导航:首页 > 创造发明 > 艾萨克牛顿十大神秘发明

艾萨克牛顿十大神秘发明

发布时间:2020-12-17 05:31:39

Ⅰ 世界上最伟大的十大发明家 写得清楚详细点 发明了些什么 具体

1.艾萨克·牛顿
牛顿的万有引力理论如今在全世界被人们所接受,数学的新革命也来源于他的二项式定理,他还解释了潮汐理论。而在牛顿定律的帮助下,数学、光学和化学的很多问题都得到了解决。
2.玛丽·居里
1867年出生的玛丽·居里是世界上第一位女诺贝尔奖获得者,这位不可思议的女科学家一直以来都是其它女性科学家的灵感和动力的源泉,镭是这位科学家最重要的发明。
3.路易·巴斯德
路易·巴斯德在世界各地都有着不小的名气,因为疫苗是他引进的,微生物发酵和巴氏灭菌也是他发明的,他因为在预防疾病方面的出色工作而被人们所牢记。
4.迈克尔·法拉第
迈克尔·法拉第是历史上最伟大的科学家之一,而且他在科学家中也是非常特殊的,因为他是靠自学成才的。电磁感应就是他发现的,他被人称为“电学之父”和“交流电之父”。
5.阿尔伯特·爱因斯坦
阿尔伯特·爱因斯坦发明了广义相对论,它是现代物理学的主要支柱。他被称为物理学之父,发明的光电效应的定律获得过诺贝尔物理学奖,原子弹也是因为他才造出来的。
6.亚里士多德
公元前384年出生的亚里士多德是一名希腊天才,他是是柏拉图的学生,亚历山大的老师。亚里士多德也是一名生物学家,他还提出了物理学和金属物理学的理论。
7.阿基米德
阿基米德是一名古希腊的天才,也是一位伟大的数学家,他同时也是一名物理学家、工程师、发明家和天文学家。他奠定了微积分的基础,发明了一种能精确测量圆周率的方法。
8.尼古拉·特斯拉
尼古拉·特斯拉是史上最伟大的科学家之一,但很少有人知道他的名字,他发明了许多引人注目的革命性发明,但没有得到认可。他发明了交流电系统、无线电、特斯拉感应线圈变压器,无线传输,和荧光灯。
9.查尔斯·罗伯特·达尔文
查尔斯·罗伯特·达尔文是世界上最具争议的科学家之一,他提出了进化论,认为地球上的所有生命有着共同的起源,很多人认为他的理论质疑了上帝的权威。
10.伽利略
著名的希腊天文学家伽利略不仅是世界十大著名科学家之一,也是世界十大著名发明家之一。他所发明的望远镜摧毁了当时教会所提倡的地心论,证明了日心学说的正确。

Ⅱ 请问十大发明家是那些

第一名:莱昂纳多·达·芬奇(意大利)
最著名的发明:计算器
第二名:尼古拉·内特斯拉(美国容)
最著名的发明:无线电
第三名:亚历山德罗·伏特(意大利)
最著名的发明:电池
第四名:亚历山大·贝尔(英国)
最著名的发明:电话
第五名:艾萨克·牛顿(英国)
最著名的发明:微积分
第六名:霍华德·休斯(美国)
最著名的发明:改进飞机设计
第七名:本杰明·富兰克林(美国)
最著名的发明:双焦距眼镜
第八名:詹姆斯·瓦特(英国)
最著名的发明:改进型蒸汽机
第九名:约翰内斯·古腾堡(德国)
最著名的发明:现代印刷术
第十名:托马斯·爱迪生(美国)
最著名的发明:灯泡

