A. 数学中常用名词有哪些
1、平方
平方是一种运算,比如,a的平方表示a×a,简写成a²,也可写成a×a(a的一次方乘a的一次方等于a的2次方),例如4×4=16,8×8=64,平方符号为2。
2、立方
立方也叫三次方。三个相同的数相乘,叫做这个数的立方。如5×5×5叫做5的立方,记做5³。
3、方程
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。

4、解集
解集是一个数学用语,指以一个方程(组)或不等式(组)的所有解为元素的集合叫做该方程(组)或不等式(组)的解集。表示解的集合的方法有三种:列举法、描述法和图示法。解集作为数学中的重要工具,在数学中有着十分广泛的应用。
5、排列
排列,一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(permutation)。特别地,当m=n时,这个排列被称作全排列(all permutation)。
B. 我们现在数学用的方程,根,解等名词都是康熙创造出来的吗有何依据(正史,谢谢!)
康熙教皇子数学、天文学、地理学、医学、测量学、农学等。先以观测日食回为例。康熙三十六年答(1697年)闰三月初一日,日食。时康熙帝亲征噶尔丹在外,皇太子在北京观测,使用皇父所赐嵌有三层玻璃的小镜子,装于自鸣钟之上,用望日千里眼观望。日食似不到十分,日光、房屋、墙壁及人影俱可见,甚属明耀。观测奏报自京城发出,送皇父览阅。康熙帝得到奏报后,朱批曰:“览尔所奏,果然如此。”后来皇四子胤禛(雍正)回忆道:“昔年遇日食四五分之时,日光照耀,难以仰视。皇考亲率朕同诸兄弟在乾清宫,用千里镜,四周用夹纸遮蔽日光,然后看出考验所亏分数。此朕身经实验者。”又以几何学为例。法国耶稣会士白晋写给法王路易十四的信中说,康熙帝亲自给皇三子胤祉讲解几何学,并培养其科学才能。后又让胤祉等向意大利耶稣会士德理格学习律吕知识,“命臣德理格在皇三子、皇十五子、皇十六子殿下前,每日讲究其精微,修造新书”。康熙帝命在畅春园蒙养斋开馆,派允祉主持纂修《律历渊源》,汇律吕、历法和算法于一书。允祉还为《古今图书集成》的纂辑做出贡献,成为康熙朝一位杰出的学者。但他在雍正继位后,仍未逃过劫难:被夺爵,禁景山永安亭而死。
C. 什么是数学再创造
由世界著名教学教育权威弗赖登塔尔提出的“再创造”的论述内容相当丰富,他认为:
1)数学是最容易创造的一种学科。它实质上是人们常识的系统化。教师不必将各种规则、定律灌输给学生,而是应该创造合适的条件,提供很多具体的例子,让学生在实践的过程中,自己去发现或是“再创造”出各种运算法则和各种定律。
2)每个人都应该按照自己的特点重新创造数学知识。个人学习数学的进程和数学发展的历史有着相似之处。每个人在学习过程中都可以根据自己的体验,用自己的思维方式重新创造有关的数学知识。
3)每个人有不同的“数学现实”,因而可达到不同的水平。这里“数学现实”是指客观现实与人们的数学认识的统一体。是人们用数学概念、数学方法对客观事物的认识的总体。其中既含有客观世界的现实情况,也包含学生个人用自己的数学水平观察这些事物所获得的认识。教师应当针对各个学生数学现实和思维水平的不同,通过适当的启发,引导学生加强反思,使学生的创造活动由不自觉的状态,发展为有意识的活动。
4)“再创造”应当贯穿于数学教育的全过程。数学教育的整个过程学生都应该积极参与,教师的任务就是为学生提供广阔的天地,听任各种不同的思维、不同的方法自由发展,绝不可以对内容作任何限制,更不应对其发现设置任何预先的圈套。
更多请参考 http://learning.sohu.com/20060417/n242808119.shtml
望采纳,谢谢!!
