Ⅰ 阿尔法围棋的主要设计者
大卫·席尔瓦 (David Silver),剑桥大学计算机科学学士,硕士,加拿大阿尔伯塔大学计算机科学博士。现为伦敦大学学院讲师及Google DeepMind研究员。
黄士杰(Aja Huang),台湾交通大学计算机科学学士,台湾师范大学计算机科学硕士和博士,加拿大阿尔伯塔大学计算机科学博士后。现为Google DeepMind研究员。

Ⅱ AlphaGo背后的人脑有多强大
AlphaGo背后的“最强大脑”是谷歌DeepMind。是由哈萨比斯(Demis Hassabis)、雷格(Shane Legg)与苏莱曼(Mustafa Suleyman)三人于2010年在伦敦创立的。
哈萨比斯是英国著名人工智能研究者,同时也是神经系统科学家、电脑游戏设计师与世界级的游戏选手,从小就有“神童”称号。雷格专注于机器学习领域,拥有人工智能领域的博士学位。苏莱曼则是一名英国企业家,除了帮助创立DeepMind,他还参与创立了一家专门研究社会问题、提供“冲突解决方案”的公司。
至于这个团队中还有那些高人……我真的不知道了
Ⅲ alphago之父详解“围棋上帝”是怎样炼成的
刚刚,Deepmind在Reddit的Machine Learning板块举办了在线答疑活动AMA,Deepmind强化学习组负责人David Silver和其同事热情地回答了网友们提出的各种问题。由于在AMA前一天Deepmind刚刚发表了《Mastering the game of Go without human knowledge》(不使用人类知识掌握围棋)的论文,相关的提问和讨论也异常热烈。
什么是AMA?
AMA(Ask Me Anything)是由Reddit的特色栏目,你也可以将其理解为在线的“真心话大冒险”。AMA一般会约定一个时间,并提前若干天在Reddit上收集问题,回答者统一解答。
本次Deepmind AMA的回答人是:
David Silver:Deepmind强化学习组负责人,AlphaGo首席研究员。David Silver1997年毕业于剑桥大学,获得艾迪生威斯利奖。David于2004年在阿尔伯塔大学获得计算机博士学位,2013年加盟DeepMind,是AlphaGo项目的主要技术负责人。
Julian Schrittwieser:Deepmind高级软件工程师。
此前有多位机器学习界的大牛/公司在Reddit Machine Learning版块开设AMA,包括:Google Brain Team、OpenAI Research Team 、Andrew Ng and Adam Coates、Jürgen Schmidhuber、Geoffrey Hinton、Michael Jordan 、Yann LeCun、Yoshua Bengio等。
我们从今天Deepmind的AMA中选取了一些代表性的问题,整理如下:
关于论文与技术细节
Q: Deepmind Zero的训练为什么如此稳定?深层次的增强学习是不稳定和容易遗忘的,自我对局也是不稳定和容易遗忘的,如果没有一个好的基于模仿的初始化状态和历史检查点,二者结合在一起应该是一个灾难...但Zero从零开始,我没有看到论文中有这部分的内容,你们是怎么做到的呢?
David Silver:在深层增强学习上,AlphaGo Zero与典型的无模式算法(如策略梯度或者Q学习)采用的是完全不同的算法。通过使用AlphaGo搜索,我们可以极大改进策略和自我对局的结果,然后我们会用简单的、基于梯度的更新来训练下一个策略及价值网络。比起基于简便的基于梯度的策略改进,这样的做法会更加稳定。
Q:我注意到ELO等级分增长的数据只与到第40天,是否是因为论文截稿的原因?或者说之后AlphaGo的数据不再显著改善?
David Silver:AlphaGo已经退役了!这意味着我们将人员和硬件资源转移到其他AI问题中,我们还有很长的路要走呐。
Q:关于论文的两个问题:
Q1:您能解释为什么AlphaGo的残差块输入尺寸为19x19x17吗?我不知道为什么每个对局者需要用8个堆叠的二进制特征层来描述?我觉得1、2个层就够了啊。虽然我不是100%理解围棋的规则,但8个层看起来也多了点吧?
Q2:由于整个通道使用自我对局与最近的/最好的模型进行比较,你们觉得这对于采用参数空间的特定SGD驱动轨迹对否会有过拟合的风险?
