导航:首页 > 创造发明 > 数学是发现的还是发明的

数学是发现的还是发明的

发布时间:2021-07-19 13:32:13

Ⅰ 数学是我们的发明还是发现呢

在数学中有些东西,似乎只是“人的作品”,用“发明”要恰当些。比如:在证明某些结果的过程中,数学家发现必须引进某种巧妙的而同时并非唯一的构想,以得到某种特别的结果。然而在另一些情况下,用术语“发现”的确比“发明”更贴切得多。如复数。当它引入后,人们从它的
结构中得到的东西比预先放进的东西多得多。人们可以认为,在这种情形下数学家和“上帝的杰作”邂逅。也就是说,复数与复数的性质都是客观的,既非任何人的发明,也不是任何一群数学家的有意设计。它不是人类思维的发明:它是一个发现!数学家们只是重新“发现”了它们!数
学家实际上是发现现成的真理,这些真理的存在完全独立于数学家的活动之外。数学对象是一种独立的、不依赖于人类思维的客观存在。
我们可以引述两位伟大数学家的意见。
阿基米德认为,数学关系的客观存在与人类能否解释它们无关。
牛顿说:“我不知道世人对我怎样看法,我只觉得自己好像是在海滨游戏的孩子,有时为找到一块光滑的石子或比较美丽的贝壳而高兴,而真理的海洋仍然在我的前面未被发现。
可见,再伟大的数学家也仅不过是能够瞥见永恒真理一部分的幸运者。
当然,数学与客观实在的联系并不总是如此紧密有力。如四元数以及各种超复数的引入就是反对这种联系者提出的例证。四元数的引入有着物理背景,但对其他的超复数就连这种背景也失去了。它们似乎已是数学家的自由创造物。这类现象在数学中事实上是不少见的。数学概念的第一次
抽象往往与外界世界有着紧密联系。但这些概念一旦引入数学中,就往往会进一步抽象化。当这种抽象化达到一定程度时,它与外界就似乎失去了关联。
只驰骋于数学内部的逻辑,而不关心数学与外部的联系,却做出重要数学贡献的数学家不在少数。伴随着数学抽象程度越来越高,尤其是数学公理化思想的盛行,一段时间内否定数学与外界的联系的观点在数学家中变得相当普遍。
但诚如庞加莱在1897年苏黎世第一届国际数学家代表大会的报告中所指出的:“……如果允许我继续拿这些优美艺术作比,那么把外部世界置诸脑后的数学家,就好比是懂得如何把色彩与形态和谐地结合起来但却没有模特儿的画家,他们的创造力很快就会枯竭。”数学发展的历史证明了
他是很有见地的。在他作出这个形象的比喻后80年,在丹麦召开了专门讨论数学同现实世界关系的国际性学术讨论会,更多的数学家相信数学同现实世界是密切相关的,数学反映了现实世界并在现实的应用中得到发展。

Ⅱ TED:数学是发现的,还是发明的

发明的。数学是一种人造思维工具,是人的一种抽象认识,不是所谓的自然造物,自然界里既没有“一”,也没有“乘”,所以是发明而非发现。

Ⅲ 数学是被发现的还是被发明的

数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”

自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。

从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。

对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。

Ⅳ 数学是发明还是发现我辩发明!!

