㈠ 一元二次方程是谁发明的
“一元二次方程新解法”的发明人叫罗伯森,是卡内基梅隆大学华裔数学教授、美国奥数教练,并且罗伯森教授表示:“如果这种方法直到今天都没有被人类发现的话,我会感到非常惊讶,因为这个课题已经有4000年的历史了,而且有数十亿人都遇到过这个公式和它的证明。”
事实上,在古代,全世界的数学家对一元二次方程都有研究,虽然也没有一模一样的方法出现,但是究其内涵,有些古代的解法与罗教授的解法可谓是大同小异。原因也不难想,古代的数学家们没有韦达,更没有代数的符号记法,而现如今罗教授的解法确实有“踩肩膀”的嫌疑。

(1)数学元次谁创造的扩展阅读:
古阿拉伯对一元二次方程的解法
阿尔·花剌子模在书中提出一个问题:“一个平方和十个这个平方的根等于三十九个迪拉姆,它是多少?”由于当时代数符号根本没有发明,古代数学的方程只能靠文字去描述。
设这个数是X,那么“平方”就是X²,“平方的根”就是将X²在开方,故“平方的根”是指“X”,“十个这个平方的根”就是10X,问题转化为求方程:X²+10X=39的解。
花剌子模给出的解法是:(注意:下文中的“根”,不指现如今方程的根,而指平方根)
1、将根的个数减半。本题中,是将10减半,故得到5;
2、用5乘自己,再加39,得到64;
3、取64的根,即将64开方,得到8;
4、再从中减去根的个数的一半,即再用8去减5,得到3,方程解完。
㈡ 数学方程的" 元""次"是谁 发明的
解:数学方程的元次是康熙首先提出的。
㈢ 数学方程中:元.次等术语,是谁创业造的
选康熙创造的
㈣ 数学方程式里的元次方等术语是谁创造的
是康熙皇帝啊
㈤ 谁发明的“元”“次”“根”
是 康熙。康熙拜比抄利时的传教士袭为师,学习数学。但听他讲课很不轻松,而且讲方程是句子冗长,,所以康熙就建议 ,吧未知数翻译成“元”最高次翻译成“次”方程的解翻译成“根” 康熙创造的几个学术用语一直沿用至今!
㈥ 一元一次方程发明者是谁
一元一次方程式
--- 方程式的由来
十六世纪,随著各种数学符号的相继出现,特别是法国数学家韦达创
立了较系统的表示未知量和已知量的符号以后,"含有未知数的等式"
这一专门概念出现了,当时拉丁语称它为"aequatio",英文为"equation".
十七世纪前后,欧洲代数首次传进中国,当时译"equation"为"相等式.
由於那时我国古代文化的势力还较强,西方近代科学文化未能及时
在我国广泛传播和产生较的影响,因此"代数学"连同"相等式"等这
些学科或概念都只是在极少数人中学习和研究.
十九世纪中叶,近代西方数学再次传入我国.1859年,李善兰和英国
传教士伟烈亚力,将英国数学家德.摩尔根的<代数初步>译出. 李.伟
两人很注重数学名词的正确翻译,他们借用或创设了近四百个数
学的汉译名词,许多至今一直沿用.其中,"equation"的译名就是借
用了我国古代的"方程"一词.这样,"方程"一词首次意为"含有未知
数的等式.
1873年,我国近代早期的又一个西方科学的传播者华蘅芳,与英国传
教士兰雅合译英国渥里斯的<代数学>,他们则把"equation"译为"方程
式",他们的意思是,"方程"与"方程式"应该区别开来,方程仍指<九章
算术>中的意思,而方程式是指"今有未知数的等式".华.傅的主张在
很长时间裏被广泛采纳.直到1934年,中国数学学会对名词进行一审
查,确定"方程"与"方程式"两者意义相通.在广义上,它们是指一元n次
方程以及由几个方程联立起来的方程组.狭义则专指一元n次方程.
既然"方程"与"方程式"同义,那麼"方程"就显得更为简洁明了了.
(本文摘自九章出版社之"数学诞生的故事")
㈦ 数学的创始人是谁
阿里士多德;Aristotle(公元前384~前322)
古希腊哲学家、科学家.生于马其顿的斯塔吉拉镇,卒于希腊的哈尔基斯.
亚里士多德是马其顿王家医师尼科马科斯之子,柏拉图的学生,亚历山大大帝的师傅.公元前335年他在雅典创办吕克昂(Lyceum)学校,形成“逍遥派”,因边讲学边散步而得名.
亚里士多德的著作论述过力学问题.他已经具有正交情况下力平行四边形(见静力学公理)的概念.他解释杠杆理论说:距支点较远的力更易移动重物,因为它画出一个较大的圆.他把杠杆端点重物的运动分解为切向的(他称为“合乎自然的”)运动和法向的(“违反自然
的”)运动.亚里士多德关于落体运动的观点是:“体积相等的两个物体,较重的下落得较快”,他甚至说,物体下落的快慢精确地与它们的重量成正比.这个错误观点对后世影响颇大.后来法国人N.奥尔斯姆等给出正确的见解,但没有加以验证.16世纪末S.斯蒂文和伽利略
不仅从理论上说明,而且用实验证实了亚里士多德的错误.
亚里士多德还认为:“凡运动着的事物必然都有推动者在推着它运动”,但一个推一个不能无限地追溯上去,因而“必然存在第一推动者”,即存在超自然的神力.这里的运动是指一般意义下的运动,也包括力学运动在内.
亚里士多德关于落体运动的论述见于《论天》(DeCaelo),他在另一著作《物理学》(有中译本,1982年商务印书馆出版)中曾多次应用他的落体定律.这是一本关于自然哲学的著作,主要讨论运动.
㈧ 数学谁发明的
数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ?
mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail
B.
Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”
㈨ 数学方程式中的元和次是谁创立的
数学方程式中的元和次是中国清朝时期的康熙皇帝创立的。
康熙皇帝是中国历史上声名显赫,又有远大抱负,聪明好学的一位皇帝。他除了其文治武功之外 ,还十分爱好数学,曾拜比利时的南怀仁等传教士为师,学习数学 、天文、地理以及拉丁文等,康熙皇帝虽然聪颖过人,但是听外籍教师讲课也有困难,因为南怀仁等人的汉语和满语水平有限,日常会话勉强对付,但要将严谨而高深的科学知识表达出来就显得力不从心了。而当时课本多是外文,即使中译本也是半通不通的。这样,学习中就必然有许多精 力被消耗在语言沟通上,进度不快 。
不过,康熙学习很刻苦,也很有耐心,不懂就请教,直至真正弄懂为止。南怀仁在讲方程时,句子冗长,吐音又很不清楚,康熙的脑子常常被搞得晕晕糊糊的,怎样才能让老师讲得好懂呢?一阵冥思苦想后,一个妙法突然冒出来。他向南怀仁建议 ,将未知数翻译为“元”,最高次数翻译为“次”(限整式方程),使方程左右两边相等的未知数的值翻译为“根”(解)⋯⋯南怀仁用笔认真地记了下来 ,随即用这些新创术语换下自己原先使用的繁琐词语 :“求二‘元’一‘次’方程的‘根 ’(解 )⋯⋯“如此一来,果然简单了很多,而且还可以提高教学效率,南怀仁惊疑地盯着康熙,愣怔了一会儿,突然按照西方最亲切的礼节一下子将康熙紧紧抱住:“我读书和教书几十年,无论是老师还是学生,还从来没见过一个像您这样肯动脑筋的人 !”
正因为康熙创造的这几个数学术语科学而简洁,十分便于理解和记忆,因此一直延用到今天 。