、三、四元高次方程组的方法。

朱世杰这一重大发明,都记录在他的杰作《四元玉鉴》一书中。

所谓四元术,就是用天元(x)、地元(y)、人元(z)、物元(u)等四元表示四元高次方程组。朱世杰不仅提出了多元(最高到四元)高次联立方程组的算筹摆置记述方法,而且把《九章算术》等书中四元一次联立方程解法推广到四元高次联立方程组。四元术用四元消法解题,把四元四式消去一元变成三元三式,再消去一元变成二元二式,再消去一元,就得到一个只含一元的天元开方式,然后用增乘开方法求正根。这和现代解方程组的方法基本一致。

在西方,在16世纪以前,人们长期把不同的未知数用同一个符号来表示,以至含混不清。直到公元1559年,法国数学家彪特才开始用不同的字母A、B、C……来表示不同的未知数。而我国,朱世杰早在公元1303年就巧妙地解决了这个问题,他用天、地、人、物这四元来表示四个未知数,即相当于现在的x、y、z、u。

而关于四元高次联立方程的求解,欧洲直到1775年,法国数学家别朱在他的《代数方程的一般理论》一书中才得以系统地解决。但这已比朱世杰晚了四五百年。

四元术是我国数学家的又一辉煌成就。它达到了当时世界数学发展的高峰。

❼ 数学家朱世杰在历史上有哪些贡献

朱世杰是元代数学家?教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”?“贯穿古今的一位最杰出的数学家”之誉。与秦九韶?杨辉?李冶并称为“宋元数学四大家”。

朱世杰的著作《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜?日本数学的发展。《四元玉鉴》则是我国宋元时期数学高峰的又一个标志,其中最杰出的数学创作有“四元术”?“垛积法”与“招差术”。

朱世杰的青少年时代,大约相当于蒙古灭金之后。元统一全国后,朱世杰曾以数学家的身份周游各地20余年,向他求学的人很多。他到广陵时,史载“踵门而学者云集”。

就当时的数学发展情况而论,在河北南部和山西南部地区,出现了一个以“天元术”为代表的数学研究中心。

当时的北方,正处于天元术逐渐发展成为二元?三元术的重要时期,朱世杰较好地继承了当时北方数学的主要成就,把“天元术”这一成就拓展为四元术。

朱世杰除继承和发展了北方的数学成就之外,还吸收了当时南方的数学成就,比如各种日用?商用数学和口诀?歌诀等。

朱世杰在经过长期游学?讲学之后,全面继承了前人数学成果,既吸收了北方的天元术,又吸收了南方的正负开方术及通俗歌诀等,在此基础上进行了创造性地研究,写成以总结和普及当时各种数学知识为宗旨的《算学启蒙》,又写成四元术的代表作《四元玉鉴》,先后于1299年和1303年刊印。

《算学启蒙》全书共3卷,20门,总计259个问题和相应的解答。这部书从乘除运算起,一直讲至当时数学发展的最高成就“天元术”,全面介绍了当时数学所包含的各方面内容。

卷上共分为8门,收有数学问题113个。其内容为:乘数为一位数的乘法?乘数首位数为一的乘法?多位数乘法?首位除数为一的除法?多位除数的除法?各种比例问题如计算利息?税收等。

其中“库司解税门”第七问题记有“今有税务法则三十贯纳税一贯”,同门第十?第十一两问中均载有“两务税”等,都是当时实际施行的税制。

朱世杰在书中的自注中也常写有“而今有之”?“而今市舶司有之”等,可见书中的各种数据大都来自当时的社会实际。因此,书中提到的物价包括地价?水稻单位面积产量等,对了解元代社会的经济情况也是有用的。

卷中共7门,71问。内容有各种田亩面积?仓窖容积?工程土方?复杂的比例计算等。

卷下共5门,75问。内容包括各种分数计算?垛和问题?盈不足算法?一次方程解法?天元术等。

其中的主要贡献是创造了一套完整的消未知数方法,称为“四元消法”。这种方法在世界上长期处于领先地位,直至18世纪,法国数学家贝祖提出一般的高次方程组解法,才能与朱世杰一争高下。

《算学启蒙》体系完整,内容深入浅出,通俗易懂,是一部很著名的启蒙读物。这部著作后来流传到朝鲜?日本等国,出版过翻刻本和注释本,产生过一定的影响。

《四元玉鉴》全书共3卷,24门,288问。书中所有问题都与求解方程或求解方程组有关。

比如,四元的问题有7问,三元者13问,二元者36问,一元者232问。可见,多元高次方程组的解法即“四元术”是《四元玉鉴》的主要内容,也是全书的主要成就。

《四元玉鉴》中的另一项突出的成就是关于高阶等差级数的求和问题。在此基础上,朱世杰还进一步解决了高次差的招差法问题。这是他在“垛积术”?“招差术”等方面的研究和成果。

