导航:首页 > 创造发明 > 与物理学有关的科学发明制造

与物理学有关的科学发明制造

发布时间:2021-05-04 15:47:20

1. 物理学对科学技术与人类文明的贡献有哪些

物理学的发展引发了一次又一次的产业革命推动着社会和人类文明的发展。可以说社会的每一次大的进步都与物理学的发展紧密相连。
一、物理学与第一次技术革命
物理学的贡献18世纪从英国发起的技术革命是技术发展史上的一次巨大革命,是以蒸汽机被广泛使用为标志的。它开创了以机器代替手工工具的时代,这不仅是一次技术改革,更是一场深刻的社会变革这次工业革命是牛顿力学与生产技术的结合在研究提高蒸汽机效率的基础上才创立了热力学的理论,热力学的理论又促进了热机的发展。
二、物理学与第二次技术革命
物理学的贡献,丹麦物理学家奥斯特在一次讲座快结束时,发现电流接通时附近的小磁针转动了一下,这一现象被人们称做电流的磁效应。1840年,法拉弟发现了电磁感应现象,并逐渐形成了完整的电磁场理论。
三、物理学与第三次技术革命
晶体管与计算机,晶体管的发明促进了集成电路的发展,使计算机业飞速发展在更多领域得到广泛应用,然而也带来了新能源的应用。
20世纪70年代,微观物理方面取得重大突破,开创了微电子工业,使世界开始进入了以电子计算机应用为特征的信息时代。
物理学的目的在于发现自然界的结构和作用,且物理的发展往往带随着人类的发展和人类文明的发展,物理学的高技术和强渗透性也使之成为社会发展的重要推动力。