在数学中有些东西,似乎只是“人的作品”,用“发明”要恰当些。比如:在证明某些结果的过程中,数学家发现必须引进某种巧妙的而同时并非唯一的构想,以得到某种特别的结果。然而在另一些情况下,用术语“发现”的确比“发明”更贴切得多。如复数。当它引入后,人们从它的结构中得到的东西比预先放进的东西多得多。人们可以认为,在这种情形下数学家和“上帝的杰作”邂逅。也就是说,复数与复数的性质都是客观的,既非任何人的发明,也不是任何一群数学家的有意设计。它不是人类思维的发明:它是一个发现!数学家们只是重新“发现”了它们!数学家实际上是发现现成的真理,这些真理的存在完全独立于数学家的活动之外。数学对象是一种独立的、不依赖于人类思维的客观存在。
我们可以引述两位伟大数学家的意见。
阿基米德认为,数学关系的客观存在与人类能否解释它们无关。
牛顿说:“我不知道世人对我怎样看法,我只觉得自己好像是在海滨游戏的孩子,有时为找到一块光滑的石子或比较美丽的贝壳而高兴,而真理的海洋仍然在我的前面未被发现。可见,再伟大的数学家也仅不过是能够瞥见永恒真理一部分的幸运者。
当然,数学与客观实在的联系并不总是如此紧密有力。如四元数以及各种超复数的引入就是反对这种联系者提出的例证。四元数的引入有着物理背景,但对其他的超复数就连这种背景也失去了。它们似乎已是数学家的自由创造物。这类现象在数学中事实上是不少见的。数学概念的第一次抽象往往与外界世界有着紧密联系。但这些概念一旦引入数学中,就往往会进一步抽象化。当这种抽象化达到一定程度时,它与外界就似乎失去了关联。只驰骋于数学内部的逻辑,而不关心数学与外部的联系,却做出重要数学贡献的数学家不在少数。伴随着数学抽象程度越来越高,尤其是数学公理化思想的盛行,一段时间内否定数学与外界的联系的观点在数学家中变得相当普遍。
但诚如庞加莱在1897年苏黎世第一届国际数学家代表大会的报告中所指出的:“……如果允许我继续拿这些优美艺术作比,那么把外部世界置诸脑后的数学家,就好比是懂得如何把色彩与形态和谐地结合起来但却没有模特儿的画家,他们的创造力很快就会枯竭。”数学发展的历史证明了他是很有见地的。在他作出这个形象的比喻后80年,在丹麦召开了专门讨论数学同现实世界关系的国际性学术讨论会,更多的数学家相信数学同现实世界是密切相关的,数学反映了现实世界并在现实的应用中得到发展。

所以说,是发明还是发现,就看你从什么角度去论证,找什么证据了。比如说设未知数X,Y的这种方法就是数学家的发明,而不是发现,希望上面的话对你有所帮助。

Ⅳ 数学规律是被发现的还是被发明的

这问题貌似哲理性。
地理学家发现未知地域,生物学家寻找新物种,化学家发现新化合物。数学家则是在几何图形和数字中发现新物体以及它们的特征。不过呢,数学上的物体有些特别:我们不能把它们送到博物馆或者动物园展览。它们其实是抽象的物体,是我们想象和思维的产物。有点像柏拉图式的观点。对于古典时代的哲学家柏拉图而言,数学极其重要。因为数学为他“所有可感知物背后都存在一个理想原型”这一观点提供了有力的支持。以下在数学上是不言而喻的:不管我们在沙地上,纸张上画圈圈还是在电脑屏幕前观察它,数学观点中关注的始终是哪个“理想”的圆,而不是沙地上的犁沟,纸张上的石墨或者屏幕上的像素点。不过呢,柏拉图信念的关键在于,理想物体是现实物体的最高阶段。在柏拉图看来,所有可感知的物体,也就是所有我们看到的,听到的,触及到的,闻到或是尝到的东西,都只不过是相应理想物体的单调影射而已。柏拉图主义者确信数学特征是被发现的,因为理想物体早已存在于柏拉图理想的天空中。
现代数学的观点与之恰好相反。以其形式的观点看来,数学只是游戏而已。这不代表允许做一切事或者什么都不重要。恰恰相反:游戏除了游戏规则之外就什么也没有了!玩家只能按游戏规则行事。数学中,公理就是游戏规则,阐述的是基本概念的使用方法。在游戏规则之外没有更高的,隐藏的实在。数学教科书的结构就是这样的。一句话,数学是人类创造的游戏,是被发明出来的。
这就像国际象棋的规则只规定如何走子,却既不说明“帅”是“什么”,也不解释走子的“意义”。
现代数学只关心公理和逻辑法则,且遵守游戏规则。认为几乎能在物质上感知到这些东西。不管是在探索质数组无限性的证明还是在研究集合体系是否比实数体系范围更广,抑或是在确定五维空间中直线的特殊坐标时,现代数学家始终能感知到他们的研究对象或者干脆深信不疑。因为,在他们看来,摒除众多数学家的信念因素,柏拉图主义是站不住脚步的。数学家P。J戴维斯恰如其分地描述了这种情景:典型的数学家在工作日是柏拉图主义者,在休息日又是形式主义者。