Ⅲ 牛顿有几大发明 

主要成就

力学成就
1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。[6]
《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。[6]
由于《原理》的成就,牛顿得到了国际性的认可,并为他赢得了一大群支持者:牛顿与其中的瑞士数学家尼古拉·法蒂奥·丢勒建立了非常亲密的关系,直到1693年他们的友谊破裂。这场友谊的结束让牛顿患上了神经衰弱。[6]
牛顿在伽利略等人工作的基础上进行深入研究,总结出了物体运动的三个基本定律(牛顿三定律):
第一定律(即惯性定律)
任何一个物体在不受任何外力或受到的力平衡时(Fnet=0),总保持匀速直线运动或静止状态,直到有作用在它上面的外力迫使它改变这种状态为止。
第二定律
①牛顿第二定律是力的瞬时作用规律。力和加速度同时产生、同时变化、同时消逝。②F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。③根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程。
牛顿第二定律的六个性质:①因果性:力是产生加速度的原因。②同体性:F合、m、a对应于同一物体。③矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。④瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。⑤相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。⑥独立性:作用在物体上的各个力,都能各自独立产生一个加速度,各个力产生的加速度的失量和等于合外力产生的加速度。
适用范围:①只适用于低速运动的物体(与光速比速度较低)。②只适用于宏观物体,牛顿第二定律不适用于微观原子。③参照系应为惯性系。两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。(详见牛顿第三运动定律)
第三定律
表达式F=-F'(F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)
这三个非常简单的物体运动定律,为力学奠定了坚实的基础,并对其他学科的发展产生了巨大影响。第一定律的内容伽利略曾提出过,后来R.笛卡儿作过形式上的改进,伽利略也曾非正式地提到第二定律的内容。第三定律的内容则是牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的结果之后得出的。
牛顿是万有引力定律的发现者。他在1665~1666年开始考虑这个问题。万有引力定律(Law of universal gravitation)是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。1679年,R·胡克在写给他的信中提出,引力应与距离平方成反比,地球高处抛体的轨道为椭圆,假设地球有缝,抛体将回到原处,而不是像牛顿所设想的轨道是趋向地心的螺旋线。牛顿没有回信,但采用了胡克的见解。在开普勒行星运动定律以及其他人的研究成果上,他用数学方法导出了万有引力定律。
牛顿把地球上物体的力学和天体力学统一到一个基本的力学体系中,创立了经典力学理论体系。正确地反映了宏观物体低速运动的宏观运动规律,实现了自然科学的第一次大统一。这是人类对自然界认识的一次飞跃。
牛顿指出流体粘性阻力与剪切率成正比。他说:流体部分之间由于缺乏润滑性而引起的阻力,如果其他都相同,与流体部分之间分离速度成比例。在此把符合这一规律的流体称为牛顿流体,其中包括最常见的水和空气,不符合这一规律的称为非牛顿流体。
在给出平板在气流中所受阻力时,牛顿对气体采用粒子模型,得到阻力与攻角正弦平方成正比的结论。这个结论一般地说并不正确,但由于牛顿的权威地位,后人曾长期奉为信条。20世纪,T·卡门在总结空气动力学的发展时曾风趣地说,牛顿使飞机晚一个世纪上天。
关于声的速度,牛顿正确地指出,声速与大气压力平方根成正比,与密度平方根成反比。但由于他把声传播当作等温过程,结果与实际不符,后来P.-S.拉普拉斯从绝热过程考虑,修正了牛顿的声速公式。
数学成就
牛顿微积分
大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和“微分法”被欧洲大陆全面地采用,在大约1820年以后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。牛顿与瑞士数学家尼古拉·法蒂奥·丢勒(Nicolas Fatio de Duillier)的联系十分密切,后者一开始便被牛顿的引力定律所吸引。1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。一些研究牛顿的传记作者认为他们之间的关系可能存在爱情的成分。不过,在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。
在1699年初,皇家学会(牛顿也是其中的一员)的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为骗子。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。这场争论在英国和欧洲大陆的数学家间划出了一道鸿沟,并可能阻碍了英国数学至少一个世纪的发展。
牛顿的一项被广泛认可的成就是广义二项式定理,它适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转(revert)幂级数。他还发现了π的一个新公式。
他在1669年被授予卢卡斯数学教授席位。在那一天以前,剑桥或牛津的所有成员都是经过任命的圣公会牧师。不过,卢卡斯教授之职的条件要求其持有者不得活跃于教堂(大概是如此可让持有者把更多时间用于科学研究上)。牛顿认为应免除他担任神职工作的条件,这需要查理二世的许可,后者接受了牛顿的意见。这样避免了牛顿的宗教观点与圣公会信仰之间的冲突。
17世纪以来,原有的几何和代数已难以解决当时生产和自然科学所提出的许多新问题,例如:如何求出物体的瞬时速度与加速度?如何求曲线的切线及曲线长度(行星路程)、矢径扫过的面积、极大极小值(如近日点、远日点、最大射程等)、体积、重心、引力等等;尽管牛顿以前已有对数、解析几何、无穷级数等成就,但还不能圆满或普遍地解决这些问题。当时笛卡儿的《几何学》和沃利斯的《无穷算术》对牛顿的影响最大。牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中。所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等。他说的“差率”“变率”就是微分。与此同时,他还在1676年首次公布了他发明的二项式展开定理。牛顿利用它还发现了其他无穷级数,并用来计算面积、积分、解方程等等。1684年莱布尼兹从对曲线的切线研究中引入了和拉长的S作为微积分符号,从此牛顿创立的微积分学在大陆各国迅速推广。
微积分的出现,成了数学发展中除几何与代数以外的另一重要分支——数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展。例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答。1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上。伯努利惊异地说:“从这锋利的爪中我认出了雄狮”。
微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。
在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。
牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。
牛顿在前人工作的基础上,提出“流数(fluxion)法”,建立了二项式定理,并和G.W.莱布尼茨几乎同时创立了微积分学,得出了导数、积分的概念和运算法则,阐明了求导数和求积分是互逆的两种运算,为数学的发展开辟了一个新纪元。
二项式定理
在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。
二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。在今天我们会发觉这个方
推广形式
法只适用于n是正整数,当n是正整数1,2,3,....... ,级数终止在正好是n+1项。如果n不是正整数,级数就不会终止,这个方法就不适用了。但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。[4]

