导航:首页 > 创造发明 > 圆周率有哪些人发明

圆周率有哪些人发明

发布时间:2021-06-28 21:12:17

⑴ 圆周率是谁发明的如题 谢谢了

纠正一下,圆周率并不是祖冲之发现的,他之前,刘徽就就计算过圆周率. 作为数学家,研究计算圆周率应该是他们的专业方向之一. 国古代数学家对圆周率方面的研究工作,成绩是突出的。早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。 祖冲之是和他儿子一起从事这项研究工作的,当时条件很差。他们在一间大屋的地上画了一个直径1丈的大圆。从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样。接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的。祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位。其近似分数是 355/113,被称为"密率"。德国数学家奥托在1573年重新得出这个近似分数。当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了。后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率"。日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对。

希望采纳

⑵ 圆周率谁发明的

说法有误,圆周率不是发明的,而是不断计算出来的,汉代就有割圆术,直到南北朝的祖冲之将圆周率算到小数点后七位。再加上圆周率是现代人的叫法,古代可没有这个名词。如刘徽(三世纪)注《九章算术》说:“周兰径一之率”。后人便把这一值称为古率。刘徽由于对古率不满,就创造了割圆术求出圆周率近似值为介=燮50叮=丝兰Z 1250并称徽率或徽术。

⑶ 圆周率是谁发明的

圆周率并不是祖冲之发现的,他之前,刘徽就就计算过圆周率. 作为数学家,研究计算圆周率应该是他们的专业方向之一. 我国古代数学家对圆周率方面的研究工作,成绩是突出的。早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。 祖冲之是和他儿子一起从事这项研究工作的,当时条件很差。他们在一间大屋的地上画了一个直径1丈的大圆。从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样。接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的。祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位。其近似分数是 355/113,被称为"密率"。德国数学家奥托在1573年重新得出这个近似分数。当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了。后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率"。日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对。 求无理数π的近似值,我国古代数学家早已作出了巨大的贡献,在东汉初年的数学书《周髀算经》里已经载有“周三径一”,称之为“古率”,就是说,直径是1的圆,它的周长是3. 到了西汉末年,刘歆(约分元前50年到公元23年)定圆周率为3.1547,到了东汉时代,张衡(公元78-139年)求得两个比,一是92 29=3.17241…,另一个是10,约等于3.1622.(印度数学家罗笈多也曾定圆周率为10,但已迟于张衡500多年.) 到了三国时,魏人刘徽(公元263年)创立了求圆周率的准确值的原理,他用割圆术求得圆周率的前三位数字是π≈3.14…,称为徽率. 到南北朝时代的祖冲之(公元429年—500年),他已推算出 3.1415926<π<3.1415927. 也就是π≈3.1415926…,他是世界上第一个确定圆周率准确到7位小数的人.祖冲之又提出了用两个分数表示π的近似值.即22 7及355 113,分别称为π的约率和密度. 在祖冲之发现密率一千多年后,欧洲的安托尼兹(16世纪~17世纪)才重新发现了这个值.

⑷ 圆周率是谁发明的

祖冲之
最早的
古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。

π:3. 5359408128 4811174502

⑸ 圆周率是谁发明的

纠正一下,圆周率并不是祖冲之发现的,他之前,刘徽就就计算过圆周率. 作为数学家,研究计算圆周率应该是他们的专业方向之一. 我国古代数学家对圆周率方面的研究工作,成绩是突出的。早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。 祖冲之是和他儿子一起从事这项研究工作的,当时条件很差。他们在一间大屋的地上画了一个直径1丈的大圆。从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样。接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的。祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位。其近似分数是 355/113,被称为"密率"。德国数学家奥托在1573年重新得出这个近似分数。当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了。后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率"。日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对。

⑹ 圆周率是谁发明的

圆周率是一个概念,一个定义,不存在由谁发明的问题。 而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。

1、第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

2、中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术.他用割圆术一直算到圆内接正192边形.

