『壹』 为什么说笛卡尔是西方近代哲学的开创
勒内·笛卡尔(Rene Descartes,公元1596年3月31日—公元1650年2月11日),法国著名哲学家。出生于法国安德尔-卢瓦尔省的图赖讷拉海(现改名为笛卡尔以纪念这位伟人),逝世于瑞典斯德哥尔摩。
笛卡尔是法国著名的哲学家、物理学家、数学家、神学家,他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他与英国哲学家弗兰西斯·培根一同开启了近代西方哲学的“认识论”转向。
笛卡尔是二元论的代表,留下名言“我思故我在”(或译为“思考是唯一确定的存在”),提出了“普遍怀疑”的主张,是欧洲近代哲学的奠基人之一,黑格尔称他为“近代哲学之父”。
他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。笛卡尔自成体系,融唯物主义与唯心主义于一体,在哲学史上产生了深远的影响,同时,他又是一位勇于探索的科学家,他所建立的解析几何在数学史上具有划时代的意义。
笛卡尔堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
创立了著名的平面直角坐标系。
『贰』 法国数学家笛尔发明了数对这句话对吗
数对是笛卡尔发明的,有一次,他生病了,躺在床上,发现墙角有一只蜘蛛.笛卡尔便把蜘蛛的位置作为开始,标为(0,0),便用数对表示出了蜘蛛网上的
所以 应该是对的。
『叁』 数对是怎么发明的
数对相当于坐标,可以很容易的判断出某一处的位置.其实我们生活中处处都是数对.但数对是谁留意生活而发明的呢?数对是笛卡尔发明的,有一次,他生病了,躺在床上,发现墙角有一只蜘蛛.笛卡尔便把蜘蛛的位置作为开始,标为(0,0),便用数对表示出了蜘蛛网上的所有交叉点.有了数对,我们就能很容易的表示出某一点的位置.我想,数对不仅能表示二维空间(长,宽)还可以表示三维空间(长,宽,高)或四维空间(长,宽,高,时间),世界上的所有点都可以用数对表示,那么数对将给我们的生活带来极大的方便.
『肆』 笛卡尔对数对做出了怎样的贡献
笛卡儿最杰出的成就是在数学发展上创立了解析几何学.在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位.笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学.他的这一成就为微积分的创立奠定了基础.解析几何直到现在仍是重要的数学方法之一.
『伍』 笛卡尔是怎么解决“形”与“数”的问题
1621年他退出了军界后,与数学家迈多治等朋友云集巴黎,共同探讨数学和其他科学方面的问题。当时的法国封建专制统治和教会的势力还很强大,性格一向谨小慎微的笛卡尔,慑于法国宗教势力的淫威,于1628年移居荷兰。那里资产阶级革命已经成功,社会比较安定,思想自由,是搞学术研究的好地方。笛卡尔没有想到,这一去会长达20年之久,又是他一生中科学研究的最辉煌的时期。
他潜心于数学研究,发现两千多年来,人们在探索几何三大难题的解决时,一直在从“形”上去探求它的答案,还不曾有人怀疑这种方法的可能性。那么能不能把“形”化为“数”来研究呢?“形”和“数”之间有没有必然的联系呢?自从来到荷兰后,这个问题,一直在困扰着他。
艰苦的脑力活动,使体质虚弱的笛卡尔病倒了。他躺在病床上,却依然在思索着数学问题。突然,他眼前一亮,原来天花板上,一只蜘蛛正忙忙碌碌地在墙角编织着蛛网。一会儿,它在天花板上爬来爬去,一会儿又顺着吐出的银丝在空中移动。随着蜘蛛的爬动,它和两面墙的距离,以及地面的距离,也不断地改动着。这一刹那,一种新的数学思想萌动了,困扰了他多年的“形”与“数”的问题,终于找到答案了。
真可谓踏破铁鞋无觅处,得来全不费工夫,性格一向很内向的笛卡尔兴奋得不顾虚弱的病体,一骨碌从床上爬起来,迫不及待地将这一瞬间的灵感描述出来。
他发现了这样的规律:如果在平面上放上任何两条相交的直线,假定这两条线互成直角,用点到两条垂直直线的距离来表示点的位置,就可以建立起点的坐标系。
就像数学中所有真正伟大的东西一样,这个发现的基本概念简单到了近乎一目了然的程度。这样应用坐标的方法,就建立了平面上点和作为坐标的数对(x,y)之间的一一对应关系,进一步构成了平面上点与平面上曲线之间的一一对应关系,从而把数学的两大形态——形与数结合了起来。不仅如此。笛卡尔还用代数方程描述几何图形,用几何图形表示代数方程的计算结果,从而创造出了用代数方法解决几何题的一门崭新学科——解析几何学。
解析几何的诞生,改变了从古希腊开始的代数与几何分离的趋向,从而推动了数学的巨大进步。17世纪以来的数学重大发展,其中包括古希腊三大几何难题的解决、微积分理论的建立等,在很大程度上应归功于笛卡尔的解析几何。
解析几何的重大贡献,还在于它恰好提供了科学家们早已迫切需要的数学工具。17世纪是资本主义迅速发展的时代,资本主义的发展,促进了天文、航海和科学技术的发展,对数学提出了新的要求。