David Silver:说起来使用表征可能比现在用的8层堆叠的做法更好!但我们使用堆叠的方式观察历史数据有三个原因:1)它与其他领域的常见输入一致;2)我们需要一些历史状态来表示被KO;3)如果有一些历史数据,我们可以更好地猜测对手最近下的位置,这可以作为一种关注机制(注:在围棋中,这叫“敌之要点即我之要点”),而第17层用于标注我们现在究竟是执黑子还是白子,因为要考虑贴目的关系。
Q:有了强大的棋类引擎,我们可以给玩家一个评级——例如Elo围棋等级分就是通过棋手对局的分析逐步得出的,那么AlphaGo是否可以对过去有等级分前的棋手的实力进行分析?这可能为研究人类的认知提供一个平台。
Julian Schrittwieser:感谢分享,这个主意很棒!
我认为在围棋中这完全可以做到,或许可以用最佳应对和实际应对的价值差异或者政策网络给每一手位置评估得到的概率来进行?我有空的时候试一下。
Q: 既然AlphaGo已经退役了,是否有将其开源的计划?这将对围棋社区和机器学习研究产生巨大的影响。还有,Hassabis在乌镇宣称的围棋工具将会什么时候发布?
David Silver:现在这个工具正在准备中。不久后你就能看到新的消息。
Q:AlphaGo开发过程中,在系统架构上遇到的最大障碍是什么?
David Silver:我们遇到的一个重大挑战是在和李世石比赛的时候,当时我们意识到AlphaGo偶尔会受到我们所谓的“妄想”的影响,也就是说,程序可能会错误理解当前盘面局势,并在错误的方向上持续许多步。我们尝试了许多方案,包括引入更多的围棋知识或人类元知识来解决这个问题。但最终我们取得了成功,从AlphaGo本身解决了这个问题,更多地依靠强化学习的力量来获得更高质量的解决方案。
围棋爱好者的问题
Q:1846年,在十四世本因坊迹目秀策与十一世井上幻庵因硕的一盘对局中,秀策下的第127手让幻庵因硕一时惊急两耳发赤,该手成为扭转败局的“耳赤一手”。如果是AlphaGo,是否也会下出相同的一首棋?
Julian Schrittwieser:我问了樊麾,他的回答是这样的:
当时的围棋不贴目,而AlphaGo的对局中,黑棋需贴7.5目。贴目情况不同造成了古今棋局的差异,如果让AlphaGo穿越到当年下那一手,很有可能下的是不同的另一个地方。
Q:从已发布的AlphaGo相互对局看,执白子的时间更为充裕,因而不少人猜测,7.5目的贴目太高了(注:现代围棋的贴目数也在不断变化,如在30年前,当时通行的是黑子贴白子5.5目)。
如果分析更大的数据集,是否可以对围棋的规则得出一些有趣的结论?(例如,执黑或者执白谁更有优势,贴目应该更高还是更低)
Julian Schrittwieser:从我的经验和运行的结果看,7.5目的贴目对双方来说是均势的,黑子的胜率略高一些(55%左右)。
Q:你能给我们讲一下第一手的选择吗?ALphaGo是否会下出我们前所未见的开局方式?比如说,第一手下在天元或者目外,甚至更奇怪的地方?如果不是,这是否是一种“习惯”,或者说AlphaGo有强烈的“信念”认为星位、小目、三三是更好的选择?
David Silver:在训练中我们看到ALphaGo尝试过不同方式的开局——甚至刚开始训练的时候有过第一手下在一一!
即便在训练后期,我们仍然能看到四、六位超高目的开局,但很快就恢复到小目等正常的开局了。
Q:作为AlphaGo的超级粉丝,有一个问题一直在我心中:AlphaGo可以让职业棋手多少子?从论文中我们知道AlphaGo可以下让子棋,我也知道AlphaGo恐怕让不了柯洁两子,但我想你们一定很好奇,你们是否有做内部测试?
David Silver:我们没有和人类棋手下让子棋。当然,我们在测试不同版本的时候下过让子棋,在AlphaGo Master>AlphaGo Lee>ALphaGo Fan这三个版本中,后一个版本均可让三子击败前一个版本。但是,因为AlphaGo是自我训练的,所以尤其擅长打败自己的较弱的前一版本,因此我们不认为这些训练方式可以推广到和人类选手的让子棋中。
Q:你们有没有想过使用生成对抗网络(GAN)?
