① 哪些仪器是从动物身上得到启发而发明的
现代的雷达——一种无线电定位和测距装置:科学家研究发现蝙蝠不是靠眼睛,而是靠嘴、喉和耳朵组成的回声定位系统。因为蝙蝠在飞行时发出超声波,又能觉察出障碍物反射回来的超声波。科学家据此设计出了现代的雷达——一种无线电定位和测距装置
科学家通过对海豚游泳阻力小的研究发明了能提高鱼雷航速的人工海豚皮;以及模仿袋鼠在沙漠运动形式的无轮汽车(跳跃机)等。
前苏联科学院动物研究所的科学家在企鹅的启示下,他们设计了一种新型汽车--“企鹅”牌极地越野汽车。这种汽车的宽阔的底部,直接贴在雪面上,用轮勺撑动着前进,行驶速度可达50公里/小时。
科学家模仿昆虫制造了太空机器人。
澳大利亚国立大学的一个科研小组通过对几种昆虫的研究,已经研制出一个小型的导航和飞行控制装置。这种装置可以用来装备用于火星考察的小型飞行器。
英国科学家在仿生学启发下,正在研制一种可以靠尾鳍摆动以S形“游水”的潜艇新式潜艇的主要创新之处是使用了被称为“象鼻致动器”的装置。“象鼻”由一组用薄而柔软的材料做成的软管组成,模仿肌肉活动,推动鳍的运动。这种新式潜艇可以充当水底扫雷潜艇,用来对付最轻微的声响或干扰便会引爆的水雷。
令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。
苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹。苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到。但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上。
每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞。若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。因此,苍蝇的触角像是一台灵敏的气体分析仪。
仿生学家由此得到启发,根据苍蝇嗅觉器的结构和功能,仿制成功一种十分奇特的小型气体分析仪。这种仪器的“探头”不是金属,而是活的苍蝇。就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。
这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中。
从萤火虫到人工冷光
自从人类发明了电灯,生活变得方便、丰富多了。但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼。那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然。
在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”。
在众多的发光动物中,萤火虫是其中的一类。萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同。萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。因此,生物光是一种人类理想的光。
科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。
早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。
现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。
电鱼与伏特电池
自然界中有许多生物都能产生电,仅仅是鱼类就有500余种 。人们将这些能放电的鱼,统称为“电鱼”。
各种电鱼放电的本领各不相同。放电能力最强的是电鳐、电鲶和电鳗。中等大小的电鳐能产生70伏左右的电压,而非洲电鳐能产生的电压高达220伏;非洲电鲶能产生350伏的电压;电鳗能产生500伏的电压,有一种南美洲电鳗竟能产生高达880伏的电压,称得上电击冠军,据说它能击毙像马那样的大动物。
电鱼放电的奥秘究竟在哪里?经过对电鱼的解剖研究, 终于发现在电鱼体内有一种奇特的发电器官。这些发电器是由许多叫电板或电盘的半透明的盘形细胞构成的。由于电鱼的种类不同,所以发电器的形状、位置、电板数都不一样。电鳗的发电器呈棱形,位于尾部脊椎两侧的肌肉中;电鳐的发电器形似扁平的肾脏,排列在身体中线两侧,共有200万块电板;电鲶的发电器起源于某种腺体,位于皮肤与肌肉之间,约有500万块电板。单个电板产生的电压很微弱,但由于电板很多,产生的电压就很大了。