光学成就
牛顿曾致力于颜色的现象和光的本性的研究。1666年,他用三棱镜研究日光,得出结论:白光是由不同颜色(即不同波长)的光混合而成的,不同波长的光有不同的折射率。在可见光中,红光波长最长,折射率最小;紫光波长最短,折射率最大。牛顿的这一重要发现成为光谱分析的基础,揭示了光色的秘密。牛顿还曾把一个磨得很精、曲率半径较大的凸透镜的凸面,压在一个十分光洁的平面玻璃上,在白光照射下可看到,中心的接触点是一个暗点,周围则是明暗相间的同心圆圈。后人把这一现象称为“牛顿环”。他创立了光的“微粒说”,从一个侧面反映了光的运动性质,但牛顿对光的“波动说”并不持反对态度。
1704年,牛顿著成《光学》,系统阐述他在光学方面的研究成果,其中他详述了光的粒子理论。他认为光是由非常微小的微粒组成的,而普通物质是由较粗微粒组成,并推测如果通过某种炼金术的转化“难道物质和光不能互相转变吗?物质不可能由进入其结构中的光粒子得到主要的动力(Activity)吗?牛顿还使用玻璃球制造了原始形式的摩擦静电发电机。
提出光的微粒说
从1670年到1672年,牛顿负责讲授光学。在此期间,他研究了光的折射,表明棱镜可以将白光发散为彩色光谱,而透镜和第二个棱镜可以将彩色光谱重组为白光。
牛顿
他还通过分离出单色的光束,并将其照射到不同的物体上的实验,发现了色光不会改变自身的性质。牛顿还注意到,无论是反射、散射或发射,色光都会保持同样的颜色。因此,我们观察到的颜色是物体与特定有色光相合的结果,而不是物体产生颜色的结果。
从这项工作中,他得出了如下结论:任何折光式望远镜都会受到光散射成不同颜色的影响,并因此发明了反射式望远镜(现称作牛顿望远镜)来回避这个问题。他自己打磨镜片,使用牛顿环来检验镜片的光学品质,制造出了优于折光式望远镜的仪器,而这都主要归功于其大直径的镜片。1671年,他在皇家学会上展示了自己的反射式望远镜。皇家学会的兴趣鼓励了牛顿发表他关于色彩的笔记,这在后来扩大为《光学》(Opticks)一书。但当罗伯特·胡克批评了牛顿的某些观点后,牛顿对其很不满并退出了辩论会。两人自此以后成为了敌人,这一直持续到胡克去世。
牛顿认为光是由粒子或微粒组成的,并会因加速通过光密介质而折射,但他也不得不将它们与波联系起来,以解释光的衍射现象。而其后世的物理学家们则更加偏爱以纯粹的光波来解释衍射现象。现代的量子力学、光子以及波粒二象性的思想与牛顿对光的理解只有很小的相同点。
牛顿使用过的望远镜
在1675年的著作《解释光属性的解说》(Hypothesis Explaining the Properties of Light)中,牛顿假定了以太的存在,认为粒子间力的传递是透过以太进行的。不过牛顿在与神智学家亨利·莫尔(Henry More)接触后重新燃起了对炼金术的兴趣,并改用源于汉密斯神智学(Hermeticism)中粒子相吸互斥思想的神秘力量来解释,替换了先前假设以太存在的看法。拥有许多牛顿炼金术著作的经济学大师约翰·梅纳德·凯恩斯曾说:“牛顿不是理性时代的第一人,他是最后的一位炼金术士。”但牛顿对炼金术的兴趣却与他对科学的贡献息息相关,而且在那个时代炼金术与科学也还没有明确的区别。如果他没有依靠神秘学思想来解释穿过真空的超距作用,他可能也不会发展出他的引力理论。[4]

热学成就
牛顿确定了冷却定律,即当物体表面与周围有温差时,单位时间内从单位面积上散失的热量与这一温差成正比。[4]

天文成就
牛顿1672年创制了反射望远镜。他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替。他还用万有引力原理说明潮汐的各种现象,指出潮汐的大小不但同月球的位相有关,而且同太阳的方位有关。牛顿预言地球不是正球体。岁差就是由于太阳对赤道突出部分的摄动造成的。

哲学成就
牛顿的哲学思想基本属于自发的唯物主义,他承认时间、空间的客观存在。如同历史上一切伟大人物一样,牛顿虽然对人类作出了巨大的贡献,但他也不能不受时代的限制。例如,他把时间、空间看作是同运动着的物质相脱离的东西,提出了所谓绝对时间和绝对空间的概念;他对那些暂时无法解释的自然现象归结为上帝的安排,提出一切行星都是在某种外来的“第一推动力”作用下才开始运动的说法。
《自然哲学的数学原理》牛顿最重要的著作,1687年出版。该书总结了他一生中许多重要发现和研究成果,其中包括上述关于物体运动的定律。他说,该书“所研究的主要是关于重、轻流体抵抗力及其他吸引运动的力的状况,所以我们研究的是自然哲学的数学原理。”该书传入中国后,中国数学家李善兰曾译出一部分,但未出版,译稿也遗失了。现有的中译本是数学家郑太朴翻译的,书名为《自然哲学之数学原理》,1931年商务印书馆初版,1957、1958、2006年三次重印。

