导航:首页 > 创造发明 > 发明log

发明log

发布时间:2021-06-24 18:51:54

㈠ 高中必修上看到发明对数后对三角函数就被完善了,我问下他们是如何利用log求出三角函数值的

这里可以从两个方面三角函数从经验来看,他应该是笔直,这是比较用复杂的两个数字相除得到了精确的结果,而对数运算可以使得除法变成减法,这样简化了运算,使得大量的运算得以顺利的进行。

㈡ “ln”与“log”的区别是什么

1、定义不同

ln:自然对数以常数e为底数的对数。记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。

log:在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。

在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。

2、历史沿革不同

ln:在1614年开始有对数概念,约翰·纳皮尔以及Jost Bürgi(英语:Jost Bürgi)在6年后,分别发表了独立编制的对数表,当时通过对接近1的底数的大量乘幂运算,来找到指定范围和精度的对数和所对应的真数,当时还没出现有理数幂的概念。

1742年William Jones(英语:William Jones (mathematician))才发表了幂指数概念。按后来人的观点,Jost Bürgi的底数1.0001相当接近自然对数的底数e,而约翰·纳皮尔的底数0.99999999相当接近1/e。

实际上不需要做开高次方这种艰难运算,约翰·纳皮尔用了20年时间进行相当于数百万次乘法的计算,Henry Briggs(英语:Henry Briggs (mathematician))建议纳皮尔改用10为底数未果,他用自己的方法于1624年部份完成了常用对数表的编制。

log:16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。约翰·纳皮尔(J.Napier,1550—1617)正是在研究天文学的过程中,为了简化其中的计算而发明了对数。

对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心情迎接这一发明。恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就,伽利略也说过:“给我空间、时间及对数,我就可以创造一个宇宙。”

3、概念不同

ln:常数e的含义是单位时间内,持续的翻倍增长所能达到的极限值。

自然对数的底e是由一个重要极限给出的。我们定义:当n趋于无穷大时,

,则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln 5。

㈢ 计算器里面的log怎么用

先按数字,再按log,具体操作步骤如下:

1、首先,计算器上方框中输入数字30,如下图所示。

㈣ log是什么意思

log一般指对数,在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 即是一个数字的对数是必须产生另一个固定数字(基数)的指数。

如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。

log函数的图像:

(4)发明log扩展阅读:

log函数的应用:

对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题。

相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数。对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。

此外,由于对数函数log(x)对于大的x而言增长非常缓慢,所以使用对数标度来压缩大规模科学数据。对数也出现在许多科学公式中,例如Tsiolkovsky火箭方程或是能斯特方程。

㈤ 对数为什么叫对数有什么历史背景什么的..

16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。纳皮尔(J.Napier,1550—1617)正是在研究天文学的过程中,为了简化其中的计算而发明了对数.对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心情迎接这一发明。恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就,伽利略也说过:“给我空间、时间及对数,我就可以创造一个宇宙。”
对数发明之前,人们对三角运算中将三角函数的积化为三角函数的和或差的方法已很熟悉,而且德国数学家斯蒂弗尔(M.Stifel,约1487—1567)在《综合算术》(1544年)中阐述了一种如下所示的一种对应关系:

该关系可被归纳为

,同时该种关系之间存在的运算性质(即上面一行数字的乘、除、乘方、开方对应于下面一行数字的加、减、乘、除)也已广为人知。经过对运算体系的多年研究,纳皮尔在1614年出版了《奇妙的对数定律说明书》,书中借助运动学,用几何术语阐述了对数方法。
将对数加以改造使之广泛流传的是纳皮尔的朋友布里格斯(H.Briggs,1561—1631),他通过研究《奇妙的对数定律说明书》,感到其中的对数用起来很不方便,于是与纳皮尔商定,使1的对数为0,10的对数为1,这样就得到了以10为底的常用对数。由于我们的数系是十进制,因此它在数值上计算具有优越性。1624年,布里格斯出版了《对数算术》,公布了以10为底包含1~20000及90000~100000的14位常用对数表。
根据对数运算原理,人们还发明了对数计算尺。300多年来,对数计算尺一直是科学工作者,特别是工程技术人员必备的计算工具,直到20世纪70年代才让位给电子计算器。尽管作为一种计算工具,对数计算尺、对数表都不再重要了,但是,对数的思想方法却仍然具有生命力。