Ⅵ 数学应该说是被发现还是被发明

当然是发明了,数学本身不自然科学,它只是作为一种工具应用到各个领域。就像函数只是人们根据需要人为的建立起几组数之间的对应关系,而不是这几组数之间本身就存在这种对应关系。

Ⅶ 数学是我们发现的还是发明的呢

数学是一种发现.
科学界的任何规律都只是人通过各种途径发现的宇宙万物中已存在的规律.而那些规律的发明者(制订者)是创造宇宙万物的上帝.

Ⅷ 数学是人类的发明,还是发现

每一位数学家都会支持孔涅。我们都感到整数、圆在某种抽象意义上是真实存在的,并且柏拉图的观点十分有吸引力。但是,我们真的能支持它吗?假如宇宙是一维空间,或者甚至是离散的,很难想象几何学在这个一维空间中是如何孕育发展的。对人类来说,我们对整数似乎更在行,计数是真正的原始概念。但是想象一下,如果文明不是出现在人类之中,而是出现在潜藏于太平洋深处、独居并与世隔绝的水母之中,情况又会如何?水母不会有个体的体验,只会感觉到周围的水。运动、温度和压力将给它提供基本的感知经验。在这样的环境中,就不会出现离散的概念,也不需要技术。

一般情况下,概念是被发明的。比如质数这一基本概念是被数学家发明的,但是,关于质数的相关定理却是人们的发现。[5]在古巴比伦、古埃及和古代中国,当时的数学家们尽管已经发展出了先进的数学理论,但他们从未提出过质数的概念。我们能说,他们只是没有发现质数吗?这就好比说,英国没有发现唯一的汇编成法典的宪章。正如一个国家在没有宪法时也能正常运转一样,没有质数的概念,复杂的数学也能不断发展。在历史上,数学的确也是这样发展的!

是什么原因促使古希腊人发明了公理和质数等概念?我们无法确定。但我们可以猜想,这要归功于他们坚持不懈地探索宇宙基本结构的努力。质数是数的基石,正如原子是物质构成的基础。同样公理犹如一口源泉,所有的几何真理都从中源源不断地喷涌而出。正十二面体被视为代表了整个宇宙,而正是黄金分割率的概念引入了这一象征。

这些讨论揭露了数学又一个有趣的特性,数学是人类文明的重要组成部分在古希腊人发明了公理方法以后,西方所有后续的数学理论都遵循这一方法,并接受了同样的哲学和实践方式。人类学家莱斯利怀特曾试图概括、总结数学中体现的人类文明,他说假如牛顿是在霍屯督部落南非的一个原始部落长大成人的,他的计算能力可能只和霍屯督人一样。许多数学发现如纽结不变量,甚至一些意义重大的数学发明如微积分,都是由不同数学家在独立的工作中实现的,这恐怕都源于数学体现出的文化复杂性。

Ⅸ 数学是发明还是发现

发明是这个世界上没有的东西,把没有的东西制造出来叫发明,发现指这个东西原来就存在,后来把它提取出来了。因此数学是发现而不是发明。

阅读全文

与数学是发现的还是发明的相关的资料

热点内容
公共服务平台建设可行性研究报告 浏览:428
投诉华尔街英语 浏览:202
榆次区公共卫生服务中心 浏览:990
申发明5G 浏览:815
矛盾纠纷排查调处工作协调会议记录 浏览:94
版权贸易十一讲 浏览:370
综治办矛盾纠纷排查调处工作总结 浏览:903
知识产权局专业面试 浏览:75
马鞍山市是哪个省的 浏览:447
马鞍山市保安 浏览:253
股权转让样本 浏览:716
工程管理保证书 浏览:198
社区矛盾纠纷排查汇报 浏览:352
新疆公共就业服务网登陆 浏览:316
侵权著作权案件审理指南上海 浏览:145
马鞍山陆建双 浏览:853
北京东灵通知识产权服务有限公司西安分公司 浏览:6
海南证券从业资格证书领取 浏览:846
成果有男票吗 浏览:828
知识产权法04任务0001答案 浏览:691