D. 数学这科目是谁创造
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。” 生活中,数学无处不在!那麼,数学是怎样产生的?它起源於何时呢?这可是些不易回答的问题,因为基本数学概念的原始积累过程,发生在人类创造出文字来记录自己的思想之前。 关於数学的起源,流传着一些古老而神奇的传说。相传在非常非常遥远的古代,有一天,从黄河的波涛中忽然跳出一匹“龙马”来,马背上驮着一幅图,图上画着许多神秘的数学符号,后来,从波澜不惊的洛水里,又爬出一只“神龟”来,龟背上也驮着一卷书,书中阐述了数的排列方法。马背上的图叫做“河图”,龟背上的书叫做“洛书”,当“河图洛书”出现之后,数学也就诞生了。 数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。 远在1万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。 这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且现在还在不断发展下去。
E. 有哪些名词是用来表示创造的
制造,建造,开拓,创新
F. 常用的数学符号是谁创造出来的
人们会计算加法、减法、乘法和除法已经有好几千年的历史了。
但是使用+、-、×、÷等数学符号却是近几百年的事。那么,这些符号是由谁创造出来的呢?
加、减号(+、-),是15世纪德国数学家魏德曼首创的。他在横线上加一竖,表示增加、合并的意思;在加号上去掉一竖表示减少、拿去的意思。
乘号(×),是17世纪英国数学家欧德莱最先使用的。因为乘法与加法有一定的联系,所以他把加号斜着写表示相乘。后来,德国数学家莱布尼兹认为“×”易与字母“x”混淆,主张用“·”号,至今“×”与“·”并用。
除号(÷),是17世纪瑞士数学家雷恩首先使用的。他用一道横线把两个圆点分开,表示分解的意思。后来莱布尼兹主张用“:”作除号,与当时流行的比号一致。现在有些国家的除号和比号都用“:”表示。
等号(=),是16世纪英国学者列科尔德创造的,他用两条平行而又相等的直线来表示两数相等。
中括号()和大括号(),是16世纪英国数学家魏治德创造的。
大于号(>)和小于号(<),是17世纪的数学家哈里奥特创立的。
这些数学符号既简单,又方便。使用它们,是数学上的一大进步。
G. 数学名词有那些,越难越好,还要带有解释
拓扑学 拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογα的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。 分支学科 点集拓扑学又称为一般拓扑学 组合拓扑学 代数拓扑学 微分拓扑学 几何拓扑学 拓扑学 拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。在拓扑学的孕育阶段,19世纪末,就拓扑已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。
H. 数学名词是什么
边、差、长、乘、除、底、点、度、分、高、勾、股、行、和、弧
环、集、加、减、积、角、解、宽、棱、列、面、秒、幂、模、球
式、势、商、体、项、象、线、弦、腰、圆
十位、个位、几何、子集、大圆、小圆、元素、下标、下凸、下凹
百位、千位、万位、分子、分母、中点、约分、加数、减数、数位
通分、除数、商数、奇数、偶数、质数、合数、乘数、算式、进率
因式、因数、单价、数量、约数、正数、负数、整数、分数、倒数
乘方、开方、底数、指数、平方、立方、数轴、原点、同号、异号
余数、除式、商式、余式、整式、系数、次数、速度、距离、时间
方程、等式、左边、右边、变号、相等、解集、分式、实数、根式
对数、真数、底数、首数、尾数、坐标、横轴、纵轴、函数、常显
变量、截距、正弦、余弦、正切、余切、正割、余割、坡度、坡比
频数、频率、集合、数集、点集、空集、原象、交集、并集、差集
映射、对角、数列、等式、基数、正角、负角、零角、弧度、密位
函数、端点、全集、补集、值域、周期、相位、初相、首项、通项
公比、公差、复数、虚数、实数、实部、虚部、实轴、虚轴、向量
辐角、排列、组合、通项、概率、直线、公理、定义、概念、射线