电鱼这种非凡的本领,引起了人们极大的兴趣。19世纪初,意大利物理学家伏特,以电鱼发电器官为模型,设计出世界上最早的伏打电池。因为这种电池是根据电鱼的天然发电器设计的,所以把它叫做“人造电器官”。对电鱼的研究,还给人们这样的启示:如果能成功地模仿电鱼的发电器官,那么,船舶和潜水艇等的动力问题便能得到很好的解决。
水母的顺风耳
“燕子低飞行将雨,蝉鸣雨中天放晴。”生物的行为与天气的变化有一定关系。沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临。
水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了。这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了。
仿生学举15个例子:
1。由令人讨厌的苍蝇,仿制成功一种十分奇特的小型气体分析仪。已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分。
2。从萤火虫到人工冷光;
3。电鱼与伏特电池;
4。水母的顺风耳,仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义。
5。人们根据蛙眼的视觉原理,已研制成功一种电子蛙眼。这种电子蛙眼能像真的蛙眼那样,准确无误地识别出特定形状的物体。把电子蛙眼装入雷达系统后,雷达抗干扰能力大大提高。这种雷达系统能快速而准确地识别出特定形状的飞机、舰船和导弹等。特别是能够区别真假导弹,防止以假乱真。
电子蛙眼还广泛应用在机场及交通要道上。在机场,它能监视飞机的起飞与降落,若发现飞机将要发生碰撞,能及时发出警报。在交通要道,它能指挥车辆的行驶,防止车辆碰撞事故的发生。
6。根据蝙蝠超声定位器的原理,人们还仿制了盲人用的“探路仪”。这种探路仪内装一个超声波发射器,盲人带着它可以发现电杆、台阶、桥上的人等。如今,有类似作用的“超声眼镜”也已制成。
7。模拟蓝藻的不完全光合器,将设计出仿生光解水的装置,从而可获得大量的氢气。
8。根据对人体骨胳肌肉系统和生物电控制的研究,已仿制了人力增强器——步行机。
9。现代起重机的挂钩起源于许多动物的爪子。
10。屋顶瓦楞模仿动物的鳞甲。
11。船桨模仿的是鱼的鳍。
12。锯子学的是螳螂臂,或锯齿草。
13。苍耳属植物获取灵感发明了尼龙搭扣。
14。嗅觉灵敏的龙虾为人们制造气味探测仪提供了思路。
15。壁虎脚趾对制造能反复使用的粘性录音带提供了令人鼓舞的前景。
16。贝用它的蛋白质生成的胶体非常牢固,这样一种胶体可应用在从外科手术的缝合到补船等一切事情上
② 近代以来的科学仪器发明史
17世纪初的一天,荷兰小镇的一家眼镜店的主人利伯希(Hans Lippershey),为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好象变大拉近了,于是在无意中发现了望远镜的秘密。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。据说小镇好几十个眼镜匠都声称发明了望远镜,不过一般都认为利伯希是望远镜的发明者。
18世纪时西方开始探索电的种种现象。美国的科学家富兰克林,认为电是一种没有重量的流体,存在于所有物体中。
在十八世纪电的量性方面开始发展,1767年蒲力斯特里,与1785年库仑,发现了静态电荷间的作用力与距离平方成反比的定律,奠定了静电的基本定律。
在1800年,意大利的伏特,用铜片和锡片浸于食盐水中,并接上导线,制成了第一个电池,他提供首次的连续性的电源,堪称现代电池的元祖。1831年英国的法拉第,利用磁场效应的变化,展示感应电流的产生。1851年他又提出物理电力线的概念。这是首次强调从电荷转移到电场的概念。
1865年、苏格兰的马克斯威尔,提出电磁场理论的数学式,这理论提供了位移电流的观念,磁场的变化能产生电场,而电场的变化能产生磁场。马克斯威尔预测了电磁波辐射的传播存在,而在1887年德国赫兹展示出这样的电磁波。结果马克斯威尔将电学与磁学统合成一种理论,同时亦证明光是电磁波的一种。
③ 这种仪器是什么时候发明的
东汉,张衡。这是世界公认的最早的地震仪器。
④ 人们发明了什么观察仪器
天神也回答不了你!
⑤ 我国最早的指南仪器是什么时期发明的
司南是有史可查、有据可证的战国时期的发明;指南车则尚存争议,所以将司南作为现在所用指南针的始祖,司南是利用磁铁在地球磁场中的南北指极性而制作的指向仪器.是将天然磁石经人工琢磨后制成的,样子如同一只圆底的勺.它在平滑的盘上自由旋转,静止的时候,勺柄就会自由指向南方.