David Sliver:从某种意义来讲,自我对弈就是对抗的过程。每一次结果的迭代都是在试图找到之前版本的“反向策略”。
传言终结者
Q:我听说AlphaGo在开发初期被引导在某一个具体的方向训练以解决对弈中展现出的弱点。现在它的能力已经超过了人类,是否需要另外的机制来进一步突破?你们有做了什么样的工作?
David Silver:实际上,我们从未引导过AlphaGo来解决具体的弱点。我们始终专注于基础的机器学习算法,让AlphaGo可以学习修复自己的弱点。
当然你不可能达到100%的完美,所以缺点总会存在。 在实践中,我们需要通过正确的方法来确保训练不会落入局部最优的陷阱,但是我们从未使用过人为的推动。
关于DeepMind公司
Q:我这里有几个问题:在DeepMind工作是什么感受?AlphaGo团队成员都有谁?你能介绍一下AlphaGo团队工作分配的情况吗?下一个重大挑战是什么?
David Silver:在DeepMind工作感觉好极了:)——这不是一个招聘广告,但我感觉每天可以在这里做我喜欢的事实在是太幸运了。有很多(多到忙不过来!:))很酷的项目去参与。
我们很幸运有许多大牛在AlphaGo工作。您可以通过查看相应的作者列表来获取更详细的信息。
Q: 你觉得本科生是否可以在人工智能领域取得成功?
Julian Schrittwiese:当然。我本人就只有计算机科学学士学位,这一领域变化迅速,我认为您可以从阅读最新的论文和试验中来进行自学。另外,去那些做过机器学习项目的公司实习也是很有帮助的。
关于算法的扩展和其他项目
Q:Hassabis今年三月份在剑桥的一个演讲中表示,AlphaGo项目未来目标之一是对神经网络进行解释。我的问题是:ALphaGo在神经网络结构上取得了什么样的进展,或者说,对AlphaGo,神经网络仍然是神秘的黑盒子?
David Silver:不仅仅是ALphaGo,可解释性是我们所有项目的一个非常有意思的课题。Deepmind内部有多个团队从不同方式来探索我们的系统,最近有团队发表了基于认知心理学技术去尝试破译匹配网络内部发生了什么,效果非常不错!
Q: 很高兴看到AlphaGo Zero的好成绩。我们的一篇NIPS论文中也提到了对于深度学习和搜索树之间效率的相似问题,因此我对于在更长的训练过程中的行为尤其感兴趣。
AlphaGo的训练过程中,创建学习目标的蒙特卡洛树搜索的贪心算法、策略网络的贪心算法、以及在训练过程中价值功能变化的贪心算法之间的相对表现如何?这种自我对局学习的方法是否可以应用在最近的星际争霸 II API中?
David Silver:感谢介绍您的论文!真不敢相信这篇论文在我们4月7日投稿的时候已经发布了。事实上,它与我们的学习算法的策略组件非常相似(尽管我们也有一个值组件),您可以参考我们的方法和强化学习中的讨论,也很高兴看到在其他游戏中使用类似方法。
Q:为什么早期版本的AlphaGo没有尝试自我对弈?或者说,AlphaGo之前也尝试过自我对弈但效果不好?
我对这个领域的发展和进步程度感到好奇。相比起今天,在两年前在设计一个自主训练的AlphaGo的瓶颈在哪里?今天我们见到的“机器学习直觉”又是经历了什么样的系统迭代过程?
David Silver:创建一个可以完全从自我学习的系统一直是加强学习的一个开放性问题。 我们最初的尝试包括你能查到的许多类似的算法,是相当不稳定的。 我们做了很多尝试,最终AlphaGo Zero算法是最有效的,而且似乎已经破解了这个特定的问题。
Q:你认为机器人什么时候能够有效解决现实世界关于高度、尺寸方面的问题(例如,自己学习如何抓取任何形状、尺寸、位置垃圾的设备)?策略梯度方法是否是实现这一目标的关键点?
Julian Schrittwieser:这主要是由于价值/政策网络上的双重改进,包括更好的训练和更好的架构。具体参见论文图4对不同网络架构的比较。
Q:据说击败柯洁的ALphaGo Master的功耗只是击败李世石的AlphaGo Lee的1/10。你们做了什么样的优化呢?