2. 请列举10名物理学家的发明创造

公元前400年,墨翟(公元前478?—前392?)在《墨经》中记载并论述了杠杆、滑轮、平衡、斜面、小孔成像及光色与温度的关系。
公元前4世纪,亚里士多德(Aristotle,前384—前322)在其所著《物理学》中总结了若干观察到的事实和实际的经验。他的自然哲学支配西方近2000年。
公元前3世纪,欧几里得(Euclid,前330?—前260?)论述光的直线传播和反射定律。
公元前3世纪,阿基米德(Archimedes,前287?—前212)发明许多机械,包括阿基米德螺旋;发现杠杆原理和浮力定律;研究过重心。
公元前3世纪,古书《韩非子》记载有司南;《吕氏春秋》记有慈石召铁。
公元前2世纪,刘安《前179—前122》著《准南子》,记载用冰作透镜,用反射镜作潜望镜,还提到人造磁铁和磁极斥力等。
1世纪,古书《汉书》记载尖端放电、避雷知识和有关的装置。王充(27—97)著《论衡》,记载有关力学、热学、声学、磁学等方面的物理知识。希龙(Heron,62—150)创制蒸汽旋转器,是利用蒸汔动力的最早尝试,他还制造过虹吸管。
2世纪,托勒密(C.Ptolemaeus,100?—170?)发现大气折射。张衡(78—139)创制地动仪,可以测报地震方位,创制浑天仪。王符(85—162)著《潜夫论》分析人眼的作用。
5世纪,祖冲之(429—500),改造指南车,精确推算л值,在天文学上精确编制《大明历》。
8世纪,王冰(唐代人)记载并探讨了大气压力现象。
11世纪,沈括(1031—1095)著《梦溪笔谈》,记载地磁偏角的发现,凹面镜成像原理和共振现象等。
13世纪,赵友钦(1279—1368)著《革象新书》,记载有他作过的光学实验以及光的照度、光的直线传播、视角与小孔成象等问题。
15世纪,达·芬奇(L.da Vinci,1452—1519)设计了大量机械,发明温度计和风力计,最早研究永动机不可能问题。
16世纪,诺曼(R.Norman)在《新奇的吸引力》一书中描述了磁倾角的发现。
1583年,伽利略(Galileo Galilei,1564—1642)发现摆的等时性。
1586年,斯梯芬(S.Stevin,1542—1620)著《静力学原理》,通过分析斜面上球链的平衡论证了力的分解。
1593年,伽利略发明空气温度计。
1600年,吉尔伯特(W.Gilbert,1548—1603)著《磁石》一书,系统地论述了地球是个大磁石,描述了许多磁学实验,初次提出摩擦吸引轻物体不是由于磁力。
1605年,弗·培根(F.Bacon,1561—1626)著《学术的进展》,提倡实验哲学,强调以实验为基础的归纳法,对17世纪科学实验的兴起起了很大的号召作用。
1609年,伽利略,初次测光速,未获成功。1609年,开普勒(J.Kepler,1571—1630)著《新天文学》,提出开普勒第一、第二定律。
1619年,开普勒著《宇宙谐和论》,提出开普勒第三定律。
1620年,斯涅耳(W.Snell,1580—1626)从实验归纳出光的反射和折射定律。
1632年,伽利略《关于托勒密和哥白尼两大世界体系的对话》出版,支持了地动学说,首先阐明了运动的相对性原理。
1636年,麦森(M.Mersenne,1588—1648)测量声的振动频率,发现谐音,求出空气中的声速。
1638年,伽利略的《两门新科学的对话》出版,讨论了材料抗断裂、媒质对运动的阻力、惯性原理、自由落体运动、斜面上物体的运动、抛射体的运动等问题,给出了匀速运动和匀加速运动的定义。
1643年,托里拆利(E.Torricelli,1608—1647)和维维安尼(V.Viviani,1622—1703)提出气压概念,发明了水银气压计。
年,帕斯卡(B.Pascal,1623—1662)发现静止流体中压力传递的原理(即帕斯卡原理)。
1654年,盖里克(O.V.Guericke,1602—1686)发明抽气泵,获得真空。
1761年,布莱克提出潜热概念,奠定了量热学基础。
1767年,普列斯特利(J.Priestley,1733—1804)根据富兰克林所做的“导体内不存在静电荷的实验”,推得静电力的平方反比定律。
1775年,伏打(A.Volta,1745—1827)发明起电盘。
1775年,法国科学院宣布不再审理永动机的设计方案。
1780年,伽伐尼(A.Galvani,1737—1798)发现蛙腿筋肉收缩现象,认为是动物电所致,
1791年才发表。1785年,库仑(C.A.Coulomb,1736—1806)用他自己发明的扭秤,从实验得到静电力的平方反比定律。在这以前,米切尔(J.Michell,1724—1793)已有过类似设计,并于1750年提出磁力的平方反比定律。
1787年,查理(J.A.C.Charles,1746—1823)发现气体膨胀的查理—盖·吕萨克定律。盖·吕萨克(Gay-lussac,1778—1850)的研究发表于1802年。
1788年,拉格朗日(J.L.Lagrange,1736—1813)的《分析力学》出版。
1792年,伏打研究伽伐尼现象,认为是两种金属接触所致。
1798年,卡文迪什(H.Cavendish,1731—1810)用扭秤实验测定万有引力常数G。伦福德(Count Rumford,即B.Thompson,1753—1841)发表他的摩擦生热的实验,这些实验事实是反对热质说的重要依据。
1799年,戴维(H.Davy,1778—1829)做真空中的摩擦实验,以证明热是物体微粒的振动所致。
1800年,伏打发明伏打电堆。赫谢尔(W.Herschel,1788—1822)从太阳光谱的辐射热效应发现红外线。
1801年,里特尔(J.W.Ritter,1776—1810)从太阳光谱的化学作用,发现紫线。杨(T.Young,1773—1829)用干涉法测光波波长,提出光波干涉原理。
1802年,沃拉斯顿(W.H.Wollaston,1766—1828)发现太阳光谱中有暗线。
1808年,马吕斯(E.J.Malus,1775—1812)发现光的偏振现象。
1811年,布儒斯特(D.Brewster,1781—1868)发现偏振光的布儒斯特定律。
1815年,夫琅和费(J.V.Fraunhofer,1787—1826)开始用分光镜研究太阳光谱中的暗线。
1815年,菲涅耳(A.J.Fresnel,1788—1827)以杨氏干涉实验原理补充惠更斯原理,形成惠更斯——菲涅耳原理,圆满地解释了光的直线传播和光的衍射问题。
1819年,杜隆(P.1.Dulong,1785—1838)与珀替(A.T.Petit,1791—1820)发现克原子固体比热是一常数,约为6卡/度·克原子,称杜隆·珀替定律。
1820年,奥斯特(H.C.Oersted,1771—1851)发现导线通电产生磁效应。毕奥(J.B.Biot,1774—1862)和沙伐(F.Savart,1791—1841)由实验归纳出电流元的磁场定律。安培(A.M.Ampère,1775—1836)由实验发现电流之间的相互作用力,1822年进一步研究电流之间的相互作用,提出安培作用力定律。
1821年,塞贝克(T.J.Seebeck,1770—1831)发现温差电效应(塞贝克效应)。菲涅耳发表光的横波理论。夫琅和费发明光栅。傅里叶(J.B.J.Fourier,1768—1830)的《热的分析理论》出版,详细研究了热在媒质中的传播问题。
1824年,S.卡诺(S.Carnot,1796—1832)提出卡诺循环。
1826年,欧姆(G.S.Ohm,1789—1854)确立欧姆定律。
1827年,布朗(R.Brown,1773—1858)发现悬浮在液体中的细微颗粒不断地作杂乱无章运动。这是分子运动论的有力证据。
1830年,诺比利(L.Nobili,1784—1835)发明温差电堆。
1831年,法拉第(M.Faraday,1791—1867)发现电磁感应现象。
1833年,法拉第提出电解定律。
1834年,楞次(H.F.E.Lenz,1804—1865)建立楞次定律。珀耳帖(J.C.A.Peltier,1785—1845)发现电流可以致冷的珀耳帖效应。克拉珀龙(B.P.E.Clapeyron,1799—1864)导出相应的克拉珀龙方程。哈密顿(W.R.Hamilton,1805—1865)提出正则方程和用变分法表示的哈密顿原理。
1835年,亨利(J.Henry,1797—1878)发现自感,1842年发现电振荡放电。
1840年,焦耳(J.P.Joule,1818—1889)从电流的热效应发现所产生的热量与电流的平方、电阻及时间成正比,称焦耳-楞次定律(楞次也独立地发现了这一定律)。其后,焦耳先后于1843,1845,1847,1849,直至1878年,测量热功当量,历经40年,共进行四百多次实验。1841年,高斯(C.F.Gauss,1777—1855)阐明几何光学理论。
1842年,多普勒(J.C.Doppler,1803—1853)发现多普勒效应。迈尔(R.Mayer,1814—1878)提出能量守恒与转化的基本思想。勒诺尔(H.V.Regnault,1810—1878)从实验测定实际气体的性质,发现与波意耳定律及盖·吕萨克定律有偏离。
1843年,法拉第从实验证明电荷守恒定律。
1845年,法拉第发现强磁场使光的偏振面旋转,称法拉第效应。
1846年,瓦特斯顿(J.J.Waterston,1811—1883)根据分子运动论假说,导出了理想气体状态方程,并提出能量均分定理。