⑥ 仪器的发展趋势
科学技术的进步不断对仪器仪表提出更高更新的要求。仪器仪表的发展趋势是不断利用新的工作原理和采用新材料及新的元器件,例如利用超声波、微波、射线、红外线、核磁共振、超导、激光等原理和采用各种新型半导体敏感元件、集成电路、集成光路、光导纤维等元器件。其目的是实现仪器仪表的小型化,减轻重量、降低生产成本和更便于使用与维修等。另一重要的趋势是通过微型计算机的使用来提高仪器仪表的性能,担高仪器仪表本身自动化、智能化程度和数据处理能力。仪器仪表不仅供单项使用,而且可能过标准接口和数据通道与电子计算机结合起来,组成各种测试控制管理综合系统,满足更高的要求。
仪器仪表行业是中国发展的新型行业,在与国际接轨的同时,中国的仪器仪表行业发展有了长足的进步空间具备了与国际竞争的实力。
国内科技水平及发展趋势:
仪器仪表行业整体综合技术水平达到国际80年代中期水平,微电子技术和计算机技术在仪器仪表产品中普遍采用,约15%的产品实现了智能化,达到国际90年代水平;30%的产品实现了数字化,达到国际80年代末期水平。综合服务能力显著提:可以承接30万-60万千瓦火电站、核电站、30万吨合成氨、120吨转炉、日产30万立方米城市煤气站工程、成套大型炉窑等大型工程成套控制项目。
大类产品满足需要程度:中高档科学测试仪器国内市场满足率为30%,中低档科学仪器满足率65%;生产过程测量控制仪表及系统产品在大型工程项目中的品种满足率达50%,中小型工程达70%。进口产品往往是科研、生产所需的重大、关键设备,技术含量大,附加值高。
产业从无到有、从小到大、初步形成了门类比较齐全的仪器仪表生产、科研、营销体系。建成了一批科研开发机构(其中机械系统的仪器仪表专业科研所20家,国家级工程研究中心3家、企业技术中心5家,国家级产品质量检测中心9家);培养了一批专业的经营、管理、技术人才。特别是部分中低档产品形成了自己的优势和特色各种数字万用表、电度表、水表、煤气表、水准仪、中低档光学显微镜、望远镜等产量世界前列,在基本满足国内需要的同时,大量出口。
通过科技攻关、联合开发、合资合作和引进技术消化吸收国产化等多种形式,使中国仪器仪表行业部分中高档主导产品缩小了与国际先进水平的差距,并形成生产能力。自主开发的主要产品包括中小型DCS、现场总线智能仪表、总线式测试系统、汽车专用检测试验设备、超声诊断仪器、微波等离子光谱、新型扩散硅敏感元件等,引进技术国产化的主要产品有记录仪、精小型调节阀、新型变送器、光谱、色谱、扫描电镜、水质分析仪、专用复合材料等;合资合作的主要产品有大型DCS、EJA、流量计、电子经纬仪、动平衡试验机、高低温试验仪器等。
一批国有、集体、民营、三资企业和科研院所通过市场竞争,在行业中脱颖而出,并显现出良好发展势头和后劲,已形成主导、核心力量。
国外科技水平及发展趋势:
数字化、智能化
由于微电子技术的进步,仪器仪表产品进一步与微处理器、PC技术融合,仪器仪表的数字化、智能化水平不断得到提高。
仪器仪表中采用了大量的超大规模集成(VLSI)的新器件、表面贴装技术(SMT)、多层线路板印刷、圆片规模集成(WSI)和多芯片模块(MCM)等新工艺,CAD、CAM、CAPP、CAT等计算机辅助手段,使多媒体技术、人机交互、模糊控制、人工神经元网络等新技术在现代仪器仪表中得到了广泛应用。
网络化
当前国际上现场总线与智能仪表的发展呈现多种总线及其仪表共存发展的局面。HART、FF、Profibus、Lonworks、WorldFIP、CAN等总线都从应用于某一领域不断向其他领域扩展。
多种智能化仪器仪表已陆续推向市场,仪器仪表正经历着深刻的智能化变革。集成测试系统也走向了网络化,各台仪器之间通过GPIB总线、VXI总线相连。
微型化
MEMS是80年代中末期发达国家重点发展的领域之一,被视为21世纪广泛应用的新技术。被列为美国“对国家安全及繁荣有重大影响”的22项重大技术之一的传感器及信号处理技术,主要是依托微型化技术。应用MEMS技术的微型仪器仪表被称为芯片上的仪器仪表,MEMS产品包括汽车加速计,压力、化学、流量传器、微光谱仪等产品,广泛应用于环境科学、航天、生物医疗、汽车工业、军事、工业控制等领域。