线段、顶点、始边、终边、圆角、平角、锐角、纯角、直角、余角
补角、垂线、垂足、斜线、斜足、命题、定理、条件、题设、结论
证明、内角、外角、推论、斜边、曲线、弧线、周长、对边、距离
矩形、菱形、邻边、梯形、面积、比例、合比、等比、分比、垂心
重心、内心、外心、旁心、射影、圆心、半径、直径、定点、定长
圆弧、优弧、劣弧、等圆、等弧、弓形、相离、相切、切点、切线
相交、割线、外离、外切、内切、内径、外径、中心、弧长、扇形
轨迹、误差、视图、交点、椭圆、焦点、焦距、长袖、短轴、准线
法线、移轴、转轴、斜率、夹角、曲线、参数、摆线、基圆、极轴
极角、平面、棱柱、底面、侧面、侧棱、楔体、球缺、棱锥、斜高
棱台、圆柱、圆锥、圆台、母线、球面、球体、体积、环体、环面
球冠、极限、导数、微分、微商、驻点、拐点、积分、切面、面角
极值
被减数、被乘数、被除数、假分数、代分数、质因数、小数点
多位数、百分数、单名数、复名数、统计表、统计图、比例尺
循环节、近似数、准确数、圆周率、百分位、十分位、千分位
万分位、自然数、正整数、负整数、相反数、绝对值、正分数
负分数、有理数、正方向、负方向、正因数、负因数、正约数
运算律、交换律、结合律、分配律、最大数、最小数、逆运算
奇次幂、偶次幂、平方表、立方表、平方数、立方数、被除式
代数式、平方和、平方差、立方和、立方差、单项式、多项式
二项式、三项式、常数项、一次项、二次项、同类项、填空题
选择题、判断题、证明题、未知数、大于号、小于号、等于号
恒等号、不等号、公分母、不等式、方程组、代入法、加减法
公因式、有理式、繁分式、换元法、平方根、立方式、根指数
小数点、无理数、公式法、判别式、零指数、对数式、幂指数
对数表、横坐标、纵坐标、自变量、因变量、函数值、解析法
解析式、列表法、图象法、指点法、截距式、正弦表、余弦表
正切表、余切表、平均数、有限集、描述法、列举法、图示法
真子集、欧拉图、非空集、逆映射、自反性、对称性、传递性
可数集、可数势、维恩图、反函数、幂函数、角度制、弧度制
密位制、定义城、函数值、开区间、闭区间、增函数、减函数
单调性、奇函数、偶函数、奇偶性、五点法、公因子、对逆性
比较法、综合法、分析法、最大值、最小值、递推式、归纳法
复平面、纯虚数、零向量、长方体、正方体、正方形、相交线
延长线、中垂线、对预角、同位角、内错角、无限极、长方形
平行线、真命题、假命题、三角形、内角和、辅助线、直角边
全等形、对应边、对应角、原命题、逆命解、原定理、逆定理
对称点、对称轴、多边形、对角线、四边形、五边形、三角形
否命题、中位线、相似形、比例尺、内分点、外分点、平面图
同心圆、内切圆、外接圆、弦心距、圆心角、圆周角、弓形角
内对角、连心线、公切线、公共弦、中心角、圆周长、圆面积
反证法、主视图、俯视图、二视图、三视图、虚实线、左视图
离心率、双曲线、渐近线、抛物线、倾斜角、点斜式、斜截式
两点式、一般式、参变数、渐开线、旋轮线、极坐标、公垂线
斜线段、半平面、二面角、斜棱柱、直棱柱、正梭柱、直观图
正棱锥、上底面、下底面、多面体、旋转体、旋转面、旋转轴
拟柱体、圆柱面、圆锥面、多面角、变化率、左极限、右极限
隐函数、显函数、导函数、左导教、右导数、极大值、极小值
极大点、极小点、极值点、原函数、积分号、被积式、定积分
无穷小、无穷大、连分数、近似数、弦切角
混合运算、乘法口诀、循环小数、无限小数、有限小数、简易方程
四舍五人、单位长度、加法法则、减法法则、乘法法则、除法法则
数量关系、升幂排列、降幂排列、分解因式、完全平方、完全立方
同解方程、连续整数、连续奇数、连续偶数、同题原理、最简方程
最简分式、字母系数、公式变形、公式方程、整式方程、二次方根
三次方根、被开方数、平方根表、立方根表、二次根式、几次方根
求根公式、韦达定理、高次方程、分式方程、有理方程、无理方程
分数指数、同次根式、异次根式、最简根式、同类根式、常用对数
换底公式、反对数表、坐标平面、坐标原点、比例系数、一次函数
二次函数、三角函数、正弦定理、余弦定理、样本方差、集合相交
等价集合、可数集合、对应法则、指数函数、对数函数、自然对数
指数方程、对数方程、单值对应、单调区间、单调函数、诱导公式
周期函数、周期交换、振幅变换、相位变换、正弦曲线、余弦曲线
正切曲线、余切曲线、倍角公式、半角公式、积化和差、和差化积
三角方程、线性方程、主对角线、副对角钱、零多项式、余数定理