这些成果是我国宋元数学高峰的又一个标志。其中讨论了多达四元的高次联立方程组解法,联系在一起的多项式的表达和运算以及消去法,已接近近世代数学,处于世界领先地位,比西方早400年。

《四元玉鉴》是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价。

美国科学史家萨顿称赞说道:

《四元玉鉴》是中国数学著作中最重要的一部,同时也是中世纪的杰出数学著作之一。

朱世杰是他所生存时代的,同时也是贯穿古今的一位最杰出的数学家。

如此之高的评价,朱世杰和他的著作都是当之无愧的。

朱世杰不仅是一位杰出的数学家,他还是一位数学教育家,曾周游四方各地,教授生徒20余年。并亲自编著数学入门书《算学启蒙》。在《算学启蒙》卷下中,朱世杰提出已知勾弦和?股弦和求解勾股形的方法,补充了《九章算术》的不足。

朱世杰身处于我国传统数学发展的鼎盛时期,当时社会上“尊崇算学,科目渐兴”,数学著作广为传播。

总之,朱世杰在数学科学上,全面地继承了秦九韶?李冶?杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》?《四元玉鉴》等著名作品,把我国古代数学推向了更高的境界,形成宋元时期我国数学的最高峰。

朱世杰

❽ 古代数学家朱世杰在数学界的成就

朱世杰的主要贡献是创造了一套完整的消未知数方法,称为四元消法.这种方法在世界上长期处于领先地位,直到18世纪,法国数学家贝祖(Bezout)提出一般的高次方程组解法,才超过朱世杰。除了四元术以外,《四元玉鉴》中还有两项重要成就,即创立了一般的高阶等差级数求和公式及等间距四次内插法公式,后者通常称为招差术.此书代表着宋元数学的最高水平,美国科学史家萨顿(G.Sarton)称赞它“是中国数学著作中最重要的一部,同时也是中世纪的杰出数学著作之一”。朱世杰处于中国传统数学发展的鼎盛时期,当时社会上“尊崇算学,科目渐兴”,数学著作广为传播。
对多元高次方程组解法、高阶等差级数求和,高次内插法都有深入研究,他著有《算学启蒙》(1299年)、《四元玉鉴》(1303年)各3卷,在后者中讨论了多达四元的高次联立方程组解法,联系在一起的多项式的表达和运算以及消去法,已接近近世代数学,处于世界领先地位,他通晓高次招差法公式,比西方早四百年,中外数学史家都高度评价朱世杰和他的名著《四元玉鉴》。
从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。《四元玉鉴》成书于1303年。全书共3卷,24门,288问,主要论述高次方程组的解法(这也是朱世杰的最大贡献)、高阶等差级数求和以及高次内插法等内容。是流传至今且对四元术进行系统论述的重要代表作。
在天元术的基础上,朱世杰建立了“四元高次方程理论”,他把常数项放在中央(即“太”),然后“立天元一于下,地元一于左,人元一于右,物元一于上”,“天、地、人、物”这四“元”代表未知数,(即相当于如今的x、y、z、w,)四元的各次幂放在上、下、左、右四个方向上,其它各项放在四个象限中。如果用现代的x、y、z、w表示天、地、人、物,那我们可以把朱世杰列高次多元方程的方法表示:而上面的两个图形“四元一次筹式”与“四元二次筹式”所表示的方程分别为:x+y+z+w=0,
用上述方法列出四元高次方程后,再联立方程组进行解方程组,方法是用消元方法解答,先择一元为未知数,其它元组成的多项式作为这未知数的系数,然后把四元四式消去一元,变成三元三式,再消去一元变二元二式,再消去一元,就得到只含一元的天元开方式,然后用增乘开方法求得正根。这是线性方法组解法的重大发展,在西方,较有系统地研究多元方程组要等到16世纪。高阶等差级数求和与高次内插法也是《四元玉鉴》的重要内容。由许多求和问题中的一系列三角垛公式可归纳得公式。朱世杰给出了上式中当p=1,2,……6时的公式。此外,还有其它高阶等差级数求和公式。在招差法方面,朱世杰相当于给出了招差公式,这比西方要早400多年。
美国著名的科学史家萨顿评论说:“朱世杰是他所生存时代的,同时也是贯穿古今的一位最杰出的数学家”,《四元玉鉴》是“中国数学著作中最重要的一部,同时也是整个中世纪最杰出的数学著作之一。”朱世杰不仅是一名杰出的数学家,他还是一位数学教育家,曾周游四方各地,教授生徒20余年。并亲自编著数学入门书,称为《算学启蒙》。在《算学启蒙》卷下中,朱世杰提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。