1849年,斐索(A.H.Fizeau,1819—1896)首次在地面上测光速。
1851年,傅科(J.L.Foucault,1819—1868)做傅科摆实验,证明地球自转。
1852年,焦耳与W.汤姆生(W.Thomson,1824—1907)发现气体焦耳——汤姆生效应(气体通过狭窄通道后突然膨胀引起温度变化)。
1853年,维德曼(G.H.Wiedemann,1826—1899)和夫兰兹(R.Franz)发现,在一定温度下,许多金属的热导率和电导率的比值都是一个常数(即维德曼——夫兰兹定律)。
1855年,傅科发现涡电流(即傅科电流)。1857年,韦伯(W.E.Weber,1804—1891)与柯尔劳胥(R.H.A.Kohlrausch,1809—1858)测定电荷的静电单位和电磁单位之比,发现该值接近于真空中的光速。
1858年,克劳修斯(R.J.E.Claüsius,1822—1888)引进气体分子的自由程概念。普吕克尔(J.Plücker,1801—1868)在放电管中发现阴极射线。
1859年,麦克斯韦(J.C.Maxwell,1831—1879)提出气体分子的速度分布律。基尔霍夫(G.R.Kirchhoff,1824—1887)开创光谱分析,其后通过光谱分析发现铯、铷等新元素。他还发现发射光谱和吸收光谱之间的联系,建立了辐射定律。
1860年,麦克斯韦发表气体中输运过程的初级理论。
1861年,麦克斯韦引进位移电流概念。
1864年,麦克斯韦提出电磁场的基本方程组(后称麦克斯韦方程组),并推断电磁波的存在,预测光是一种电磁波,为光的电磁理论奠定了基础。
1866年,昆特(A.Kundt,1839—1894)做昆特管实验,用以测量气体或固体中的声速。
1868年,玻尔兹曼(L.Boltzmann,1844—1906)推广麦克斯韦的分子速度分布律,建立了平衡态气体分子的能量分布律——玻尔兹曼分布律。
1869,安德纽斯(T.Andrews,1813—1885)由实验发现气——液相变的临界现象。希托夫(J.W.Hittorf,1824—1914)用磁场使阴极射线偏转。
1871年,瓦尔莱(C.F.Varley,1828—1883)发现阴极射线带负电。
1872年,玻尔兹曼提出输运方程(后称为玻尔兹曼输运方程)、H定理和熵的统计诠释。
1873年,范德瓦耳斯(J.D.Van der Waals,1837—1923)提出实际气体状态方程。
1875年,克尔(J.Kerr,1824—1907)发现在强电场的作用下,某些各向同性的透明介质会变为各向异性,从而使光产生双折射现象,称克尔电光效应。
1876年,哥尔茨坦(E.Goldstein,1850—1930)开始大量研究阴极射线的实验,导致极坠射线的发现。1876—1878年,吉布斯(J.W.Gibbs,1839—1903)提出化学势的概念、相平衡定律,建立了粒子数可变系统的热力学基本方程。
1877年,瑞利(J.W.S.Rayleigh,1842—1919)的《声学原理》出版,为近代声学奠定了基础。
1879年,克鲁克斯(W.Crookes,1832—1919)开始一系列实验,研究阴极射线。斯忒藩(J.Stefan,1835—1893)建立了黑体的面辐射强度与绝对温度关系的经验公式,制成辐射高温计,测得太阳表面温度约为6000摄氏度;1884年玻尔兹曼从理论上证明了此公式,后称为斯忒藩—玻尔兹曼定律。霍尔(E.H.Hall,1855—1938)发现电流通过金属,在磁场作用下产生横向电动势的霍尔效应。
1880年,居里兄弟(P.Curie,1859—1906;J.Curie,1855—1941)发现晶体的压电效应。
1881年,迈克耳孙(A.A.Michelson,1852—1931)首次做以太漂移实验,得零结果。由此产生迈克耳孙干涉仪,灵敏度极高。
1885年,迈克耳孙与莫雷(E.W.Morley,1838—1923)合作改进斐索流水中光速的测量。巴耳末(J.J.Balmer,1825—1898)发表已发现的氢原子可见光波段中4根谱线的波长公式。
1887年,迈克耳孙与莫雷再次做以太漂移实验,又得零结果。赫兹(H.Hertz,1857—1894)作电磁波实验,证实麦克斯韦的电磁场理论。同时,赫兹发现光电效应。
1890年,厄沃(B.R.Eotvos)作实验证明惯性质量与引力质量相等。里德伯(R.J.R.Rydberg,1854—1919)发表碱金属和氢原子光谱线通用的波长公式。
1893年,维恩(W.Wien,1864—1928)导出黑体辐射强度分布与温度关系的位移定律。勒纳德(P.Lenard,1862—1947)研究阴极射线时,在射线管上装一薄铝窗,使阴极射线从管内穿出进入空气,射程约1厘米,人称勒纳德射线。
1895年,洛仑兹(H.A.Lorentz,1853—1928)发表电磁场对运动电荷作用力的公式,后称该力为洛伦兹力。P.居里发现居里点和居里定律。伦琴(W.K.Rontgen,1845—1923)发现X射线。
1896年,维恩发表适用于短波范围的黑体辐射的能量分布公式。贝克勒尔(A.H.Becquerel,1852—1908)发现放射性。塞曼(P.Zeeman,1865—1943)发现磁场使光谱线分裂,称塞曼效应。洛仑兹创立经典电子论。
1897年,J.J.汤姆生(J.J.Thomson,1856—1940)从阴极射线证实电子的存在,测出的荷质比与塞曼效应所得数量级相同。其后他又进一步从实验确证电子存在的普遍性,并直接测量电子电荷。
1898年,卢瑟福(E.Rutherford,1871—1937)揭示铀辐射组成复杂,他把“软”的成分称为α射线,“硬”的成分称为β射线。居里夫妇(P.Curie与M.S.Curie,1867—1934)发现放射性元素镭和钋。
1899年,列别捷夫(A.A.Лeóeдeв,1866—1911)实验证实光压的存在。卢梅尔(O.Lummer,1860—1925)与鲁本斯(H.Rubens,1865—1922)等人做空腔辐射实验,精确测得辐射以量分布曲线。
1900年,瑞利发表适用于长波范围的黑体辐射公式。普朗克(M.Planck,1858—1947)提出了符合整个波长范围的黑体辐射公式,并用能量量子化假设从理论上导出了这个公式。维拉尔德(P.Villard,1860—1934)发现ν射线。
1901年,考夫曼(W.Kaufmann,1871—1947)从镭辐射线测β射线在电场和磁场中的偏转,从而发现电子质量随速度变化。理查森(O.W.Richardson,1879—1959)发现灼热金属表面的电子发射规律。后经多年实验和理论研究,又对这一定律作进一步修正。
1902年,勒纳德从光电效应实验得到光电效应的基本规律:电子的最大速度与光强无关,为爱因斯坦的光量子假说提供实验基础。吉布斯出版《统计力学的基本原理》,创立统计系综理论。
1903年,卢瑟福和索迪(F.Soddy,1877—1956)发表元素的嬗变理论。
1905年,爱因斯坦(A.Einstein,1879—1955)发表关于布朗运动的论文,并发表光量子假说,解释了光电效应等现象。1905年,朗之万(P.Langevin,1872—1946)发表顺磁性的经典理论。爱因斯坦发表《关于运动媒质的电动力学》一文,首次提出狭义相对论的基本原理,发现质能之间的相当性。
1906年,爱因斯坦发表关于固体热容的量子理论。
1907年,外斯(P.E.Weiss,1865—1940)发表铁磁性的分子场理论,提出磁畴假设。
1908年,昂纳斯(H.Kammerlingh—Onnes,1853—1926)液化了最后一种“永久气体”氦。佩兰(J.B.Perrin,1870—1942)实验证实布朗运动方程,求得阿佛伽德罗常数。
1908—1910年,布雪勒(A.H.Bucherer,1863—1927)等人,分别精确测量出电子质量随速度的变化,证实了洛仑兹-爱因斯坦的质量变化公式。1908年,盖革(H.Geiger,1882—1945)发明计数管。卢瑟福等人从α粒子测定电子电荷е值。
1906—1917年,密立根(R.A.Millikan,1868—1953)测单个电子电荷值,前后历经11年,实验方法做过三次改革,做了上千次数据。1909年,盖革与马斯登(E.Marsden)在卢瑟福的指导下,从实验发现α粒子碰撞金属箔产生大角度散射,导致1911年卢瑟福提出有核原子模型的理论。这一理论于1913年为盖革和马斯登的实验所证实。1911年,昂纳斯发现汞、铅、锡等金属在低温下的超导电性。
1911年,威尔逊(C.T.R.Wilson,1869—1959)发明威尔逊云室,为核物理的研究提供了重要实验手段。1911年,赫斯(V.F.Hess,1883—1964)发现宇宙射线。
1912年,劳厄(M.V.Laue,1879—1960)提出方案,弗里德里希(W.Friedrich),尼平(P.Knipping,1883—1935)进行X射线衍射实验,从而证实了X射线的波动性。能斯特(W.Nernst,1864—1941)提出绝对零度不能达到定律(即热力学第三定律)。
1913年,斯塔克(J.Stark,1874—1957)发现原子光谱在电场作用下的分裂现象(斯塔克效应)。玻尔(N.Bohr,1885—1962)发表氢原子结构理论,解释了氢原子光谱。布拉格父子(W.H.Bragg,1862—1942;W.L.Bragg,1890—1971)研究X射线衍射,用X射线晶体分光仪,测定X射线衍射角,根据布拉格公式:2dsinθ=ν算出晶格常数d。