国内实验仪器发展趋势:
随着经济的发展与科技的进步,中国的实验仪器设备也不断取得了可喜的成绩。涉及到的产品仪器包括光学测量仪器、分析测量仪器、电子测量仪器、环境测量仪器、实验测量仪器、生物工程设备等等。
1、电子天平:中国电子天平重视发展1mg~0.1mg读数的高精度电子天平技术,在温度补偿、时间飘移和示值重复性误差方面提高天平质量水平。采用贴片IC集成度、装配工艺中采用专用设备,有效降低人为故障因素,从而提高中国电子天平的技术水平,中国大称量电磁技术通过自主创新已取得很大成就,电子天平在“十二五”期间将取得突破性进展,赢得更大的发展空间。
2、实验室离心机:中国离心机专业已成为实验室仪器重要专业,有110多个生产厂家其产品已发展到4大系列50多个品种,广泛应用于医疗、血站、高校、科研单位、生物制药、精细化工、农牧业、新材料、石油、食品、环保、基因工程等许多领域上,中低档离心机不仅能满足国内生产的需要,而且出口到世界各地,高端离心机主要是指40000~50000r/min。各类离心机只要进一步提高控制技术、安全防护技术、控温技术、转子制造技术,完全可以实现批量生产高端离心机,使实验室离心机全面达到世界先进水平。
3、热分析仪器:中国热分析仪器的发展已有35年的历史,品种少,综合热分析技术水平不高,今后重点要放在综合热分析技术研究和开发,注重引入国外新型热分析仪器制造技术,以促进中国热分析仪器的发展。
在热分析仪器中,热值分析是发展最快的分专业,中国以煤炭工业、能源工业的发展,促进热值分析的快速发展,大部分产品达到和接近世界先进水平,今后热值分析技术要特别重视领域开发和综合测试技术的发展。
4、环境实验室设备:环境试验设备是实验室仪器最大专业,有100多个生产企业,实验室仪器的大型企业大部分集中在这个专业,其中产值在1亿以上的企业6~7家,为中国国防、航天、交通运输、工业、农业、科学、医疗卫生部门生产所需的环境试验设备,今后环境设备要进一步加强市场开拓:
1)加强特殊要求的试验箱开发;
2)发展医疗卫生急需的试验箱、培养箱;
3)注重建立本行业的名牌产品。
5、电泳仪:国产电泳仪是实验室仪器中亟待发展的一个专业,中国生产电泳仪厂家十分重视和国际先进水平接轨,大部分仪器水平接近国外先进水平,电泳仪市场仍需进一步开拓,电泳仪产品中大部分高端仪器仍依赖进口。
1)重视和科研部门、高校结合,努力开拓高档的电泳仪;
2)进一步做好基层医疗单位所需的电泳仪器;
3)加强新技术、新材料的应用。
6、应变与振动测试仪器:中国应变与振动测试仪器有50多年发展历史,其检测技术和水平有了很大的发展,在土建工程、水利设施、路桥建设、汽车、高铁、石油、航天、科研、高校得到广泛应用,今后重点开发动态测试系统,提高系统抗干扰、抗噪音、自动校准、高分子率、快速和稳定性能,要重视建立本行业标准体系,建设多功能生产和开发基地。
7、陶瓷检测仪器:中国是陶瓷生产大国,其陶瓷检测技术也走在世界前列,陶瓷检测已进入一个新的发展阶段,仪器要实现网络化、在线监测、智能控制系统、人机界面技术等作为陶瓷仪器的发展方向,同时要重视产品标准制定,开拓陶瓷仪器的新局面,打开首次仪器出口渠道。
8、动力测试仪器:经过近50年发展,中国动力测试仪器进入快速发展时期,从单参数的测量发展到多参数综合测试系统、台架测试、在线测量和遥控技术的阶段,涵盖了汽车、发动机、电机、风机、水泵、航空航天、船舶、高铁等方面。“十二五”期间应努力做好:
1)提高传感器的技术水平,特别是传感器其精加工的工艺技术水平,使之赶上和达到世界先进水平;
2)提高综合测试能力;
3)加强动力测试仪器标准化工作,做好产品标准的制修订工作,与国际先进技术接轨,从而进一步开拓中国动力测试仪器的市场。
9、真空仪器与装置:中国真空仪器正处于快速发展的时期。随着国家、电力、能源、钢铁、石化、化肥、科研的发展,为真空设备制造行业迎来了新的发展机遇,也对真空设备提出了更多更高的要求,同时也受到了国外大型真空设备强有力的挑战,中国的真空行业要努力做好:
1)进一步发展优势产品,扩大出口;
2)提高企业的技术水平和管理水平,加强自主创新能力;
3)努力扩大真空技术应用领域,提高市场竞争能力,使真空行业真正进入一个稳定发展阶段。
⑦ 仪器仪表的发展史
(一)早期主要的测量、度量器具1.称重器和计时器人类最早的度量器具是称重器和计时器,反映了人类早期的认识和生活需求。现已发现公元前2500年使用天平的证据,而在普通贸易中使用天平的最早迹象是在公元前1350年。天平杆为木制,砝码则是用青铜做成的各类鸟兽形状。原始的计时器主要有影钟、水钟和水运天文台3种。公元前1450年,古埃及就有绿石板影钟。至公元14世纪,用以表示时间的唯一可靠的方法是日晷或影钟。
公元前600年至公元前525年,也有用棕榈叶和铅垂线记录夜间时间和特定天体的仪器。当天体通过子午线时,从棕榈叶的开口中观察到天体穿过铅垂线的过程。在中国江苏仪征,出土了东汉中期的小型折叠铜质民间测影仪器。
公元1400年前,埃及记录较短时间的仪器叫水钟,水钟内有刻度,下有小孔,整个水钟用雪花石膏做成瓶状。在古希腊,古罗马有当时世界上唯一的机械计时仪——水仪。通过水的传递计量时间,记录的是不断流动的概念而不是连续相等的时间,非常不精确。中国北宋时期的苏颂和韩公谦于1088年制作了天文计时器——天文仪象台。它采用民间的水车、筒车、桔槔、凸轮和天平秤杆等,是集观测、演示和报时为一身的天文钟,被称为水运天文台。2.指南针、浑天仪、地动仪
在中国,公元前300~公元前100年,有人利用天然磁石的性质,发明了磁罗盘,即定向仪器;指南针到宋代发展成熟。中国西夏时候就有观测和记录天文的仪器,叫浑天仪元代的郭守仪(1231年~1361年)对浑天仪进行了改造,制成简仪,其制造水平在当时遥遥领先,其原理在现代工程测量、地形观测和航海仪器中广泛使用。东汉时期,张衡发明了世界上第一台自动天文仪——浑天仪和世界上第一台观测气象的候风仪,开创了人类使用仪器测量地震的历史。
(二)中世纪的仪器
至1500年,世界上已有了精密仪器。这时的天文仪器已经比较精确,主要有赤道经纬仪、子午浑仪、视差仪,以及希腊的角度仪、水准仪及星盘等;计时仪器有便携式日昝和水钟;计算和证明仪器有天球仪、日历、小时计算器等。这些仪器的制造工艺和使用材料等在当时都有相当高的水平和测量精度。780年,穆斯林造币厂的工人把天平放在密闭容器中,以两次的称量结果相比较,天平经过无数次摆动达到平衡后读取数据,能称出1 /3毫克。这是分析天平的始祖。
(三)文艺复兴时期的科学仪器
15世纪后期,随着自然科学的发展,早期的科学仪器也以不同的背景和形式逐渐形成,主要有光学仪器、温度计、摆钟、数学仪器等。 光学仪器 1590年左右,荷兰人扎哈里那斯·詹森制造了第一个非常精确的复合显微镜,这就是今天人们常说的显微镜。
另一荷兰人汉斯·利佩于1608年发明了单筒望远镜,后来又发明了双筒望远镜。伽利略把望远镜和显微镜第一次用于科学实验,并于1609年后制造了第一台长29米、直径42毫米的铅管仪器,所以后来人们常把伽利略作为望远镜和显微镜的实际发明者。1611年,刻卜勒出版了《屈光学》,解释了望远镜和显微镜的光学原理,并提出了“天文望远镜”的设想。再后来,沙伊纳制造第一架天文望远镜,牛顿于1668年制成了第一架天文反射望远镜。
18世纪后半叶,所有的光学仪器都是在开普勒式透镜组合的基础上改造。 温度计 伽利略在他早期的实验中,用玻璃管制成了空气温度计。后来,托斯卡斯的大公斐迪南二世改良制成液体温度计。