Ⅳ 牛顿的发明

1,反射式望远镜

第一架反射式望远镜诞生于1668年。牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。

他用2.5cm直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45度角的反射镜,使经主镜反射后的会聚光经反射镜以90度角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。



2,光的色散原理

牛顿在1666年最先利用三棱镜观察到光的色散,把白光分解为彩色光带(光谱)。色散现象说明光在介质中的速度v=c/n(或折射率n)随光的频率f而变。光的色散可以用三棱镜,衍射光栅,干涉仪等来实现。光的色散证明了光具有波动性。

3,微积分

牛顿在1671年写了《流数术和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。

牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

4,牛顿运动定律

牛顿运动定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中总结提出。

5,二项式定理

二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。

Ⅳ 牛顿的最大发明是什么

二项式定理 在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理把能为直接计算所发现的 等简单结果推广如下的形式 推广形式 二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。在今天我们会发觉这个方法只适用于n是正整数,当n是正整数1,2,3,....... ,级数终止在正好是n+1项。如果n不是正整数,级数就不会终止,这个方法就不适用了。但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。 创建微积分 牛顿在数学上最卓越的成就是创建微积分。他超越前人的功绩在于,他将古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法--微分和积分,并确立了这两类运算的互逆关系,如:面积计算可以看作求切线的逆过程。 那时莱布尼兹刚好亦提出微积分研究报告,更因此引发了一场微积分发明专利权的争论,直到莱氏去世才停息。而后世己认定微积是他们同时发明的。 微积分方法上,牛顿所作出的极端重要的贡献是,他不但清楚地看到,而且大胆地运用了代数所提供的大大优越于几何的方法论。他以代数方法取代了卡瓦列里、格雷哥里、惠更斯和巴罗的几何方法,完成了积分的代数化。从此,数学逐渐从感觉的学科转向思维的学科。 微积分产生的初期,由于还没有建立起巩固的理论基础,被有些喜爱思考的人研究。更因此而引发了著名的第二次数学危机。这个问题直到十九世纪极限理论建立,才得到解决。 方程论与变分法 牛顿在代数方面也作出了经典的贡献,他的《广义算术》大大推动了方程论。他发现实多项式的虚根必定成双出现,求多项式根的上界的规则,他以多项式的系数表示多项式的根n次幂之和公式,给出实多项式虚根个数的限制的笛卡儿符号规则的一个推广。 牛顿在还设计了求数值方程的实根近似值的对数和超越方程都适用的一种方法,该方法的修正,现称为牛顿方法。 牛顿在力学领域也有伟大的发现,这是说明物体运动的科学。第—运动定律是伽利略发现的。这个定律阐明,如果物体处于静止或作恒速直线运动,那么只要没有外力作用,它就仍将保持静止或继续作匀速直线运动。这个定律也称惯性定律,它描述了力的一种性质:力可以使物体由静止到运动和由运动到静止,也可以使物体由一种运动形式变化为另一种形式。此被称为牛顿第一定律。力学中最重要的问题是物体在类似情况下如何运动。牛顿第二定律解决了这个问题;该定律被看作是古典物理学中最重要的基本定律。牛顿第二定律定量地描述了力能使物体的运动产生变化。它说明速度的时间变化率(即加速度a与力F成正比,而与物体的质量里成反比,即a=F/m或F=ma;力越大,加速度也越大;质量越大,加速度就越小。力与加速度都既有量值又有方向。加速度由力引起,方向与力相同;如果有几个力作用在物体上,就由合力产生加速度,第二定律是最重要的,动力的所有基本方程都可由它通过微积分推导出来。 此外,牛顿根据这两个定律制定出第三定律。牛顿第三定律指出,两个物体的相互作用总是大小相等而方向相反。对于两个直接接触的物体,这个定律比较易于理解。书本对子桌子向下的压力等于桌子对书本的向上的托力,即作用力等于反作用力。引力也是如此,飞行中的飞机向上拉地球的力在数值上等于地球向下拉飞机的力。