因式定理、通项公式、有穷数列、无穷数列、等比数列、总和符号
特殊数列、不定方程、系数矩阵、增广炬阵、初等变换、虚数单位
共轭复数、共轭虚数、辐角主值、三角形式、代数形式、加法原理
乘法原理、几何图形、平面图形、等量代换、度量单位、角平分线
互为余角、互为补角、同旁内角、平行公理、性质定理、判定定理
斜三角形、对应顶点、尺规作图、基本作图、互逆命题、互逆定理
凸多边形、平行线段、逆否命题、对称中心、等腰梯形、等分线段
比例线段、勾股定理、黑金分割、比例外项、比例内项、比例中项
比例定理、相似系数、位似图形、位似中心、内公切线、外公切线
正多边形、扇形面积、互否命题、互逆命题、等价命题、尺寸注法
标准方程、平移公式、旋转公式、有向线段、定比分点、有向直线
经验公式、有心曲线、无心曲线、参数方程、普通方程、极坐标系
等速螺线、异面直线、直二面角、凸多面体、祖恒原理、体积单位
球面距离、凸多面角、直三角面、正多面体、欧拉定理、连续函数
复合函数、中间变量、瞬间速度、瞬时功率、二阶导数、近似计算
辅助函数、不定积分、被积函数、积分变量、积分常数、凑微分法
相对误差、绝对误差、带余除法、微分方程、初等变换、立体几何
平面几何、解析几何、初等函数、等差数列
四舍五入法、纯循环小数、一次二项式、二次三项式、最大公约数
最小公倍数、代入消元法、加减消元法、平方差公式、立方差公式
立方和公式、提公因式法、分组分解法、十字相乘法、最简公分母
算数平方根、完全平方数、几次算数根、因式分解法、双二次方程
负整数指数、科学记数法、有序实数对、两点间距离、解析表达式
正比例函数、反比例函数、三角函数表、样本标准差、样本分布表
总体平均数、样本平均数、集合不相交、基本恒等式、最小正周期
两角和公式、两角差公式、反三角函数、反正弦函数、反余弦函数
反正切函数、反余切函数、第一象限角、第二象限角、第三象限角
第四象限角、线性方程组、二阶行列式、三阶行列式、四阶行列式
对角钱法则、系数行列式、代数余子式、降阶展开法、绝对不等式
条件不等式、矛盾不等式、克莱姆法则、算术平均数、几何平均数
一元多项武、乘法单调性、加法单调性、最小正周期、零次多项式
待定系数法、辗转相除法、二项式定法、二项展开式、二项式系数
数学归纳法、同解不等式、垂直平分线、互为邻补角、等腰三角形
等边三角形、锐角三角形、钝角三角形、直角三角形、全等三角形
边角边公理、角边角公理、边边边定理、轴对称图形、第四比例项
外角平分线、相似多边形、内接四边形、相似三角形、内接三角形
内接多边形、内接五边形、外切三角形、外切多边形、共轭双曲线
斜二测画法、三垂线定理、平行六面体、直接积分法、换元积分法
第二积分法、分部积分法、混循环小数、第一积分法、同类二次根
一元一次方程、一元二次方程、完全平方公式、最简二次根式
直接开平方法、半开半闭区间、万能置换公式、绝对值不等式
实系数多项式、复系数多项式、整系数多项式、不等边三角形
中心对称图形、基本初等函数、基本积分公式、分部积分公式
二元一次方程、三元一次方程
一元一次不等式、一元二次不等式、二元一次方程组
三元一次方程组、二元二次方程组、平面直角坐标系
等腰直角三角形、二元一次不等式、二元线性方程组
三元线性方程组、四元线性方程组、多项式恒等定律
一元一次不等式组、三元一次不定方程、三元齐次线性方程组
这些都叫数学名词
就像语文中有名词 动词之分一样
数学也有它惯用的名词
I. 关于数学名词的定义
实数的定义:有理数与无理数统称为实数
有理数可以按“整”与“分”来分类(即定义),也可按正、负分类(即数性)
要给出自然数的严谨定义并非易事。Peano公设提出自然数要适合五点:
有一起始自然数
0。
任一自然数
a
必有后继(successor),记作
a
+1。
0
并非任何自然数的后继。
不同的自然数有不同的后继。
(数学归纳公设)有一与自然数有关的命题。设此命题对
0
成立,而当对任一自然数成立时,则对其后继亦成立,则此命题对所有自然数皆成立。
若把
0
除出自然数之外,则公设内的
0
要换作
1。
集合论中的一般构作法是把一自然数看作是所有比它少的自然数组成的集,即
0
={
},1
=
,2
=
,3
=
……若有人把自然数看作集合,通常就是如上。
在此定义下,在集合
n
内就有
n
个元素;而若
n
小于
m,则
n
会是
m
的子集。