著作
《算学启蒙》(1299年):曾传到朝鲜和日本
《四元玉鉴》(1303年)
重要贡献
四元术(四元高次方程式)
垛积术(高阶等差级数)
招差术

参考:http://ke.so.com/doc/5330794.html#5330794-5565968-4
http://ke..com/view/18657.htm#1_4

❾ 朱世杰我国古代数学科学做出了什么贡献

朱世杰,生平不详,字汉卿,号松庭,燕山(今北京)人,元朝杰出的数学家。他长期从事数学研究和教育事业,主要著作有《四元玉鉴》和《算学启蒙》。

13世纪末,中国为元朝所统一,遭到破坏的经济和文化又很快繁荣起来。蒙古统治者为了兴邦安国,开始尊重知识,大量选拔人才,把各科学的发展推向了新的高峰。

当时忽必烈网罗了一大批汉族知识分子组成智囊团,其中就有王恂、郭守敬、李治等人,这个智囊团中的人物,对数学和历法都很精通。

这时的朱世杰也继承了北方数学的主要成就——天元术,并将其由二元、三元推广至四元方程组的解法。朱世杰除了接受北方的数学成就之外,他还吸收了南方的数学成就,尤其是各种日用算法、商用算术和通俗化的歌诀等等。

在元灭南宋以前,南北之间的交往,特别是学术上的交往几乎是断绝的。南方的数学家对北方的天元术毫无所知,而北方的数学家也很少受到南方的影响。朱世杰曾“周游四方”,经过20多年的游学、讲学等活动,他终于在1299年和1303年,在扬州刊刻了他的两部数学杰作——《算学启蒙》和《四元玉鉴》。

《算学启蒙》包括了从乘除法运算及其捷算法到开方、天元术、方程术等当时数学各方面的内容,由浅入深,形成了一个较完整的体系。正文前,列出了九九歌诀、归除歌诀、斤两化零歌、筹算识位制度、大小数进位法、度量衡制度、圆周诸率、正负数加减乘法法则、开方法则等18条作为总括,作为全书的预备知识,其中正负数乘法法则不仅在中国数学著作中,在世界上也是首次出现。许多歌诀比杨辉的更加完整准确,有的已与现代珠算口诀几乎完全一致。

《四元玉鉴》是朱世杰最杰出的作品,在这部书中记载了他对多元高次方程组解法、高阶等差级数求和、高次内插法等问题的见解,受到近代数学史研究者的高度评价,认为是中国古代数学科学著作中最重要的、最有贡献的一部数学名著。

朱世杰的另一重大贡献是对于“垛积术”的研究。他对于一系列新的垛形的级数求和问题作了研究,从中归纳出“三角垛”的公式,实际上得到了这一类任意高阶等差级数求和问题的系统、普遍的解法。朱世杰还把三角垛公式引用到“招差术”中,指出招差公式中的系数恰好依次是各三角垛的积,这样就得到了包含有四次差的招差公式。他还把这个招差公式推广为包含任意高次差的招差公式,这在世界数学史上是第一次。

在中国数学史上,朱世杰第一次正式提出了正负数乘法的正确法则;他对球体表面积的计算问题作了探讨,这是我国古代数学典籍中唯一的一次讨论,结论虽不正确,但创新精神是可贵的。在《算学启蒙》中,他记载了完整的“九归除法”口诀,和现在流传的珠算归除口诀几乎完全一致。

总之,朱世杰继承和发展了前人的数学成就,为推进我国古代数学科学的发展做出了不可磨灭的贡献。朱世杰不愧是我国乃至世界数学史上负有盛名的数学家。

❿ 朱世杰在数学上有什么成就

朱世杰是元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”、“贯穿古今的一位最杰出的数学家”之誉。与秦九韶、杨辉、李冶并称为“宋元数学四大家”。

朱世杰的著作《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是我国宋元时期数学高峰的又一个标志,其中最杰出的数学创作有“四元术”、“垛积法”与“招差术”。