牛顿运动定律广泛用于科学和动力学问题上。 牛顿运动定律 牛顿运动定律是艾萨克·牛顿提出了物理学的三个运动定律的总称,被誉为是经典物理学的基础。 为“牛顿第一定律(惯性定律:一切物体在不受任何外力的作用下,总保持匀速直线运动 状态或静止状态,直到有外力迫使它改变这种状态为止。——它明确了力和运动的关系及提出了惯性的概念)”、“牛顿第二定律(物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。)公式:F=kma(当m单位为kg,a单位为m/s2时,k=1)、牛顿第三定律(两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。)” 牛顿法 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。另外该方法广泛用于计算机编程中。 设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 光学贡献 牛顿望远镜 在牛顿以前,墨子、培根、达·芬奇等人都研究过光学现象。反射定律是人们很早就认识的光学定律之一。近代科学兴起的时候,伽利略靠望远镜发现了“新宇宙”,震惊了世界。荷兰数学家斯涅尔首先发现了光的折射定律。笛卡尔提出了光的微粒说…… 牛顿以及跟他差不多同时代的胡克、惠更斯等人,也象伽利略、笛卡尔等前辈一样,用极大的兴趣和热情对光学进行研究。1666年,牛顿在家休假期间,得到了三棱镜,他用来进行了著名的色散试验。一束太阳光通过三棱镜后,分解成几种颜色的光谱带,牛顿再用一块带狭缝的挡板把其他颜色的光挡住,只让一种颜色的光在通过第二个三棱镜,结果出来的只是同样颜色的光。这样,他就发现了白光是由各种不同颜色的光组成的,这是第一大贡献。 牛顿为了验证这个发现,设法把几种不同的单色光合成白光,并且计算出不同颜色光的折射率,精确地说明了色散现象。揭开了物质的颜色之谜,原来物质的色彩是不同颜色的光在物体上有不同的反射率和折射率造成的。公元1672年,牛顿把自己的研究成果发表在《皇家学会哲学杂志》上,这是他第一次公开发表的论文。 许多人研究光学是为了改进折射望远镜。牛顿由于发现了白光的组成,认为折射望远镜透镜的色散现象是无法消除的(后来有人用具有不同折射率的玻璃组成的透镜消除了色散现象),就设计和制造了反射望远镜。 牛顿不但擅长数学计算,而且能够自己动手制造各种试验设备并且作精细实验。为了制造望远镜,他自己设计了研磨抛光机,实验各种研磨材料。公元1668年,他制成了第一架反射望远镜样机,这是第二大贡献。公元1671年,牛顿把经过改进得反射望远镜献给了皇家学会,牛顿名声大震,并被选为皇家学会会员。反射望远镜的发明奠定了现代大型光学天文望远镜的基础。 同时,牛顿还进行了大量的观察实验和数学计算,比如研究惠更斯发现的冰川石的异常折射现象,胡克发现的肥皂泡的色彩现象,“牛顿环”的光学现象等等。 牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运动路径。他的“微粒说”与后来惠更斯的“波动说”构成了关于光的两大基本理论。此外,他还制作了牛顿色盘等多种光学仪器。 构筑力学大厦 牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。 在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。 早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。 1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。 牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来…… 一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。 牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。牛顿没有回答这个问题。1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。 当时已经有了地球半径、日地距离等精确的数据可以供计算使用。牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。 在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。 牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。 牛顿的三大衡定 物质不灭定律,说的是物质的质量不灭;能量守恒定律,说的是物质的能量守恒。