从对数的发明过程我们可以发现,纳皮尔在讨论对数概念时,并没有使用指数与对数的互逆关系,造成这种状况的主要原因是当时还没有明确的指数概念,就连指数符号也是在20多年后的1637年才由法国数学家笛卡儿(R.Descartes,1596—1650)开始使用。直到18世纪,才由瑞士数学家欧拉发现了指数与对数的互逆关系。在1770年出版的一部著作中,欧拉首先使用来定义

,他指出:“对数源于指数”。对数的发明先于指数,成为数学史上的珍闻。
从对数的发明过程可以看到,社会生产、科学技术的需要是数学发展的主要动力。建立对数与指数之间的联系的过程表明,使用较好的符号体系对于数学的发展是至关重要的。实际上,好的数学符号能够大大地节省人的思维负担。数学家们对数学符号体系的发展与完善作出了长期而艰苦的努力

㈥ 谁发明了对数log的符号

最早使用log的数学家应该是欧拉,包括自然常数e也是欧拉最早使用的。

㈦ 发明对数的意义

如果a的n次方等于b(a大于0,且a不等于1),那么数n叫做以a为底b的对数,记做n=loga的b次方,专属也可以说log(a)b=n。其中,a叫做“底数”,b叫做“真数”,n叫做“以a为底b的对数”。 相应地,函数y=logaX叫做对数函数。对数函数的定义域是(0,+∞)。零和负数没有对数。底数a为常数,其取值范围是(0,1)∪(1,+∞)。一般默认当a=10时,写作:lgb=n。

㈧ 求LOG用法详细介绍与解说!!!!!!!!!! 急!!!!!!!!!!!1

1、log作“伐木,切木材”解时,可用作不及物动词,也可用作及物动词,用于及物动词时其后常接“树木,林木,木材”等之类的名词作宾语。

2、log作“把…记入航海日志”解时,用作及物动词。

3、log还可作“以…速度航行或飞行”解,用作及物动词,其后常接有关速度的名词作宾语。

4、log后可接in〔on〕表示“开始工作”,接off表示“结束工作”。

5、log的过去式和过去分词均为logged。

log

读音:英 [lɒɡ] 美 [lɔːɡ]

释义:原木,(某时期事件的)正式记录。

(8)发明log扩展阅读

log的近义词:block

block

读音:英 [blɒk] 美 [blɑːk]

释义:(方形平面)大块,立方体。

语法:block是可数名词,基本意思是指带有直边由较硬材料构成的长方形的块状物,如木块、石块或其他固体材料,引申则指高大的建筑物,即大厦、大楼等。

例句:

.

她沿着商业大街走了4个街区。

㈨ 谁发明了对数log的符号

对数发明者是两个人:英国的约翰·耐普尔、瑞士的乔伯斯特·布尔基。

阅读全文

与发明log相关的资料

热点内容
轮子什么时候发明 浏览:151
马鞍山陶世宏 浏览:16
马鞍山茂 浏览:5
通辽工商局咨询电话 浏览:304
谁发明的糍粑 浏览:430
国家公共文化服务示范区 浏览:646
pdf设置有效期 浏览:634
广告词版权登记 浏览:796
基本公共卫生服务考核方案 浏览:660
公共服务平台建设领导小组 浏览:165
人类创造了那些机器人 浏览:933
公共文化服务保障法何时实施 浏览:169
辽宁育婴师证书领取 浏览:735
划拨土地使用权转让能转让吗 浏览:97
2019年公需科目知识产权考试答案 浏览:256
关于知识产权管理办法 浏览:331
公共卫生服务培训笔记 浏览:532
基层公共卫生服务技术题库 浏览:497
中国城市老年体育公共服务体系的反思与重构 浏览:932
网络著作权的法定许可 浏览:640