朱世杰的青少年时代,大约相当于蒙古灭金之后。元统一全国后,朱世杰曾以数学家的身份周游各地20余年,向他求学的人很多。他到广陵时,史载“踵门而学者云集”。

就当时的数学发展情况而论,在河北南部和山西南部地区,出现了一个以“天元术”为代表的数学研究中心。

当时的北方,正处于天元术逐渐发展成为二元、三元术的重要时期,朱世杰较好地继承了当时北方数学的主要成就,他把“天元术”这一成就拓展为“四元术”。

朱世杰除继承和发展了北方的数学成就之外,还吸收了当时南方的数学成就,比如各种日用、商用数学和口诀、歌诀等。

朱世杰在经过长期游学、讲学之后,全面继承了前人数学成果,既吸收了北方的天元术,又吸收了南方的正负开方术及通俗歌诀等,在此基础上进行了创造性的研究,写成以总结和普及当时各种数学知识为宗旨的《算学启蒙》,又写成四元术的代表作《四元玉鉴》,先后于1299年和1303年刊印。

《算学启蒙》全书共3卷,20门,总计259个问题和相应的解答。这部书从乘除运算起,一直讲至当时数学发展的最高成就“天元术”,全面介绍了当时数学所包含的各方面内容。

卷上共分为8门,收有数学问题113个。其内容为:乘数为一位数的乘法、乘数首位数为一的乘法、多位数乘法、首位除数为一的除法、多位除数的除法、各种比例问题如计算利息、税收等。

其中“库司解税门”第七问题记有“今有税务法则三十贯纳税一贯”,同门第十、第十一两问中均载有“两务税”等,都是当时实际施行的税制。

朱世杰在书中的自注中也常写有“而今有之”、“而今市舶司有之”等,可见书中的各种数据大都来自当时的社会实际。因此,书中提到的物价包括地价、水稻单位面积产量等,对了解元代社会的经济情况也是有用的。

卷中共7门,71问。内容有各种田亩面积、仓窖容积、工程土方、复杂的比例计算等。卷下共5门,75问。内容包括各种分数计算、垛积问题、盈不足算法、一次方程解法、天元术等。

其中的主要贡献是创造了一套完整的消未知数方法,称为“四元消法”。这种方法在世界上长期处于领先地位,直至18世纪,法国数学家贝祖提出一般的高次方程组解法,才与朱世杰一争高下。

《算学启蒙》体系完整,内容深入浅出,通俗易懂,是一部很著名的启蒙读物。这部著作后来流传到朝鲜、日本等国,出版过翻刻本和注释本,产生过一定的影响。

《四元玉鉴》全书共3卷,24门,288问。书中所有问题都与求解方程或求解方程组有关。

比如,四元的问题有7问,三元者13问,二元者36问,一元者232问。可见,多元高次方程组的解法即“四元术”是《四元玉鉴》的主要内容,也是全书的主要成就。

《四元玉鉴》中的另一项突出的成就是关于高阶等差级数的求和问题。在此基础上,朱世杰还进一步解决了高次差的招差法问题。这是他在“垛积术”、“招差术”等方面的研究和成果。

这些成果是我国宋元数学高峰的又一个标志。其中讨论了多达四元的高次联立方程组解法,联系在一起的多项式的表达和运算以及消去法,已接近近世代数学,处于世界领先地位,比西方早400年。

《四元玉鉴》是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价。美国著名的科学史家萨顿称赞说道:

是中国数学著作中最重要的一部,同时也是中世纪的杰出数学著作之一。

他还评论说:

朱世杰是他所生存时代的,同时也是贯穿古今的一位最杰出的数学家。

如此之高的评价,朱世杰和他的著作都是当之无愧的。

朱世杰不仅是一名杰出的数学家,他还是一位数学教育家。他曾周游四方各地,并亲自编著数学入门书《算学启蒙》。在《算学启蒙》卷下中,朱世杰提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。

总之,朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向了更高的境界。

阅读全文

与朱世杰数学创造相关的资料

热点内容
投诉华尔街英语 浏览:202
榆次区公共卫生服务中心 浏览:990
申发明5G 浏览:815
矛盾纠纷排查调处工作协调会议记录 浏览:94
版权贸易十一讲 浏览:370
综治办矛盾纠纷排查调处工作总结 浏览:903
知识产权局专业面试 浏览:75
马鞍山市是哪个省的 浏览:447
马鞍山市保安 浏览:253
股权转让样本 浏览:716
工程管理保证书 浏览:198
社区矛盾纠纷排查汇报 浏览:352
新疆公共就业服务网登陆 浏览:316
侵权著作权案件审理指南上海 浏览:145
马鞍山陆建双 浏览:853
北京东灵通知识产权服务有限公司西安分公司 浏览:6
海南证券从业资格证书领取 浏览:846
成果有男票吗 浏览:828
知识产权法04任务0001答案 浏览:691
马鞍山519日停电通知 浏览:977