Julian Schrittwieser:这主要是由于价值/政策网络上的双重改进,包括更好的训练和更好的架构。具体参见论文图4对不同网络架构的比较。(你确认不是上一个问题的答案吗)
Q:看起来在增强学习中使用或模拟Agent的长期记忆是一个很大的障碍。 展望未来,您觉得我们是否能以一种新的思维方式解决这一点? 还是说需要等待我们技术可以实现一个超级网络?
Julian Schrittwieser:是的,长期记忆可能是一个重要的因子,例如在“星际争霸”游戏中,你可能已经做出了上千个动作,但你还要记住你派出的侦察兵。
我认为现在已经有了令人振奋的组件(神经图灵机!),但是我认为我们在这方面仍有很大的改进空间。
Q:David,我看过你的演讲视频,你提到增强学习可以用于金融交易, 你有没有真实世界的例子? 你会如何处理黑天鹅事件(过去没有遇到过的情况)?
David Silver:已经发表增强学习用于现实世界的财务算法的论文非常少见,但有一些经典论文值得一看,例如Nevmyvaka、Kearns在2006写的那篇和Moody、Safell在2001年写的那篇。
Q:你们和Facebook几乎同时研究围棋问题,你们能更快获得大师级表现的优势是什么?
对于那些无法获得像AlphaGo如此多的训练数据的领域如何开展机器学习或者增强学习?
David_Silver:Facebook更侧重于监督学习,我们选择更多地关注强化学习,因为我们认为AlphaGo最终将超越人类的知识。 我们最近的结果实际上表明,监督学习方法可以让人大吃一惊,但强化学习绝对是远远超出人类水平的关键之处。
Ⅳ AlphaGo是如何研发出来的 意味着什么
哈萨比斯称,很多艺术都是主观,AlphaGo把围棋看做了一个客观的艺术,每一步都会分析有什么影响。“因此,我给直觉的定义是,通过体验获得初步感知,无法表达出来,可通过行为确认其存在和正误。”哈萨比斯表示,AlphaGo已经可以模仿人的直觉,而且具备创造力,通过组合已有知识或独特想法的能力。所以AlphaGo已经有了直觉和创造力,不过这些能力目前仅仅局限在围棋上。
在这之后,DeepMind希望弥补AlphaGo知识的空白,之后便发布了新的版本“Master”,在网上进行对局,也获得了很大的胜利。柯洁在与Master对弈后感叹到,人类数千年的实战演练进化,计算机却告诉我们人类全都是错的。哈萨比斯称,“20世纪三四十年代,吴清源给围棋带来了革命性的力量。我相信AlphaGo也能开启一个围棋新时代。棋类程序讲战术,AlphaGo讲战略。”
“我们离最优还有多远,怎样才是完美的棋局?3000年的对弈不足以找到最佳棋局。AlphaGo让我们可探寻这些奥秘。”哈萨比斯说到。
围棋之外,哈萨比斯希望将人工智能运用到各种各样的领域。哈萨比斯称,“人机合作可以达到1+1>2的效果,人类的智慧将被人工智能放大。人工智能和AlphaGo都是工具,就像哈勃望远镜一样,可以推进人类文明的进步。”哈萨比斯称,无数其他领域也将遭到组合轰炸,强人工智能也是我们探索的最好工具,比如将AI用到材料设计、新药研制上,还有现实生活中的应用,如医疗、智能手机、教育等。
目前,DeepMind已经非常成功的将AlphaGo用到了数据中心的优化中,结果显示可以节省50%的电能。
最后,哈萨比斯总结到,信息过载和系统冗余是巨大挑战,我们希望利用AI找到元解决方案。“我们的目标是实现人工智能科学,或人工智能辅助科学,当然AI要有伦理和责任的约束。总之,人工智能技术可以帮助我们更好的探索人脑的奥秘
Ⅳ 如何看待AlphaGo重大胜利背后的人工智能进步
虽然整场对弈还没有结束,但是目前的情况显然有些让人出乎意料。有人认为,这是围棋冠军的一个挫败,但却是人类文明的胜利。因为人类是一个善于发明工具去协助自己变得更强大的生物。但是,这场人机对弈似乎有点被神话的意味。事实上,虽然人类在围棋项目输了,但这从本质上讲,仅仅意味着人类单项竞技智慧的颓败,并不代表人工智能已经全面超越人类。甚至,仅仅就围棋这一单行竞技中,人工智能能够对人类提供的帮助也是有限的。
