导航:首页 > 创造发明 > 周圆率是谁发明的

周圆率是谁发明的

发布时间:2020-12-17 10:12:35

㈠ 是谁发明的圆周率

先纠正一下,圆周来率是源发现的,不是发明的。发现它的是三国时期著名数学家‘刘徽’
在三国时期,著名数学家‘刘徽’用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。

㈡ 圆周率是谁发明的

圆周率不来是某一个人发自明的,而是在历史的进程中,不同的数学家经过无数次的演算得出的。

古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。

公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值。

(2)周圆率是谁发明的扩展阅读:

圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。

圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。

㈢ 圆周率是谁发明的有什么作用

圆周率是圆的周长与直抄径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。圆周率用字母 (读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
注:圆周率是发现的,而不是发明的。

㈣ 圆周率是谁发明的

古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似内值的先河。阿基米德从单位圆出容发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。

㈤ 圆周率是谁发明的

古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≒3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。 南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。 德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。 无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。 电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下新的纪录。至今,最新纪录是小数点后12411亿位。 除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数。1794年法国数学家勒让德又证明了π2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的“化圆为方”尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了eπ 是超越数等等。

㈥ 圆周率是谁发明的

祖冲之

㈦ 圆周率是谁发明的

圆周率是一个概念,一个定义,不存在由谁发明的问题。 而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。

1、第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

2、中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术.他用割圆术一直算到圆内接正192边形.

3、南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶)。

4、在西方直到1573才由德国人奥托得到经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

(7)周圆率是谁发明的扩展阅读:

国际圆周率日

2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。

国际圆周率日可以追溯至1988年3月14日,旧金山科学博物馆的物理学家Larry Shaw,他组织博物馆的员工和参与者围绕博物馆纪念碑做3又1/7圈(22/7,π的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博物馆继承了这个传统,在每年的这一天都举办庆祝活动。

2009年,美国众议院正式通过一项无约束力决议,将每年的3月14日设定为“圆周率日”。决议认为,“鉴于数学和自然科学是教育当中有趣而不可或缺的一部分,而学习有关π的知识是一教孩子几何、吸引他们学习自然科学和数学的迷人方式……π约等于3.14,因此3月14日是纪念圆周率日最合适的日子。”

㈧ 3.141592653是圆周率 你知道发明人是谁么

祖冲之只是来将圆周率算自到一个新的境界,不算是发明人。

圆周率前100位3。

祖冲之求出的圆周率,不足近似值是3.1415926,过剩近似值是3.1415927,用式子表示就是:3.1415926<圆周率<3.1415927。这样,圆周率的精确值就达到了小数点后七位。祖冲之的成果在世界上一直领先了1000年。到了公元15世纪和16世纪,阿拉伯数学家和法国数学家才求出更精确的数值。为了计算的方便,祖冲之还求出用分数表示的两个圆周率值:一个称为密率;另一个称为约率。密率是分子、分母都在1000以内的分数形式的圆周率最佳近似值。在欧洲,1000年后德国人和荷兰人才得到这个数值。

经过现代计算验证,祖冲之得出上述的结果,按照割圆术计算,必须求出圆内接正12288边形的边长和24576边形的面积,要对九位数做上百次的加、减、乘、除和开方等运算,这是一项繁难复杂和细致的工作,为此,祖冲之付出了非常艰辛的劳动。

㈨ 圆周率是谁发明的 历史上圆周率的发明人是谁

圆周率是一个概念,一个定义,不存在由谁发明的问题。 而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。

中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。汉朝时,张衡得出π²除以16约等于8分之5,即π约等于根号十(约为3.162)。这个值不太准确,但它简单易理解。

中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。刘徽给出π=3.14的圆周率近似值,刘徽在得圆周率=3.14之后,继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率3927除以1250约等于3.1416。

数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,密率是个很好的分数近似值,要取到52163除以16604才能得出比355除以113略准确的近似,在之后的800年里祖冲之计算出的π值都是最准确的。

(9)周圆率是谁发明的扩展阅读:

2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。

1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式 。

2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。

㈩ 圆周率谁发明的

说法有误,圆周率不是发明的,而是不断计算出来的,汉代就有割圆术,直到南北朝的祖冲之将圆周率算到小数点后七位。再加上圆周率是现代人的叫法,古代可没有这个名词。如刘徽(三世纪)注《九章算术》说:“周兰径一之率”。后人便把这一值称为古率。刘徽由于对古率不满,就创造了割圆术求出圆周率近似值为介=燮50叮=丝兰Z 1250并称徽率或徽术。

阅读全文

与周圆率是谁发明的相关的资料

热点内容
英树创造101投票 浏览:596
农业银行卡有效期怎么看 浏览:194
中威客车侵权 浏览:831
佛山市联信知识产权服务有限公司 浏览:368
相邻权纠纷民事起诉状 浏览:526
兵团心理咨询师证书查询 浏览:863
徐州金连春合同纠纷 浏览:839
戎林马鞍山 浏览:121
东莞世纪创造模具 浏览:639
最新出售土地使用权账务处理 浏览:360
深圳御品峦山花园纠纷 浏览:264
马鞍山市委副章银发 浏览:334
机械转让范本 浏览:247
科技成果推广制度 浏览:13
王德超江苏工商局 浏览:977
治理理论新公共服务理论 浏览:894
马鞍山永丰河 浏览:94
投诉医院护士 浏览:163
马鞍山撸猫 浏览:482
马鞍山春晖悦府房价 浏览:63