Ⅵ 牛顿有什么重要发明

万有引复力,微积分及制牛顿三大定律

牛顿的成就属于发现 不是发明

最著名的是 万有引力理论
就是我们在高中时候学的那个啦
其次他在 光学 上也有很大的成就
用三棱镜的分光原理证明了白光是复合光
在化学声比较热衷于
HgO的热分解试验
大概是这样了

Ⅶ 艾萨克·牛顿的主要成就

1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。
《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。
由于《原理》的成就,牛顿得到了国际性的认可,并为他赢得了一大群支持者:牛顿与其中的瑞士数学家尼古拉·法蒂奥·丢勒建立了非常亲密的关系,直到1693年他们的友谊破裂。这场友谊的结束让牛顿患上了神经衰弱。
牛顿在伽利略等人工作的基础上进行深入研究,总结出了物体运动的三个基本定律(牛顿三定律):
第一定律(即惯性定律)
任何一个物体在不受任何外力或受到的力平衡时(Fnet=0),总保持匀速直线运动或静止状态,直到有作用在它上面的外力迫使它改变这种状态为止。
第二定律
①牛顿第二定律是力的瞬时作用规律。力和加速度同时产生、同时变化、同时消逝。②F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。③根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程。
牛顿第二定律的六个性质:①因果性:力是产生加速度的原因。②同体性:F合、m、a对应于同一物体。③矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。④瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。⑤相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。⑥独立性:作用在物体上的各个力,都能各自独立产生一个加速度,各个力产生的加速度的失量和等于合外力产生的加速度。
适用范围:①只适用于低速运动的物体(与光速比速度较低)。②只适用于宏观物体,牛顿第二定律不适用于微观原子。③参照系应为惯性系。两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。(详见牛顿第三运动定律)
第三定律
表达式F=-F'(F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)
这三个非常简单的物体运动定律,为力学奠定了坚实的基础,并对其他学科的发展产生了巨大影响。第一定律的内容伽利略曾提出过,后来R.笛卡儿作过形式上的改进,伽利略也曾非正式地提到第二定律的内容。第三定律的内容则是牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的结果之后得出的。
牛顿是万有引力定律的发现者。他在1665~1666年开始考虑这个问题。万有引力定律(Law of universal gravitation)是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。1679年,R·胡克在写给他的信中提出,引力应与距离平方成反比,地球高处抛体的轨道为椭圆,假设地球有缝,抛体将回到原处,而不是像牛顿所设想的轨道是趋向地心的螺旋线。牛顿没有回信,但采用了胡克的见解。在开普勒行星运动定律以及其他人的研究成果上,他用数学方法导出了万有引力定律。
牛顿把地球上物体的力学和天体力学统一到一个基本的力学体系中,创立了经典力学理论体系。正确地反映了宏观物体低速运动的宏观运动规律,实现了自然科学的第一次大统一。这是人类对自然界认识的一次飞跃。
牛顿指出流体粘性阻力与剪切率成正比。他说:流体部分之间由于缺乏润滑性而引起的阻力,如果其他都相同,与流体部分之间分离速度成比例。在此把符合这一规律的流体称为牛顿流体,其中包括最常见的水和空气,不符合这一规律的称为非牛顿流体。
在给出平板在气流中所受阻力时,牛顿对气体采用粒子模型,得到阻力与攻角正弦平方成正比的结论。这个结论一般地说并不正确,但由于牛顿的权威地位,后人曾长期奉为信条。20世纪,T·卡门在总结空气动力学的发展时曾风趣地说,牛顿使飞机晚一个世纪上天。
关于声的速度,牛顿正确地指出,声速与大气压力平方根成正比,与密度平方根成反比。但由于他把声传播当作等温过程,结果与实际不符,后来P.-S.拉普拉斯从绝热过程考虑,修正了牛顿的声速公式。 大多数现代历史学家都相信,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和“微分法”被欧洲大陆全面地采用,在大约1820年以后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。牛顿与瑞士数学家尼古拉·法蒂奥·丢勒(Nicolas Fatio de Duillier)的联系十分密切,后者一开始便被牛顿的引力定律所吸引。1691年,丢勒打算编写一个新版本的牛顿《自然哲学的数学原理》,但从未完成它。一些研究牛顿的传记作者认为他们之间的关系可能存在爱情的成分。不过,在1694年这两个人之间的关系冷却了下来。在那个时候,丢勒还与莱布尼茨交换了几封信件。
在1699年初,皇家学会(牛顿也是其中的一员)的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为骗子。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。这场争论在英国和欧洲大陆的数学家间划出了一道鸿沟,并可能阻碍了英国数学至少一个世纪的发展。
牛顿的一项被广泛认可的成就是广义二项式定理,它适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转(revert)幂级数。他还发现了π的一个新公式。
他在1669年被授予卢卡斯数学教授席位。在那一天以前,剑桥或牛津的所有成员都是经过任命的圣公会牧师。不过,卢卡斯教授之职的条件要求其持有者不得活跃于教堂(大概是如此可让持有者把更多时间用于科学研究上)。牛顿认为应免除他担任神职工作的条件,这需要查理二世的许可,后者接受了牛顿的意见。这样避免了牛顿的宗教观点与圣公会信仰之间的冲突。
