导航:首页 > 创造发明 > 圆周率是怎么发明的

圆周率是怎么发明的

发布时间:2021-06-18 14:12:37

『壹』 圆周率是什么时候发明

大约2000多年前,在我国古代数学著作《周髀算经》中就有“周三径一”的记内载,意思是说圆容的周长大约是直径的3倍。
大约1700年前,我国的数学家刘徽有“割园术”来求圆周长的近似值。他从圆的内接正六边形算起,逐渐把边数加倍,正十二边形……计算得出圆周率是3.14。并指出,内接正多边形的边数越多,周长越接近圆的周长。直到1200年后,西方人才找到了类似的方法。
大约1500年前,我国的数学家祖冲之,计算出圆周率大约在3.1415926和3.1415927之间,成为世界上第一个精确到6位小数的人。
还得到两个近似分数值,密率355/113和约率22/7。

『贰』 圆周率是谁发明的

圆周率是客观存在的规律,不能发明。
圆周率也不是祖冲之发现的,因为回更古的时候,说是答径一周三,说明当时人们已经有圆周率的观念,但是不精密。
祖冲之计算得出了当时世界上最精密的数值。除了大家知道的小数点后七位数的圆周率外,他还给出了约率
22/7,密率355/113。而且,至今数学家无法推测这个极其精密的约率他是如何算出来的!
佩服吧?老祖宗厉害哦!

补充:
楼下“倔……强 ”说“祖冲之发现的,但是不准确”,此言差矣!
1,古人说“径一周三”,就是说,圆周率的值是3,虽然不精确,却是已经发现了。可见祖冲之并不是圆周率的发现者。
2,祖冲之计算的值是3.1415926<π<3.1415927,难道还不精确? 再说,祖冲之是正确地用内接正多边型计算[月内]值,用外接正多边型计算盈值,就是现代用电脑计算圆周率,其方法也仍然如此啊。
我不明白“倔……强 ”说祖冲之不精确的根据何在?是不是又有什么考古新发现证明他的观点?

『叁』 圆周率谁发明的

古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph
Van
Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph
数;其二是英国的William
Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph
Van
Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,
多数是为了验证计算机的计算能力,还有,就是为了兴趣。

『肆』 圆周率是怎么发现并计算出来的

在半径为r的圆中,作一个内接正六边形。这时,正六边形的边长等于圆的半径r,因此,正六边形的周长等于6r。如果把圆内接正六边形的周长看作圆的周长的近似值,然后把圆内接正六边形的周长与圆的直径的比看作为圆的周长与圆直径的比,这样得到的圆周率是3,显然这是不精确的。
我们就得到了一种计算圆周率π的近似值的方法。
早在一千七百多年前,我国古代数学家刘徽曾用割圆术求出圆周率是3.14。继刘徽之后,我国古代数学家祖冲之在推求圆周率的研究方面,又有了重要发展。他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;另一个是(nǜ)数(即不足的近似值),为3.1415926。圆周率的真值正好在盈两数之间。祖冲之还采用了两个分数值:一个是22/7(约等于3.14),称之为“约率”;另一个是355/113(约等于3.1415929),称之为“密率”。祖冲之求得的密率,比外国数学家求得这个值,至少要早一千年。

2∕π=√2∕2*√(2+√2)∕2*√(2+√(2+√2))∕2……

π∕2=2*2*4*4*6*6*8*8……∕(1*3*3*3*4*5*5*7*7……)

π∕4=4arctg(1∕5)-arctg(1∕239)
(注:tgx=…………)

π=426880√10005∕(∑((6n)!*(545140134n+13591409))
∕((n!)*(3n)!*(-640320)^(3n)))
(0≤n→∞)
现代数学家计算圆周率大多采用此类公式,普通人是望尘莫及的。
而中国圆周率公式的使用就简单多了,普通中学生使用常规计算工具就能

『伍』 圆周率是谁发明的 历史上圆周率的发明人是谁

圆周率是一个概念,一个定义,不存在由谁发明的问题。 而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。

中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。汉朝时,张衡得出π²除以16约等于8分之5,即π约等于根号十(约为3.162)。这个值不太准确,但它简单易理解。

中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。刘徽给出π=3.14的圆周率近似值,刘徽在得圆周率=3.14之后,继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率3927除以1250约等于3.1416。

数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,密率是个很好的分数近似值,要取到52163除以16604才能得出比355除以113略准确的近似,在之后的800年里祖冲之计算出的π值都是最准确的。

(5)圆周率是怎么发明的扩展阅读:

2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。

1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式 。

2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。

『陆』 圆周率是怎么发现的

三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在
3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".

『柒』 圆周率是谁发明的

圆周率是一个概念,一个定义,不存在由谁发明的问题。 而对于圆周率精确计算,在各个时期达到如何的精度是有记录的。数学家祖冲之为圆周率做出了巨大的贡献。

1、第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

2、中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术.他用割圆术一直算到圆内接正192边形.

3、南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶)。

4、在西方直到1573才由德国人奥托得到经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

(7)圆周率是怎么发明的扩展阅读:

国际圆周率日

2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。

国际圆周率日可以追溯至1988年3月14日,旧金山科学博物馆的物理学家Larry Shaw,他组织博物馆的员工和参与者围绕博物馆纪念碑做3又1/7圈(22/7,π的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博物馆继承了这个传统,在每年的这一天都举办庆祝活动。

2009年,美国众议院正式通过一项无约束力决议,将每年的3月14日设定为“圆周率日”。决议认为,“鉴于数学和自然科学是教育当中有趣而不可或缺的一部分,而学习有关π的知识是一教孩子几何、吸引他们学习自然科学和数学的迷人方式……π约等于3.14,因此3月14日是纪念圆周率日最合适的日子。”

『捌』 圆周率是谁发明的圆周率是什么

古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph
Van
Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William
Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph
Van
Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,
多数是为了验证计算机的计算能力,还有,就是为了兴趣。

『玖』 圆周率是什么时间发明的

最早是魏抄晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。数学问题想不通,快上数学百事通!

阅读全文

与圆周率是怎么发明的相关的资料

热点内容
麻城工商局领导成员 浏览:52
乡级公共卫生服务绩效考核方案 浏览:310
乐聚投诉 浏览:523
轮子什么时候发明 浏览:151
马鞍山陶世宏 浏览:16
马鞍山茂 浏览:5
通辽工商局咨询电话 浏览:304
谁发明的糍粑 浏览:430
国家公共文化服务示范区 浏览:646
pdf设置有效期 浏览:634
广告词版权登记 浏览:796
基本公共卫生服务考核方案 浏览:660
公共服务平台建设领导小组 浏览:165
人类创造了那些机器人 浏览:933
公共文化服务保障法何时实施 浏览:169
辽宁育婴师证书领取 浏览:735
划拨土地使用权转让能转让吗 浏览:97
2019年公需科目知识产权考试答案 浏览:256
关于知识产权管理办法 浏览:331
公共卫生服务培训笔记 浏览:532