1914年,莫塞莱(H.G.J.Moseley,1887—1915)发现原子序数与元素辐射特征线之间的关系,奠定了X射线光谱学的基础。弗朗克(J.Franck,1882—1964)与G.赫兹(G.Hertz,1887—1957)测汞的激发电位。查德威克(J.Chadwick,1891—1974)发现β能谱。西格班(K.M.G.Siegbahn,1886—1978)开始研究X射线光谱学。
1915年,在爱因斯坦的倡议下,德哈斯(W.J.de Haas,1878—1960)首次测量回转磁效应。爱因斯坦建立了广义相对论。
1916年,密立根用实验证实了爱因斯坦光电方程。爱因斯坦根据量子跃迁概念推出普朗克辐射公式,同时提出了受激辐射理论,后发展为激光技术的理论基础。德拜(P.J.S.Debye,1884—1966)提出X射线粉末衍射法。
1919年,爱丁顿(A.S.Eddington,1882—1944)等人在日食观测中证实了爱因斯坦关于引力使光线弯曲的预言。阿斯顿(F.W.Aston,1877—1945)发明质谱仪,为同位素的研究提供重要手段。卢瑟福首次实现人工核反应。巴克豪森(H.G.Barkhausen)发现磁畴。
1921年,瓦拉塞克发现铁电性。
1922年,斯特恩(O.Stern,1888—1969)与盖拉赫(W.Gerlach,1889—1979)使银原子束穿过非均匀磁场,观测到分立的磁矩,从而证实空间量子化理论。
1923年,康普顿(A.H.Compton,1892—1962)用光子和电子相互碰撞解释X射线散射中波长变长的实验结果,称康普顿效应。
1924年,德布罗意(L.de Broglie,1892—1987)提出微观粒子具有波粒二象性的假设。
1924年,玻色(S.Bose,1894—1974)发表光子所服从的统计规律,后经爱因斯坦补充建立了玻色-爱因斯坦统计。
1925年,泡利(W.Pauli,1900—1976)发表不相容原理。海森伯(W.K.Heisenberg,1901—1976)创立矩阵力学。乌伦贝克(G.E.Uhlenbeck,1900—)和高斯密特(S.A.Goudsmit,1902—1979)提出电子自旋假设。
1926年,薛定谔(E.Schrodinger,1887—1961)发表波动力学,证明矩阵力学和波动力学的等价性。费米(E.Fermi,1901—1954)与狄拉克(P.A.M.Dirac,1902—1984)独立提出费米—狄拉克统计。玻恩(M.Born,1882—1970)发表波函数的统计诠释。海森伯发表不确定原理。
1927年,玻尔提出量子力学的互补原理。戴维森(C.J.Davisson,1881—1958)与革末(L.H.Germer,1896—1971)用低速电子进行电子散射实验,证实了电子衍射。同年,G.P.汤姆生(G.P.Thomson,1892—1970)用高速电子获电子衍射花样。
1928年,拉曼(C.V.Raman,1888—1970)等人发现散射光的频率变化,即拉曼效应。狄拉克发表相对论电子波动方程,把电子的相对论性运动和自旋、磁矩联系了起来。
1928—1930年,布洛赫(F.Bloch,1905—1983)等人为固体的能带理论奠定了基础。
1930—1931年,狄拉克提出正电子的空穴理论和磁单极子理论。
1931年,A.H.威尔逊(A.H.Wilson)提出金属和绝缘体相区别的能带模型,并预言介于两者之间存在半导体,为半导体的发展提供了理论基础。劳伦斯(E.O.Lawrence,1901—1958)等人建成第一台回旋加速器。
1932年,考克拉夫特(J.D.Cockcroft,1897—1967)与沃尔顿(E.T.Walton)发明高电压倍加器,用以加速质子,实现人工核蜕变。尤里(H.C.Urey,1893—1981)将天然液态氢蒸发浓缩后,发现氢的同位素—氘的存在。查德威克发现中子。在这以前,卢瑟福于1920年曾设想原子核中还有一种中性粒子,质量大体与质子相等。据此曾安排实验,但未获成果。1930年,玻特(W.Bothe,1891—1957)等人在α射线轰击铍的实验中,发现过一种穿透力极强的射线,误认为ν射线,1931年约里奥(F.Joliot,1900—1958)与伊伦·居里(Curie,1897—1956)让这种穿透力极强的射线,通过石蜡,打出高速质子。查德威克接着做了大量实验,并用威尔逊云室拍照,以无可辩驳的事实说明这一射线即是卢瑟福预言的中子。安德森(C.D.Anderson,1905—)从宇宙线中发现正电子,证实狄拉克的预言。诺尔(M.Knoll)和鲁斯卡(E.Ruska)发明透射电子显微镜。海森伯、伊万年科(д.д.ивaнeнкo)独立发表原子核由质子和中子组成的假说。
1933年,泡利在索尔威会议上详细论证中微子假说,提出β衰变。盖奥克(W.F.Giauque)完成了顺磁体的绝热去磁降温实验,获得千分之几的低温。迈斯纳(W.Mcissner,1882—1974)和奥克森菲尔德(R.Ochsenfeld)发现超导体具有完全的抗磁性。费米发表β衰变的中微子理论。图夫(M.A.Tuve)建立第一台静电加速器。布拉开特(P.M.S.Blackett,1897—1974)等人从云室照片中发现正负电子对。
1934年,切仑柯夫(П.A.Чepeнkoв)发现液体在β射线照射下发光的一种现象,称切仑柯夫辐射。约里奥-居里夫妇发现人工放射性。
1935年,汤川秀树发表了核力的介子场论,预言了介子的存在。F.伦敦和H.伦敦发表超导现象的宏观电动力学理论。N.玻尔提出原子核反应的液滴核模型。
1938年,哈恩(O.Hahn,1879—1968)与斯特拉斯曼(F.Strassmann)发现铀裂变。卡皮查(∏.Л.kaпичa,1894—)实验证实氦的超流动性。F.伦敦提出解释超流动性的统计理论。
1939年,迈特纳(L.Meitner,1878—1968)和弗利胥(O.Jrisch)根据液滴核模型指出,哈恩-斯特拉斯曼的实验结果是一种原子核的裂变现象。奥本海默(J.R.Oppenheimer,1904—1967)根据广义相对论预言了黑洞的存在。拉比(I.I.Rabi,1898—1987)等人用分子束磁共振法测核磁矩。
1940年,开尔斯特(D.W.Kerst)建造第一台电子感应加速器。
1940—1941年,朗道(Л.Д.Лaндay,1908—1968)提出氦Ⅱ超流性的量子理论。
1941年,布里奇曼(P.W.Bridgeman,1882—1961)发明能产生10万巴高压的装置。
1942年,在费米主持下美国建成世界上第一座裂变反应堆。
1944—1945年,韦克斯勒(B.И.Bеkcлер,1907—1966)和麦克米伦(E.M.McMillan,1907—)各自独立提出自动稳相原理,为高能加速器的发展开辟了道路。
1946年,阿尔瓦雷兹(L.W.Alvarez,1911—)制成第一台质子直线加速器。珀塞尔(E.M.Purcell)用共振吸收法测核磁矩,布洛赫(F.Bloch,1905—1983)用核感应法测核磁矩,两人从不同的角度实现核共振。这种方法可以使核磁矩和磁场的测量精度大大提高。
1947年,库什(P.Kusch)精确测量电子磁矩,发现实验结果与理论预计有微小偏差。兰姆(W.E.Lamb,Jr.)与雷瑟福(R.C.Retherford)用微波方法精确测出氢原子能级的差值,发现狄拉克的量子理论仍与实际有不符之处。这一实验为量了电动力学的发展提供了实验依据。鲍威尔(C.F.Powell,1903—1969)等用核乳胶的方法在宇宙线中发现л介子。罗彻斯特和巴特勒(C.Butler,1922—)在宇宙线中发现奇异粒子。H.P.卡尔曼和J.W.科尔特曼等发明闪烁计数器。普里高金(I.Prigogine,1917—)提出最小熵产生原理。
1948年,奈耳(L.E.F.Neel,1904—)建立和发展了亚铁磁性的分子场理论。张文裕发现μ子系弱作用粒子,并发现了μ-子原子。肖克利(W.Shockley),巴丁(J.Bardeen)与布拉顿(W.H.Brattain)发明晶体三极管。伽柏(D.Gabor,1900—1979)提出现代全息照相术前身的波阵面再现原理。朝永振一郎、施温格(J.Schwinger)费因曼(R.P.Feynman,1918—1988)等分别发表相对论协变的重正化量子电动力学理论,逐步形成消除发散困难的重正化方法。
1949年,迈耶(M.G.Mayer)和简森(J.H.D.Jensen)等分别提出核壳层模型理论。
1952年,格拉塞(D.A.Glaser)发明气泡室,比威尔逊云室更为灵敏。A.玻尔和莫特尔逊(B.B.Mottelson)提出原子核结构的集体模型。
1954年,杨振宁和密耳斯(R.L.Mills)发表非阿贝耳规范场理论。汤斯(C.H.Townes)等人制成受激辐射的微波放大器——脉塞。
1955年,张伯伦(O.Chamberlain)与西格雷(E.G.Segrè,1905—)等人发现反质子。
1956年,李政道、杨振宁提出弱相互作用中宇称不守恒。关健雄等人实验验证了李政道杨振宁提出的弱相互作用中宇宙不守恒的理论。
1957年,巴丁、施里弗和库珀发表超导微观理论(即BCS理论)。
1958年,穆斯堡尔(R.L.Mossbauer)实现ν射线的无反冲共振吸收(穆斯堡尔效应)。