3、南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶)。

4、在西方直到1573才由德国人奥托得到经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

(6)圆周率有哪些人发明扩展阅读:

国际圆周率日

2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。

国际圆周率日可以追溯至1988年3月14日,旧金山科学博物馆的物理学家Larry Shaw,他组织博物馆的员工和参与者围绕博物馆纪念碑做3又1/7圈(22/7,π的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博物馆继承了这个传统,在每年的这一天都举办庆祝活动。

2009年,美国众议院正式通过一项无约束力决议,将每年的3月14日设定为“圆周率日”。决议认为,“鉴于数学和自然科学是教育当中有趣而不可或缺的一部分,而学习有关π的知识是一教孩子几何、吸引他们学习自然科学和数学的迷人方式……π约等于3.14,因此3月14日是纪念圆周率日最合适的日子。”

⑺ 圆周率是谁发明的

圆周率是客观存在的规律,不能发明。
圆周率也不是祖冲之发现的,因为回更古的时候,说是答径一周三,说明当时人们已经有圆周率的观念,但是不精密。
祖冲之计算得出了当时世界上最精密的数值。除了大家知道的小数点后七位数的圆周率外,他还给出了约率
22/7,密率355/113。而且,至今数学家无法推测这个极其精密的约率他是如何算出来的!
佩服吧?老祖宗厉害哦!

补充:
楼下“倔……强 ”说“祖冲之发现的,但是不准确”,此言差矣!
1,古人说“径一周三”,就是说,圆周率的值是3,虽然不精确,却是已经发现了。可见祖冲之并不是圆周率的发现者。
2,祖冲之计算的值是3.1415926<π<3.1415927,难道还不精确? 再说,祖冲之是正确地用内接正多边型计算[月内]值,用外接正多边型计算盈值,就是现代用电脑计算圆周率,其方法也仍然如此啊。
我不明白“倔……强 ”说祖冲之不精确的根据何在?是不是又有什么考古新发现证明他的观点?

⑻ 圆周率是谁发明的 历史上圆周率的发明人是谁

公元前3世纪,古希腊著名学者阿基米德研究圆周率,求得圆周率的近似值为3.14。我国古代数学著作《周髀算经》成书于公元前l世纪,有“勾股圆方_”的记载,汉代赵爽注释“圆径一而周三”,即认为圆周率为3。 3世纪,我国数学家刘徽创造性地提出了割圆术,得出圆周率的值为3927/1250(即3.1416),确定了圆周率小数点后3位数。这个值的精确度在当时世界上处于领先地位。约200年后,祖冲之利用割圆术,夜以继日、成年累月地计算,算出圆周率在3.1415926与3.1415927之间。人类第一次确定了圆周率小数点后6位数。祖冲之得出的这一精确纪录保持了千年之久。 1579年,法国数学家韦达将圆周率正确计算到小数点后第9位数。17世纪后,由于数学理论发展,计算圆周率的公式有很多,德国数学家卢多夫计算出的圆周率小数部分有35位数,英国数学家梅钦计算出的圆周率小数部分突破100位数,英国数学家威廉·香克斯自称已算到小数点后第707位数(70多年后,人们通过电子计算机的计算发现,香克斯计算出的圆周率小数部分第528位数是错的)

⑼ 圆周率是谁发明的 历史上圆周率的发明人是谁

圆周率是一个概念,一个定义,不存在由谁发明的问题。 而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。

中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。汉朝时,张衡得出π²除以16约等于8分之5,即π约等于根号十(约为3.162)。这个值不太准确,但它简单易理解。

中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。刘徽给出π=3.14的圆周率近似值,刘徽在得圆周率=3.14之后,继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率3927除以1250约等于3.1416。

数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,密率是个很好的分数近似值,要取到52163除以16604才能得出比355除以113略准确的近似,在之后的800年里祖冲之计算出的π值都是最准确的。

(9)圆周率有哪些人发明扩展阅读:

2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。

1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式 。

2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。

阅读全文

与圆周率有哪些人发明相关的资料

热点内容
国家公共文化服务示范区 浏览:646
pdf设置有效期 浏览:634
广告词版权登记 浏览:796
基本公共卫生服务考核方案 浏览:660
公共服务平台建设领导小组 浏览:165
人类创造了那些机器人 浏览:933
公共文化服务保障法何时实施 浏览:169
辽宁育婴师证书领取 浏览:735
划拨土地使用权转让能转让吗 浏览:97
2019年公需科目知识产权考试答案 浏览:256
关于知识产权管理办法 浏览:331
公共卫生服务培训笔记 浏览:532
基层公共卫生服务技术题库 浏览:497
中国城市老年体育公共服务体系的反思与重构 浏览:932
网络著作权的法定许可 浏览:640
工商局党风廉政建设工作总结 浏览:325
公共服务平台建设可行性研究报告 浏览:428
投诉华尔街英语 浏览:202
榆次区公共卫生服务中心 浏览:990
申发明5G 浏览:815