17世纪以来,原有的几何和代数已难以解决当时生产和自然科学所提出的许多新问题,例如:如何求出物体的瞬时速度与加速度?如何求曲线的切线及曲线长度(行星路程)、矢径扫过的面积、极大极小值(如近日点、远日点、最大射程等)、体积、重心、引力等等;尽管牛顿以前已有对数、解析几何、无穷级数等成就,但还不能圆满或普遍地解决这些问题。当时笛卡儿的《几何学》和沃利斯的《无穷算术》对牛顿的影响最大。牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中。所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等。他说的“差率”“变率”就是微分。与此同时,他还在1676年首次公布了他发明的二项式展开定理。牛顿利用它还发现了其他无穷级数,并用来计算面积、积分、解方程等等。1684年莱布尼兹从对曲线的切线研究中引入了和拉长的S作为微积分符号,从此牛顿创立的微积分学在大陆各国迅速推广。
微积分的出现,成了数学发展中除几何与代数以外的另一重要分支——数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展。例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答。1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上。伯努利惊异地说:“从这锋利的爪中我认出了雄狮”。
微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为流数术。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。
在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。
牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。
牛顿在前人工作的基础上,提出“流数(fluxion)法”,建立了二项式定理,并和G.W.莱布尼茨几乎同时创立了微积分学,得出了导数、积分的概念和运算法则,阐明了求导数和求积分是互逆的两种运算,为数学的发展开辟了一个新纪元。
二项式定理
在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。
二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。在今天我们会发觉这个方法只适用于n是正整数,当n是正整数1,2,3,....... ,级数终止在正好是n+1项。如果n不是正整数,级数就不会终止,这个方法就不适用了。但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。 牛顿曾致力于颜色的现象和光的本性的研究。1666年,他用三棱镜研究日光,得出结论:白光是由不同颜色(即不同波长)的光混合而成的,不同波长的光有不同的折射率。在可见光中,红光波长最长,折射率最小;紫光波长最短,折射率最大。牛顿的这一重要发现成为光谱分析的基础,揭示了光色的秘密。牛顿还曾把一个磨得很精、曲率半径较大的凸透镜的凸面,压在一个十分光洁的平面玻璃上,在白光照射下可看到,中心的接触点是一个暗点,周围则是明暗相间的同心圆圈。后人把这一现象称为“牛顿环”。他创立了光的“微粒说”,从一个侧面反映了光的运动性质,但牛顿对光的“波动说”并不持反对态度。
1704年,牛顿著成《光学》,系统阐述他在光学方面的研究成果,其中他详述了光的粒子理论。他认为光是由非常微小的微粒组成的,而普通物质是由较粗微粒组成,并推测如果通过某种炼金术的转化“难道物质和光不能互相转变吗?物质不可能由进入其结构中的光粒子得到主要的动力(Activity)吗?牛顿还使用玻璃球制造了原始形式的摩擦静电发电机。
提出光的微粒说
从1670年到1672年,牛顿负责讲授光学。在此期间,他研究了光的折射,表明棱镜可以将白光发散为彩色光谱,而透镜和第二个棱镜可以将彩色光谱重组为白光。他还通过分离出单色的光束,并将其照射到不同的物体上的实验,发现了色光不会改变自身的性质。牛顿还注意到,无论是反射、散射或发射,色光都会保持同样的颜色。因此,我们观察到的颜色是物体与特定有色光相合的结果,而不是物体产生颜色的结果。
从这项工作中,他得出了如下结论:任何折光式望远镜都会受到光散射成不同颜色的影响,并因此发明了反射式望远镜(现称作牛顿望远镜)来回避这个问题。他自己打磨镜片,使用牛顿环来检验镜片的光学品质,制造出了优于折光式望远镜的仪器,而这都主要归功于其大直径的镜片。1671年,他在皇家学会上展示了自己的反射式望远镜。皇家学会的兴趣鼓励了牛顿发表他关于色彩的笔记,这在后来扩大为《光学》(Opticks)一书。但当罗伯特·胡克批评了牛顿的某些观点后,牛顿对其很不满并退出了辩论会。两人自此以后成为了敌人,这一直持续到胡克去世。
牛顿认为光是由粒子或微粒组成的,并会因加速通过光密介质而折射,但他也不得不将它们与波联系起来,以解释光的衍射现象。而其后世的物理学家们则更加偏爱以纯粹的光波来解释衍射现象。现代的量子力学、光子以及波粒二象性的思想与牛顿对光的理解只有很小的相同点。
在1675年的著作《解释光属性的解说》(Hypothesis Explaining the Properties of Light)中,牛顿假定了以太的存在,认为粒子间力的传递是透过以太进行的。不过牛顿在与神智学家亨利·莫尔(Henry More)接触后重新燃起了对炼金术的兴趣,并改用源于汉密斯神智学(Hermeticism)中粒子相吸互斥思想的神秘力量来解释,替换了先前假设以太存在的看法。拥有许多牛顿炼金术著作的经济学大师约翰·梅纳德·凯恩斯曾说:“牛顿不是理性时代的第一人,他是最后的一位炼金术士。”但牛顿对炼金术的兴趣却与他对科学的贡献息息相关,而且在那个时代炼金术与科学也还没有明确的区别。如果他没有依靠神秘学思想来解释穿过真空的超距作用,他可能也不会发展出他的引力理论。 牛顿的哲学思想基本属于自发的唯物主义,他承认时间、空间的客观存在。如同历史上一切伟大人物一样,牛顿虽然对人类作出了巨大的贡献,但他也不能不受时代的限制。例如,他把时间、空间看作是同运动着的物质相脱离的东西,提出了所谓绝对时间和绝对空间的概念;他对那些暂时无法解释的自然现象归结为上帝的安排,提出一切行星都是在某种外来的“第一推动力”作用下才开始运动的说法。
《自然哲学的数学原理》牛顿最重要的著作,1687年出版。该书总结了他一生中许多重要发现和研究成果,其中包括上述关于物体运动的定律。他说,该书“所研究的主要是关于重、轻流体抵抗力及其他吸引运动的力的状况,所以我们研究的是自然哲学的数学原理。”该书传入中国后,中国数学家李善兰曾译出一部分,但未出版,译稿也遗失了。现有的中译本是数学家郑太朴翻译的,书名为《自然哲学之数学原理》,1931年商务印书馆初版,1957、1958、2006年三次重印。