例如,要确定船只在大海中的位置,就要确立经纬度,这就需要更精确地掌握天体运行的规律;要改善枪炮的性能,就要精确地掌握抛物体的运行规律。而在这些研究中,涉及的已不是常量而是变量,这些变量还是相互联系的,是传统的孤立、静止的数学方法解决不了的。
解析几何正好满足了科研的这种需要,因为它可以用字母表示流动坐标,用方程刻画一般平面曲线,用代数演算代替古老陈旧的欧几里得纯逻辑推导而求出数量关系来,这就是说,解析几何使变数进入了数学,亦即使运动进入了数学,为微积分的创立奠定了基础。
正如后来法国数学家格拉朗日在其《数学概要》中说的:“只要代数与几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是当这两门科学结成伴侣时,它们就互相吸取新鲜活力,从那以后,就以快速的步伐走向完善。”解析几何,正是笛卡尔留给我们的最宝贵的科学财富。
『陆』 数对是什么国家的谁发明的,他什么时候有这个创造灵感
数对是笛卡尔发明的,有一次,他生病了,躺在床上,发现墙角有一只蜘蛛。笛卡尔便把蜘蛛的位置作为开始,标为(0,0),便用数对表示出了蜘蛛网上的所有交叉点。
望采纳
『柒』 笛卡尔直角坐标与“数对”有什么相似之处
坐标有很多种。就像在数学中一样,CAD中的坐标就是根据数学来使用的。具体说起来有以下几种:第一,就是常说的笛卡尔坐标,也是最常用的一种,输入格式为(x,y,z),当然在平面问题中就不必输入z的值了,这很简单。另外还有相对坐标之说,格式为(@x,y,z),表示下一点相对于上一点的坐标,比如上一点为A(20,30,40),现输入点B(@10,20,30)就表示B点三个坐标值分别比A点坐标大10,20,30个单位。第二种就是极坐标,输入格式为(r
『捌』 数对是谁发明的
个人见解:就0的概念最早提出来的是玛雅人,而真正的阿拉伯数字0是印度人发明的。
材料1. 据历史记载,玛雅人有一个被称为“人类头脑最光辉的产物”的数学体系,玛雅人(或他们的欧梅克祖先)独立发展了零的概念,它的发明与使用比亚非古文明中最早使用“零”的印度还要早一些,比欧洲人大约早了800年。 并且使用二十进制的数字系统;数字以点(・)代表1,横棒(-)代表5。碑文显示他们有时会用到到亿。
论点:这里提的零并不是我们所用的阿拉伯数字0,但这应该是最早含有0的概念的数字了。
材料2. “0”的发明和传播
大约在公元前三世纪,古印度人终于完成了数字符号1到9的发明创造,但此时还没有“0”。“0”的出现,是在1到9数字符号发明一千多年后的印度笈多王朝。刚出现时,它还不是用圆圈,而是用点来表示。至于何时由点转为圆,具体时间已无从考证,但在公元876年,人们在印度的瓜廖尔地方发现了一块刻有“270”这个数字的石碑。这也是人们发现的有关“0”的最早的记载。
后来,这套数字符号传到阿拉伯,然后由阿拉伯人将这套数字介绍到欧洲。欧洲人误认为是阿拉伯人发明的,所以称它们为阿拉伯数字。
之前欧洲人使用的是罗马数字。当“0”传到欧洲时,罗马教皇认为“0”是“异端邪说”,下令禁止使用。有一位罗马学者从一本天文书中见到了阿拉伯数字,对“0”的作用十分推崇,专门在他的日记本上记下了“0”在记数和运算中的优越性。后来,这件事被教皇知道了,说他玷污了上帝创造的神圣的数,将他逮捕入狱,还对他施行了拶刑。但迫害无法阻挡先进知识的传播,“0”不仅在欧洲传播开来,还迅速地传遍了全世界。
它们传入中国的时间,大约在十三世纪。但据英国著名科学史专家李•约瑟博士的考证,“0”产生于中印文化,是中国首先使用的位值制促进了零的出现。印度是在中国筹算和位值制的影响下才创造“0”的。中国远在三千多年前的殷商时期,就采用了位值制,甲骨文中有“六百又五十又九(659)”等数字,明确地使用了十进位。在《诗经》中,零的含义被解释成为“暴风雨末了的小雨滴”,计数中把零作为“没有”看待。中国魏晋时期的数学家刘徽在注《九章算术》时,已明确地将“0”作为数字了,使用过程中,开始用“口”表示,后来把方块画成圆圈。到了十三世纪,南宋数学家正式开始使用“0”这个符号。由此可见,中国是“0”的发源地。
论点:由此可知,最早提出的我们所用的阿拉伯数字0是印度。
『玖』 数对是怎么发明的
数对是笛卡尔发明的,有一次,他生病了,躺在床上,发现墙角有一只蜘蛛。笛卡尔便把蜘蛛的位置作为开始,标为(0,0),便用数对表示出了蜘蛛网上的所有交叉点。
有了数对,我们就能很容易的表示出某一点的位置。我想,数对不仅能表示二维空间(长,宽)还可以表示三维空间(长,宽,高)或四维空间(长,宽,高,时间),世界上的所有点都可以用数对表示,那么数对将给我们的生活带来极大的方便。
『拾』 急急急!求数对的来历,和关于数对的知识
数对是笛卡儿;有这样一个故事: 当时他也象我们一样,想用一个好方法表示平面上的一个点。但是笛卡儿无论怎么尝试,都无法用一个数来确定点的位置!一次偶然的机会,蜘蛛给了他启示。他生病了,躺在床上,看到墙角有蜘蛛在织网,蜘蛛网上有很多的交点,这些点是横着和竖着的蜘蛛丝相交而成的。“有了”他忍不住叫了起来,“用两个数不就可以将点的位置确定下来了嘛!!!”于是,经过思考,笛卡儿最终发明了数对!为了更直观地表示,笛卡儿还吧蜘蛛网化简成网格,也就是我们学习的平面坐标系了