3. 物理学与现代科学技术的关系

物理学是现代科学技术的理论和事件的基础,现代科学技术是物理学理论应用于生活的具体体现。

量子力学的发现帮助理解半导体,导致现代电子时代,产生核能。

量子力学导致核能发展,在研制核弹途中,科学家可以忽略爱因斯坦的警告,导致核事故,造成生物消失和环境恶化;

物理学是现代科学技术的支撑。每发现一条物理学规律,科学技术就会有所扩展。由于人的趋利避害,往往高智商和拥有权力的不遵守规则教化的人类拥有主动权或者生存权。

(3)与物理学有关的科学发明制造扩展阅读:

物理学六大性质

1.真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。

2.和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下,显出多么的和谐有序。物理学上的几次大统一,也显示出美的感觉。牛顿用三大定律和万有引力定律把天上和地上所有宏观物体统一了。

麦克斯韦电磁理论的建立,又使电和磁实现了统一。爱因斯坦质能方程又把质量和能量建立了统一。光的波粒二象性理论把粒子性、波动性实现了统一。爱因斯坦的相对论又把时间、空间统一了。

3.简洁性:物理规律的数学语言,体现了物理的简洁明快性。如:牛顿第二定律,爱因斯坦的质能方程,法拉第电磁感应定律。

4.对称性:对称一般指物体形状的对称性,深层次的对称表现为事物发展变化或客观规律的对称性。

如:物理学中各种晶体的空间点阵结构具有高度的对称性。竖直上抛运动、简谐运动、波动镜像对称、磁电对称、作用力与反作用力对称、正粒子和反粒子、正物质和反物质、正电和负电等。

5.预测性:正确的物理理论,不仅能解释当时已发现的物理现象,更能预测当时无法探测到的物理现象。例如麦克斯韦电磁理论预测电磁波存在,卢瑟福预言中子的存在,菲涅尔的衍射理论预言圆盘衍射中央有泊松亮斑,狄拉克预言电子的存在。

6.精巧性:物理实验具有精巧性,设计方法的巧妙,使得物理现象更加明显。

参考资料来源:

网络-物理学

网络-现代科学技术

4. 物理科学发明

1、胡克:英国物理学家;发现了胡克定律(F弹=kx)
2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。
3、牛顿:英国物理学家; 动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。
4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。
5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。
6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。
7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。
8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。
9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。
10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。
11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。
12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。
13、安培:法国科学家;提出了著名的分子电流假说。
14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。
15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。
16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。
17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。
18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。
19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。
20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。
你也可以参考一下http://wenku..com/view/36decd18964bcf84b9d57b96.html

5. 有关一些科学伟人的发明与其发明的详细资料

爱 迪 生

一、生平简介

爱迪生(Thomas Alva Edison 1847~1931)美国著名的发明家、企业家。1847年2月日诞生于美国俄亥俄州米兰镇的一个农民家庭。8岁进学校读书,只学习了三个月,就不得不退学回家,由当过乡村教师的母亲、辅导他自学。12岁时,家庭生活困难,开始在列车上卖报,16岁时发明了自动定时发报机,之后不断有发明问世,一生中共完成2000多项发明,1928年被授与美国国会金质特别奖章。1931年10月18日,爱迪生在西奥伦治逝世,终年84岁,1931年10月21日,全美国熄灯以示哀悼。

二、科学成就

爱迪生是一位闻名世界的伟大发明家。他一生的发明在世界上是无与伦比的。爱迪生的主要贡献有:

1.爱迪生在科学技术中最重大的贡献是发明了留声机和白炽电灯。
今天,我们很难想象生活中可以没有电——无法开亮一盏灯,听唱片,去电影院,或给某人打个电话。然而,所有这些我们认为理所当然的事情,全都是一个人实用的发明创造的结果——他就是托马斯·爱迪生。
在爱迪生之前,马路上,居室里,工厂里,都只能使用靠手工点燃的昏昏蒙蒙的煤气灯。夜幕一降,工厂纷纷关门。电或者电话并不是爱迪生发明的。但是他那种实用性的发明和改进把电和电话的用途推向了每一个角落。

爱迪生也许是有史以来最伟大的发明家,他开现代世界技术革新之先河。这位不知疲倦的发明家把我们从蒸气时代带入了20世纪。

2.爱迪生还在电影、有轨电车、矿业、建筑以及兵器等方面,有许多著名的发明创造。

3. 爱迪生还在一个真空灯泡里观察到热电子发射现象,后人把它称做“爱迪生效应”,热电子发射的发现,为研制电子管奠定了基础。

三、趣闻轶事
1.孵蛋的经历

爱迪生在童年时代就爱动脑筋,好奇心特别强,有一天早晨,全家突然发现爱迪生不见了,到处找也找不到,一直到了晚上,才发现他趴在鸡舍旁,肚子下面压了一大堆鸡蛋,原来他异想天开,要用自己的身体来孵小鸡,结果事与愿违:蛋壳破裂,蛋黄横溢。小爱迪生也明白了:鸡可以孵蛋,但是出于某种原因,人不能孵蛋。

2.最差的学生

爱迪生喜欢了解他自己感兴趣的事物。但是对于上学就另当别论了。爱迪生8岁那年上学,当时他家刚搬迁到另一个大湖旁的休伦港不久。整天困在教室里,他感到太没意思了。

像当时的大多数教师一样,这所学校的老师也信奉棍棒教育。爱迪生非常害怕藤条,尽管如此,他仍然学不进老师教的那一大堆知识。而他好问的习惯更使得老师生气。

爱迪生成了班上最差的学生,一连3个月都是如此。后来他听见老师议论他,说他有毛病,说他“addled”。爱迪生知道这是什么意思:addled蛋就是坏的、变质的蛋。一怒之下,他冲出了教室,再也不愿回去。

在家里,他的母亲南茜站在他一边。有一段时间爱迪生时断时续地去过一些别的学校。但大部分时间里是母亲亲自教他。或者不如说,她任由他去自学。在她的鼓励下,他如饥似渴地读书:莎士比亚、历史、《圣经》。在他9岁那年,有一天,她给了他一本科学方面的书,这是他第一次看这种书。书名叫《自然哲学的学校》,它让读者们在家里做一些简单的实验。从那时候起,艾尔的生活就起了变化。

他如痴似醉地将这本书读完,做了里面所有的实验,然后他做起了自己的实验。他买来化学制品,四处搜寻电线之类的边角料,在卧室里建起了一个实验室。他做的实验之一是将两只大猫的尾巴搁在电线上,将它们的毛相互摩擦,试图产生静电。唯一的结果是他被两只猫抓得鲜血淋淋!