在这场依旧正在进行中的人机博弈,结果依旧是难以预料的。但是不论最终结果如何,有一个事实是改变不了,那就是,围棋作为一项竞技项目,是有规则可寻的,而这些规则计算机的数据足够全面,其实也可以在这些数据的基础上找出规律,形成算法。而机器的算法早就已经超越了人类,即使是李世石处在围棋巅峰,其逻辑运算能力到了计算机面前也根本是难以逾越的。像之前的国际象棋早已经被计算机的逻辑运算完全打败,所以棋手都会和计算机下棋训练,如今看来,围棋这种人类竞技项目也难逃这种宿命。
真正的人工智能首先要有真正的分析推理能力,能够协助人类去提高分析和决策效率。虽然有别于传统计算机穷举计算方式,“阿尔法狗”采用的是利用“价值网络”去计算局面,用“策略网络”去选择下子。但是,阿尔法狗依旧处于一个弱人工智能的水平。什么是弱人工智能?简单的说,所谓弱人工智能就是仅在单个领域比较牛的人工智能程序。比如我们熟悉的苹果Siri,就是一个会卖萌的弱人工智能程序。而阿尔法狗根据这个标准,依旧在这个范围以内。充其量,最多是人类围棋的陪练。而这场人际对决,本质上更像是谷歌的一场科技秀。
Ⅵ 阿尔法围棋机器人是谁造
微软。
Ⅶ 第五代 Alphago的名字叫做什么
第五代她的名字叫什么叫安普勾?非常好听的一个艺名。叫起来非常顺利。所以第五代就用他的名字。朋友。好玩吗?
Ⅷ 围棋是谁发明的
帝尧所作的。
围棋起源于中国,传为帝尧所作,春秋战国时期即有记载。隋唐时经朝鲜传入日本,流传到欧美各国。围棋蕴含着中华文化的丰富内涵,它是中国文化与文明的体现。
围棋使用方形格状棋盘及黑白二色圆形棋子进行对弈,棋盘上有纵横各19条线段将棋盘分成361个交叉点,棋子走在交叉点上,双方交替行棋,落子后不能移动,以围地多者为胜。
因为黑方先走占了便宜,所以人为规定黑方局终时要给白方贴子。中国古代围棋是黑白双方在对角星位处各摆放两子(对角星布局),为座子制,由白方先行。
现代围棋由日本发展而来,取消了座子规则,黑先白后,使围棋的变化更加复杂多变。围棋也被认为是世界上最复杂的棋盘游戏。

(8)alphago发明者扩展阅读:
尧(约前2188—前2067年),姓伊祁,号放勋,古唐国人(今河北省保定市顺平县)。中国上古时期方国联盟首领、“五帝”之一。
尧为帝喾之子,母为尧母庆都。十三岁封于陶(山西襄汾县陶寺乡),辅佐挚。十五岁,改封于唐地(今河北唐县),号为陶唐氏。
二十岁,尧代挚为天子,定都平阳尧立七十年得舜。二十年后,尧老,舜代替尧执政,尧让位二十八年后死去,葬于谷林(山东省鄄城县)。尧从兄长帝挚那里继承帝位,并禅让于舜。
他命羲和测定推求历法,制定四时成岁,为百姓颁授农耕时令。测定出了春分、夏至、秋分、冬至。尧设置谏言之鼓,让天下百姓尽其言;立诽谤之木,让天下百姓攻击他的过错。
参考资料:网络----围棋
Ⅸ AlphaGo能轻松战胜世界上最好的围棋大师,人类相对于AI,是不是就是废柴一个
当半年前 AlphaGo 在乌镇将世界第一棋手柯洁打的无力还手时,人类已经将 AlphaGo 称为“上帝”,这个“上帝”的棋艺已经超出最顶尖人类棋手太多。

而 Google 每次来华,都喜欢和围棋界交流交流,这次也不例外,不过这次不是让 AlpahGo 对抗柯洁了,而是让它转换身份,当当老师。
Google CEO Sundar Pichai 表示,Google 正在开发围棋学习工具 AlphaGo Tools(阿尔法围棋工具),这套学习型工具的特点是,它已经收集了 231000 套人类对弈的棋谱,同时还囊括了 75 场 AlphaGo 与人类棋手对弈的棋谱,目前这套工具已经基本开发完成,不久就将推出。