Ⅷ 现代的世界十大发明

第一名:莱昂纳多.达.芬奇(意大利)

最著名的发明:计算器

提到达.芬奇和他的发明时,你最好问这样的问题:“什么东西不是他发明的?”因为他发明的东西实在太多了。达.芬奇的工作日志里绘有许多东西的设计图,但其中最值得一提的就是计算器的设计。试想如果缺少简单的复杂的数学运算,那科学将会是什么样子。

第二名:尼古拉.特斯拉(美国)

最著名的发明:无线电

虽然尼古拉.特斯拉生前没有因此得到认可,但美国联邦最高法院最终还是肯定了他的专利申请,确认是他而不是马可尼发明了无线电。

特斯拉也许就是为标新立异而生的。虽然他发明的一种称做“交流电”的输电方法应用至今,其实他研究的焦点集中于电的理论应用(遗憾的是许多研究成果 仍停留在绘图板上)。就是这个总是自己制作实验设备(比如用来聚集电能的著名的特斯拉线圈)的特斯拉,提出了范围涉及从X射线到地震仪的一系列观点。

第三名:亚历山德罗.伏特(意大利)

最著名的发明:电池

伏特虽然没有发现电,但是他却想出了一个可将电携带的好点子。要知道“伏特电池”可是现代电池的先驱。

伏特一生职业都在搞电的东西。早期他发明了起电盘(即一次充电单板电容),一年之后致力于封闭室燃气点火发电实验,在此过程中他发现了沼气(甲 烷),即今天家庭普遍使用的一种气体。然而真正使其出名的却是“伏特电池”,其实就是一堆锌片和铜片交互排列,再加上两种金属片之间为增强导电性而浸了盐 水的布料而已。但就是这种粗陋的电池向世界展示了如何利用金属-化学组合生电的奥秘。

第四名:亚历山大.贝尔(英国)

最著名的发明:电话

最酷的事实:亚历山大.贝尔还是世界上第一个金属探测器的发明者,他组装这个装置是为了发现美国总统詹姆士.加菲尔德体内的子弹。结果探测器倒是能工作,不过就是定不出子弹的位置,因为检查时加菲尔德总统躺在了一张金属架床上。



第五名:艾萨克.牛顿(英国)

最著名的发明:微积分

如果你费好大劲总算上完了高等数学课程,那你或许就不会是艾萨克.牛顿爵士的热心崇拜者,因为你遇到的难题基本上就是他的错——是他发明了微积分。

第六名:霍华德.休斯(美国)

最著名的发明:改进飞机设计

霍华德.休斯并没有发明飞机,他作为“环球航空公司(TWA)之父”主要写了些关于航空公司的书籍。如今环球航空公司虽已成历史,但航空旅游业多亏有了霍华德.休斯才兴旺发达。

第七名:本杰明.富兰克林(美国)

最著名的发明:双焦距眼镜

最酷的事实:发明家和“种马”(爱对女人大献殷勤的男人)往往不会扯到同一个人身上,但本杰明.富兰克林却是个例外。他是他那个时代最能对女人大献殷勤的男人,而且他在法国女人中的好人缘也确实有利于美国事业。

第八名:詹姆斯.瓦特(英国)

最著名的发明:改进型蒸汽机

今天我们是不会把蒸汽当作主要能源了,可回到工业革命早期,蒸汽却是大出风头的时候。詹姆斯.瓦特花了大量时间改进蒸汽机,驱动世界向前进步。

第九名:约翰内斯.古腾堡(德国)

最著名的发明:现代印刷术

约翰内斯.古腾堡要把所有的小东西拼凑一起,做成了一台活字印刷机。在你意识到他的印刷术可能会掀起一场信息革命这样的事实之前,你觉得他的想法似乎有点不那么伟大。

第十名:托马斯.爱迪生(美国)

最著名的发明:灯泡

再没有比灯泡更能代表创新的发明了。事实上,爱迪生的发明对世界造成如此深远的影响,以至于被戏称为所有伟大思想的象征。

Ⅸ 关于牛顿的发明

艾萨克·牛顿(Isaac Newton)是英国伟大的数学家、物理学家、天文学家和自然哲学内家,其研究领域包容括了物理学、数学、天文学、神学、自然哲学和炼金术。牛顿的主要贡献有发明了微积分,发现了万有引力定律和经典力学,设计并实际制造了第一架反射式望远镜等等,被誉为人类历史上最伟大,最有影响力的科学家。为了纪念牛顿在经典力学方面的杰出成就,“牛顿”后来成为衡量力的大小的物理单位。

阅读全文

与艾萨克牛顿十大神秘发明相关的资料

热点内容
温州中小企业公共服务平台 浏览:54
英树创造101投票 浏览:596
农业银行卡有效期怎么看 浏览:194
中威客车侵权 浏览:831
佛山市联信知识产权服务有限公司 浏览:368
相邻权纠纷民事起诉状 浏览:526
兵团心理咨询师证书查询 浏览:863
徐州金连春合同纠纷 浏览:839
戎林马鞍山 浏览:121
东莞世纪创造模具 浏览:639
最新出售土地使用权账务处理 浏览:360
深圳御品峦山花园纠纷 浏览:264
马鞍山市委副章银发 浏览:334
机械转让范本 浏览:247
科技成果推广制度 浏览:13
王德超江苏工商局 浏览:977
治理理论新公共服务理论 浏览:894
马鞍山永丰河 浏览:94
投诉医院护士 浏览:163
马鞍山撸猫 浏览:482