他的另一项早期实验是让一个朋友服用大剂量的起泡粉,希望这种粉在人体内产生的气会像充满气的气球一样将他送上天。

3.艰苦探索,“大海捞针”终于成功了

爱迪至12岁时开始他艰苦的闯荡生涯,他作过火车上的报童,学会了发报技术,到过波士顿、纽约,一直到24岁时才有了自己的工厂和美满幸福的家庭,爱迪生在1878年时宣布要发明一种光线柔和、价格便宜的安全电灯。为了找到合适的灯丝,爱迪生试验过硼、钌、铬、碳精以及各种金属合金,共1600多种材料,历时13个月,但是都没有成功。一些人吹起了冷风,说爱迪生这次是“吃进了自己啃不动的东西”。一个曾经在爱迪生那里工作过的物理学家称这个试验是“大海捞针”。但是,爱迪生不怕失败,坚持试验,下决心要从大海中捞起针来。功夫不负有心人。1879年10月10日星期天下午5时,爱迪生点亮了用碳化棉丝作灯丝的灯泡,他亲自观察和做记录。这一次,灯泡明亮、稳定,1小时、2小时、3小时、……灯泡一直亮着。从19日、20日到21日,没有一个人去休息。直到21日下午2时,当点燃到第45个钟头的时候,爱迪生叫助手把电压加高一点,灯泡更亮了。又过了几分钟,灯丝终于烧断了。12月21日,纽约先驱论坛报用整版篇幅详细报道了灯泡试验成功的消息。爱迪生获得了全部专利,人们公认白炽灯是由他发明的。1879年除夕,爱迪生把60个灯泡点亮了挂在门罗公园里,当时下着大雪,竟有3000多人顶着大雪来参观。

爱迪生是一个讲究实际的人。他的座右铭是:“我探求人类需要什么,然后我就迈步向前,努力去把它发明出来。”有人说,发明是命运的产物,爱迪生是天才。爱迪生却感叹地说:“天才,百分之一是灵感,百分之九十九是血汗!”当有人问他在发明灯泡的1万次失败期间是怎样坚持下去的时候,他说,在这个过程中他从未失败过;相反,他找到了1万种无效的方法。他一生中写下的3400本详细记录发明设想、实验情况的笔记,就是这段话的有力佐证。爱迪生77岁那年有人问他:“您什么时候退休?”他脱口而出说:“在我出殡前的那一天!”有一次,有人半开玩笑地问爱迪生:“您是否同意给科学十年休假?”爱迪生严肃地回答说:“科学是一天也不会休息的,在已经过去的亿万年间,它每分钟都在工作,并且还要这样继续工作下去。”的确,爱迪生实践了自己的诺言,他已经80多岁了,为了“做出更多的发明”,仍在勤奋地工作,致力于从本国的杂草中提取胶乳。

居里夫人
居里夫人简介

居里夫人 Marie Curie(1867-1934)法国国籍波兰科学家,研究放射性现象,发现镭和钋两种放射性元素,一生两度获诺贝尔奖。
居里夫人,原名玛丽·斯克洛多夫斯卡,1867年11月7日出生在波兰华沙市的一个教师家庭。

作为杰出科学家,居里夫人有一般科学家所没有的社会影响。尤其因为是成功女性的先驱,她的典范激励了很多人。很多人在儿童时代就听到她的故事 但得到的多是一个简化和不完整的印象。

世人对居里夫人的认识。很大程度上受其次女在1937年出版的传记《居里夫人》(Madame Curie)所影响。这本书美化了居里夫人的生活,把她一生所遇到的曲折都平淡地处理了。

美国传记女作家苏珊·昆(Susan Quinn)花了七年时间,收集包括居里家庭成员和朋友的没有公开的日记和传记资料。终去年出版了一本新书:《玛丽亚· 居里:她的一生》(Maria Curie: A Life),为她艰苦、辛酸和奋斗的生命历程描绘了一幅更详细和深入的图像。

在世界科学史上,玛丽·居里是一个永远不朽的名字。这位伟大的女科学家,以自己的勤奋和天赋,在物理学和化学领域,都作出了杰出的贡献,并因此而成为唯一一位在两个不同学科领域、两次获得诺贝尔奖的著名科学家。爱因斯坦在评价居里夫人一生的时候说:

“她一生中最伟大的功绩——正面放射性元素的存在并把它们分离出来——所以能够取得,不仅仅是靠大胆的直觉,而且也靠着难以想像的和极端困难的情况下工作的热忱和顽强。这样的困难,在实验科学的历史中是罕见的。居里夫人的品德力量和热忱,哪怕只有一小部分存在于欧洲的知识分子中间,欧洲就会面临一个比较光明的未来。”

6. 物理学家的发明故事

1、居里夫人是伟大的物理学家,她出生在波兰,真正的名字叫玛丽,因为嫁给了法国年轻的学者彼埃尔·居里,后来被称为居里夫人。她和丈夫共同努力,发现并证实了镭元素的存在。下面我们要告诉大家居里夫妇是怎样发现镭这种神秘物质的。

1898年法国物理学家贝可勒尔(AntoineHenriBecquerel)发现含铀矿物能放射出一种神秘射线,但未能揭示出这种射线的奥秘。玛丽和她的丈夫彼埃尔·居里(Pierrecurie)共同承担了研究这种射线的工作。他们在极其困难的条件下,对沥青铀矿进行分离和分析,终于在1898年7月和12月先后发现两种新元素。

为了纪念她的祖国波兰,她将一种元素命名为钋(polonium),另一种元素命名为镭(Radium),意思是“赋予放射性的物质”。为了制得纯净的镭化合物,居里夫人又历时四(MarieCuI7e,1867--1934)载,从数以吨计的沥青铀矿的矿渣中提炼出1O0 mg氯化镭,并初步测量出镭的相对原子质量是225。这个简单的数字中凝聚着居里夫妇的心血和汗水。

1903年6月,居里夫人以《放射性物质的研究》作为博士答辩论文获得巴黎大学物理学博士学位。同年11月,居里夫妇被英国皇家学会授予戴维金质奖章。12月,他们又与贝可勒尔共获1903年诺贝尔物理学奖。

1906年,彼埃尔·居里遭车祸去世。这一沉重的打击并没有使她放弃执著的追求,她强忍悲痛加倍努力地去完成他们挚爱的科学事业。她在巴黎大学将丈夫所开的讲座继续下去,成为该校第一位女教授。1910年,她的名著《论放射性》一书出版。同牟,她与别人合作分析纯金属镭,并测出它的性质。她还测定了氧及其他元素的半衰期,发表了一系列关于放射性的重要论著。鉴于上述重大成就,1911年她叉获得了诺贝尔化学奖,成为历史上第一位两次获得诺贝尔奖的伟大科学家。

这位饱尝科学甘苦的放射性科学的奠基人,因多年艰苦奋斗积劳成疾,患恶性贫血症(白血病)于1934年7月4日不幸与世长辞,她为人类的科学事业,献出了光辉的一生。

2、贝尔,就是发明电话的人。他1847年生于英国,年轻时跟父亲从事聋哑人的教学工作,曾想制造一种让聋哑人用眼睛看到声音的机器。
1873年,成为美国波士顿大学教授的贝尔,开始研究在同一线路上传送许多电报的装置——多工电报,并萌发了利用电流把人的说话声传向远方的念头,使远隔千山万水的人能如同面对面的交谈。于是,贝尔开始了电话的研究。

那是1875年6月2日,贝尔和他的助手华生分别在两个房间里试验多工电报机,一个偶然发生的事故启发了贝尔。华生房间里的电报机上有一个弹簧粘到磁铁上了,华生拉开弹簧时,弹簧发生了振动。与此同时,贝尔惊奇地发现自己房间里电报机上的弹簧颤动起来,还发出了声音,是电流把振动从一个房间传到另一个房间。贝尔的思路顿时大开,他由此想到:如果人对着一块铁片说话,声音将引起铁片振动;若在铁片后面放上一块电磁铁的话,铁片的振动势必在电磁铁线圈中产生 时大时小的电流。这个波动电流沿电线传向远处,远处的类似装置上不就会发生同样的振动,发出同样的声音吗?这样声音就沿电线传到远方去了。这不就是梦寐以求的电话吗!