大约1714年,华伦海特创造了以其名字命名的温度计,被称为华氏温度计。17世纪末,气压计和温度计与刻度标尺、指针和其它配件配合安装在一起,成为仪器大家庭中的重要组成部分,也是仪器制造贸易中的重要部分。 数学仪器 英格兰的吉米尼( Thomas Gemini)率先进行数学仪器(1524年~1562年)的制造,之后不久英国雕刻匠和制模匠科尔(Humfray Cole)开始从事仪器的专门制作,从此开始出现了大批的仪器供应商,产品范围也由星盘、日昝和象限仪扩展到观测和测量用仪器,以及一系列演示“自然科学实验”的仪器。 其它仪器 到1650年后,新型的精密仪器就不断地被制造出来。如测量用的圆周仪、量角器,航海用的高度观测仪和反向式八分仪,绘图和校仪用的分度尺和绘图仪,还有经纬仪、气泡水平仪、新型望远准镜、测探仪、海水取暖器、玻意尔制造的比重计、摆钟,等等。这些精密仪器为17世纪后自然科学的发展提供了重要保障,是科学技术发展的标志,也为科学仪器的进一步发展打下了良好的基础。 到了18世纪初,由于科学研究和科学课堂的需求,制造者们开始设计和生产标准的仪器和配件;仪表工匠与其它专业制造者联合起来,制造了光学、气动、磁力和电力等方面的仪器,从此将仪器与仪表正式结合起来,使仪器仪表融为一体,成为一个专门的学科。 以蒸汽机的发明为标志,一种将蒸汽的能量转换为机械功的往复式动力机械,引起了18世纪的工业革命,人类进入了工业化时代。 1800年,英国的特里维西克设计了可安装在较大车体上的高压蒸汽机,这是机车的雏型。英国的史蒂芬孙将机车不断改进,在1829年创造了“火箭”号蒸汽机车,该机车拖带一节载有30位乘客的车厢,时速达46公里/时,引起了各国的重视,开创了铁路时代。 自从奥斯特在1820发现了电流的磁效应,奥斯特做了六十多个实验,考察电流对磁针作用的强弱、电流对磁针的影响;并在1820年7月21日发表了题为《关于磁针上电流碰撞的实验》的论文,向科学界宣布了电流的磁效应,揭开了电磁学的序幕,标志着电磁学时代的到来。 1831年8月26日,法拉第用伏打电池在给一组线圈通电(或断电)的瞬间,在另一组线圈获得的感生电流,称之为“伏打电感应”。同年10月17日,法拉第完成了在磁体与闭合线圈相对运动时在闭合线圈中激发电流的实验,称之为“磁电感应”,并提出磁场的概念,实现了“磁生电”,创造电磁力学,设计了圆盘发电机,宣告了电气时代的到来,以电磁为核心的第一代电磁式仪器开始逐步走向成熟。
电磁效应的发现与应用,为原始的机械式仪器仪表向电磁式仪器仪表发展提供了理论和技术保障,使第一代指针式仪器仪表正式形成与发展。3.麦克斯韦继法拉第之后集电磁学大成,在1865年他预言了电磁波的存在,说并指出电磁波只可能是横波,计算出电磁波的传播速度等于光速。麦克斯韦于1873年建立电磁理论,在出版的科学名著《电磁理论》中系统、全面、完美地阐述了电磁场理论,成为经典物理学的重要支柱之一。4.1886 年至1888 年,德国物理学家赫兹通过试验验证了麦克斯韦尔的理论,证明了无线电辐射具有波的所有特性,进而发现了无线电波,设计出了雷达,开启了无线电波通信技术,使远距离无线测量仪器的出现成为可能,让电话、电视等电器有了飞跃发展。 随着X射线、γ射线先后被德国科学家伦琴、法国科学家P.V.维拉德发现,因其超强穿透力这一特性,使仪器的功能与概念被进一步推向更深的领域,如广东正业的X光检查机、检孔机ASIDA-JK2400、线宽检测仪等仪器,就采用了X射线、γ射线的超强穿透力研发的先进检测仪器设备。 6.20世纪初,电子技术的发展使各类电子仪器快速产生,如今后普及全球的电子计算机,便是从这一时代开始崛起的。同时,随着工业化程度的不断提高,各行各业的电子仪器如雨后春笋般地出现,如计量、分析、生物、天文、汽车、电力、石油、化工仪器等。
电子仪器的产生使仪器仪表从模拟式仪器过渡到数字式仪器。
⑧ 仪器有些什么样的发明故事
仪器通常用于科学研究或技术测量、工业自动化过程控制、生产专等用途,一般来说专用于属一个目的。仪器构造较为复杂,属于高新技术产品,由多个部件组成的。仪器体积、重量、形状有各种各样,最小的可以直接拿在手中操作,较大体积的仪器一般被称为装置或设备。精密仪器隶属于仪器科学与技术一级学科,与信息科学与技术密切相关,它能够改善、扩展或补充人的官能。人们用感觉器官去视、听、尝、摸外部事物,而时钟、显微镜、望远镜、温度计等仪器仪表可改善和扩展人的这些官能,让人们对世界有了更新的认识。
19世纪到20世纪,工业革命和现代化大规模生产促进了新学科和新技术的发展,后来又出现了电子计算机和空间技术等,仪器仪表因而也得到迅速的发展。现代仪器仪表已成为测量、控制和实现自动化必不可少的技术工具。