贝尔和华生按新的设想制成了电话机。在一次实验中,一滴硫酸溅到贝尔的腿上,疼得他直叫喊:“华生先生,我需要你,请到我这里来!” 这句话由电话机经电线传到华生的耳朵里,电话成功了!1876年3月7日,贝尔成为电话发明的专利人。

贝尔一生获得过18种专利,与他人合作获得12种专利。他设想将电话线埋入地下,或悬架在空中,用它连接到住宅、乡村、工厂…… 这样,任何地方都能直接通电话。今天,贝尔的设想早已成为现实。

3、电灯的发明
灯是人类征服黑夜的一大发明。19世纪前,人们用油灯、蜡烛等来照明,这虽已冲破黑夜,但仍未能把人类从黑夜的限制中彻底解放出来。只有发电机的诞生,才使人类能用各色各样的电灯使世界大放光明,把黑夜变为白昼,扩大了人类活动的范围,赢得更多时间为社会创造财富。

真正发明电灯使之大放光明的是美国发明家爱迪生。他是铁路工人的孩子,小学未读完就辍学,在火车上卖报度日。爱迪生是个异常勤奋的人,喜欢做各种实验,制作出许多巧妙机械。他对电器特别感兴趣,自从法拉第发明电机后,爱迪生就决心制造电灯,为人类带来光明。

爱迪生在认真总结了前人制造电灯的失败经验后,制定发详细的试验计划,分别在两方面进行试验:一是分类试验1600多种不同耐热的材料;二是改进抽空设备,使灯泡有高真空度。他还对新型发电机和电路分路系统等进行了研究。

爱迪生将1600多种耐热发光材料逐一地试验下来,唯独白金丝性能量好,但白金价格贵得惊人,必须找到更合适的材料来代替。1879年,几经实验,爱迪生最后决定用炭丝来作灯丝。他把一截棉丝撒满炭粉,弯成马蹄形,装到坩锅中加热,做成灯丝,放到灯泡中,再用抽气机抽去灯泡内空气,电灯亮了,竟能连续使用45个小时。就这样,世界上第一批炭丝的白炽灯问世了。1879年除夕,爱迪生电灯公司所在地洛帕克街灯火通明。

为了研制电灯,爱迪生在实验室里常常一天工作十几个小时,有时连续几天试验,发明炭丝作灯丝后,他又接连试验了6000多种植物纤维,最后又选用竹丝,通过高温密闭炉烧焦,再加工,得到炭化竹丝,装到灯泡里,再次提高了灯泡的真空度,电灯竟可连续点亮1200个小时。电灯的发明,曾使煤气股票3天内猛跌百分之十二。

继爱迪生之后,1909年,美国柯进而奇发明了用钨丝代替炭丝,使电灯效率猛增。从此,电灯跃上新台阶,日光灯、碘钨灯等形形色色的灯如雨后春笋般登上照明舞台。
灯使黑暗化为光明,使大千世界变得更光彩夺目,绚丽多姿.

7. 有关于科学家发明、发现的小故事。

有关于科学家发明、发现的小故事:

一、雷达

在一九四七年一月号的英国奋勉杂志上,有个科学家发表了一篇很搞笑的文本,给我们解释蝙蝠在黑暗中如何指导自己飞行,不论如何黑暗,如何狭窄的地方,绝不碰壁,这是什么原因?它怎样明白前面有无障碍呢?

关于这事有两位美国生物学家格利芬和迦朗包在一九四○年已经证明,蝙蝠能够避免碰撞,是藉一种天然雷达,但是是声波代替电磁波,在原理方面完全相仿。从蝙蝠口中发出一种频率极高的声波,超过人类听觉范围以外。

二位科学家用一种特制的电力设备,在蝙蝠飞行时,将它所发的高频率声波记录出来。这种声波碰到墙上,必然折回,它的耳膜就能分辨障碍物的距离远近,而向适宜方向飞去。蝙蝠传输声波也像雷达一样,都是相距极短的时间而且极有规则。

并且每只蝙蝠,有其固有的频率,这样蝙蝠可分清自己的声音,不至发生扰乱。因这缘故,蝙蝠飞行之时,常是张口,假如你将它口紧闭,它便失去指挥作用,假如堵上它的耳朵,便要撞到墙上,无法飞行。这个搞笑的实验,道破了它的秘密。

二、富兰克林

1752年6月的一天,美国费城郊区,乌云密布,电闪雷鸣,在一块宽阔的草地上,有一老一少两个人正兴致勃勃地在那里放风筝。突然,一道闪电劈开云层,在天空划了一个“之”字,接着一声雷响,雨点就倾泻下来了。只见老者大声喊道:“威廉,站到那边的草房里去,拉紧风筝线。”

这时,闪电一道亮过一道,雷鸣一声高过一声。突然威廉大叫:“爸爸,快看!”老者顺着儿子指的方向一看,只见那拉紧的麻绳,本来是光溜溜的,突然怒发冲冠,那些细纤维一根一根都直竖起来了。他高兴地喊道:“天电引来了!”他一边嘱咐儿子小心,一边用手慢慢接近接在麻绳上的那把铜钥匙。

突然他象被谁推了一把似地,跌到在地上,浑身发麻。他顾不得疼痛,一骨碌从地上爬起来,将带来的莱顿瓶接在铜钥匙上。这莱顿瓶里果然有了电,而且还放出了电火花,原来天电和地电是一个样子!他和儿子如获至宝似地将莱顿瓶抱回了家。

这捕获天电的人就是富兰克林和他的儿子威廉。富兰克林不仅是一位伟大的科学家,还是一位杰出的政治家和外交家,他是《独立宣言》的发起人之一,是美国第一任驻外大使。

三、阿基米德

阿基米德出生在叙拉古的贵族家庭,父亲是位天文学家。在父亲的影响下,阿斯米德从小热爱学习,善于思考,喜欢辩论。长大后飘洋过海到埃及的山历山大里亚求学。他向当时著名的科学家欧几里德的学生柯农学习哲学、数学、天文学、物理学等知识,最后通古博今,掌握了丰富的希腊文化遗产。

在亚历山大里亚求学期间,他经常到尼罗河畔散步,在久旱不雨的季节,他看到农人吃力地一桶一桶地把水从尼罗河提上来浇地,他便创造了一种螺旋提水器,通过螺杆的旋转把水从河里取上来,省了农人很大力气。它不仅沿用到今天,而且也是当代用于水中和空中的一切螺旋推进器的原始雏形。

四、诺贝尔
诺贝尔的父亲是一位颇有才干的发明家,倾心于化学研究,尤其喜欢研究炸药。受父亲的影响,诺贝尔从小就表现出顽强勇敢的性格,他经常和父亲一起去实验炸药。多年随父亲研究炸药的经历,也使他的兴趣很快转到应用化学方面。他开始了对硝化甘油的研究。

这是一个充满危险和牺牲的艰苦历程。
死亡时刻都在陪伴着他。在一次进行炸药实验时发生了爆炸事件,实验室被炸的无影无踪,5个助手全部牺牲,连他弟弟也未能幸免。这次惊人的爆炸事故,使诺贝尔的父亲受到了十分沉重的打击,没有多久就去世了。

他的邻居们出于恐惧,也纷纷向政府控告诺贝尔,此后,政府不准诺贝尔在市内进行实验。
但是诺贝尔百折不挠,他把实验室搬到市郊湖中的一艘船上继续实验。

经过长期的研究,他终于发现了一种非常容易引起爆炸的物质--雷酸汞,他用雷酸汞做成炸药的引爆物,成功地解决了炸药的引爆问题,这就是雷管的发明。它是诺贝尔科学道路上的一次重大突破。

五、巴普洛夫

小时候,巴甫洛夫和他的弟弟一起挖种苹果树的坑,坑已经挖好了,父亲一看,说位置不对,重新再挖。弟弟放下铁锨不干了,而巴甫洛夫却又挖了起来,手上磨了血泡也不管,一直到把坑挖好,种上苹果树才歇手。

后来,巴甫洛夫成为生理学家,成天在实验室里研究狗的条件反应。他常常用自己的工资去买实验用的狗。在解剖狗时,一干就是四、五个小时。他非常细心地数着从玻璃管中流出来的狗的唾液,详细地记录在笔记本上。一位新来的助手数了一会儿,就感到单调、厌倦。

而巴甫洛夫却郑重地对他说: "如果科学需要,就数他十年、二十年!"巴甫洛夫在八十七岁高龄时,得了肝炎,后又患肺炎,但他仍在做"科学的苦工"。他还为自己作为一个科学家没有完全尽到对人类的义务感到十分遗憾。

8. 与物理有关的十条科技信息

1. Adafruit工业公司发明了“联网式电量管理器”。(说明:这种装置能时刻提醒用电量,让用户实时调整自己的用电习惯,杜绝浪费。)
2. Vincent Gerkens设计了“太阳能百叶窗”。(说明:它是一种白天储能晚上照明的太阳能百叶窗。因为人们在使用百叶窗时总是习惯不断的调整开合的角度,让更多的阳光找到屋内。这也保证了百叶窗上的太阳能储蓄板在白天能捕捉收集到更多的阳光。)
3. 现代高分子材料学家发明了“温敏性水凝胶”,用做治疗药物的载体。(说明:根据温度的变化,此种材料可以在固态和液态之间转化。)
4. 中国发明者发明了“办公室环保咖啡粉手动打印机”。(说明:通常打印机内部很多部件是利用皮带传动和利用杠杆原理工作的,它的驱动需要电能。新发明的打印机利用手动,可以节电;采用咖啡粉替代墨粉,可以达到环保的目的。)
5. 法国科学家阿尔贝•费尔和德国科学家彼得•格林贝格尔发现了“巨磁电阻(GMR)效应”。(说明:由于两位科学家的新发现,荣获了2007年诺贝尔物理学奖。)
6. 科学家发明了“六冲程引擎”。(说明:六冲程引擎是《大众科学》评选出的2007年度世界十大发明之一,它在四冲程的吸气、压缩、做功和排气冲程后,将水注入汽缸,由于缸内温度极高,水在瞬间汽化为蒸气,推动活塞运动,产生第五冲程。最后蒸汽进入冷凝器,液化成水,下一个循环可以再次使用。)
7. 我国科学家在“新超导体”研究领域取得了突破。(说明:2010年4月,美国《科学》杂志发表“新超导体将中国物理学家推到最前沿”的评述。这表明,在新超导体研究领域,我国取得了令人瞩目的成就。假如人们已研制出常温下的超导体,则可以用它制作远距离输电导线,节省电能。)
8. 科学家发明了发光效率高 节能降耗的LED灯。(说明:说明:随着科技创新,传统的红绿交通信号灯逐渐被发光二极管(LED)灯所替代。现在的一些手电筒的灯泡也被LED灯所取代。LED灯和白炽灯相比有明显的优点:在光照强度相同的情况下,LED灯不必要达到很高的温度就能发光,电能基本上不转化成内能,几乎全部转化光能,因而发光效率高;LED灯的额定电压低,人直接接触不会触电;LED灯响应时间短,也就是从开始发光到正常发光所用的时间短;LED灯额定功率小,节约能源。)
9. 科学家发明了“普通的劣质木材变成像钢材那样坚硬的材料”的技术。(说明:来自俄罗斯沃罗涅什林业科学院的科学家们发明了一种新方法,可使普通的劣质木材变得像石头甚至像钢材那样坚硬。以将被人们一度看作是劣质材料而弃用的各种木材加工成为坚固耐久的现代化建筑材料。)
10. 科学家发明了“高效率的汽车发动机”。(说明:传统发动机的热效率非常低,例如,汽油机热效率平均只有25% ,大量的热量都白白浪费了!此发动机的发明调整了发动机的燃烧初始状态及膨胀比,使燃气充分燃烧做功,使发动机热效率大幅提高至传统活塞发动机热效率的两倍左右。)

备注:以上“与物理有关的十条科技信息”,你可以只记下第一句话就可以了。后面括号内的说明,是帮助理解而打印的。

9. 物理学与科学技术的关系

物理学和现代科学技术的关系物理学是一门探究一切物质的组成及其运动规律,揭示它们之间的联系和各种运动之间的关系的广博而丰富的学问。

物理学的进展密切联系着工业,农业等的发展,也同人类文明的进步息息相关。

从电话的发明到当代互联网络实现的实时通信;从蒸汽机车的制造成功到磁悬浮列车的投入运行;从晶体管的发明到高速计算机技术的成熟等等。

这些无不体现着物理学对社会进步与人类文明的贡献。

当今时代,物理学前沿领域的重大成就又将会引领着人类文明进入一片新天地。

物理学的发展与完善导致了历史上三次工业革命现代工业及科学发展离不开物理学理论。

物理学实验既为物理学发展创造条件同时也为现代工农业生产技术的研究打下了物质基础。

当前我国为了积极跟踪世界新科学技术要努力在生物工程、电子技术、自动化技术、新材料、新能源、航空航天、海洋工程、激光、超导、通讯等新技术领域取得新的科技发展。

这些科技发展都是与物理学的应用有着非常密切关系的物理学是科学技术的基础。

物理学作为一门基础科学可以使人们很好地认识世界、了解自然。

同时它对人们改造自然、推动社会发展也起着极其重要的作用。

技术体现了生产力的进步与物理学有着十分密切的关系它们之间总是相互作用共同发展从而共同改变了人类的生活乃至整个世界。

阅读全文

与与物理学有关的科学发明制造相关的资料

热点内容
武汉疫情投诉 浏览:149
知识产权合作开发协议doc 浏览:932
广州加里知识产权代理有限公司 浏览:65
企业知识产权部门管理办法 浏览:455
消费315投诉 浏览:981
马鞍山钢城医院 浏览:793
冯超知识产权 浏览:384
介绍小发明英语作文 浏览:442
版权使用权协议 浏览:1000
2018年基本公共卫生服务考核表 浏览:884
马鞍山候车亭 浏览:329
学校矛盾纠纷排查领导小组 浏览:709
张江管委会知识产权合作协议 浏览:635
关于开展公共卫生服务项目相关项目督导的函 浏览:941
闺蜜证书高清 浏览:11
转让房转让合同协议 浏览:329
矛盾纠纷排查调处工作协调交账会议纪要 浏览:877
云南基金从业资格证书查询 浏览:313
新知识的摇篮创造力 浏览:187
股转转让协议 浏览:676