导航:首页 > 创造发明 > 是谁发明的科学计数法

是谁发明的科学计数法

发布时间:2021-04-24 21:20:10

Ⅰ 古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000=______

将350000000用科学记数法表示为:3.5×108
故答案为:3.5×108

Ⅱ 除了十进制计数法,人类还发明了( )计数法和其他计数法。

除了十进制计数法,人类还发明了其他的计数法,如二进制计数法。
希望对你有帮助,望采纳,您的采纳将是我们回答的动力

Ⅲ 关于科学计数法

对于很大的数字,用自然的表示方法很不方便,比如中国有13亿人口,写出来是:1300000000,所以人们就发明了科学计数法,上面的数字写成1.3×10^9,就是13后面跟8个0
在EXCEL里,上面的数字变成这样的方式:1.3E+9
如果要避免数字变成科学计数法,应先将单元格格式设定为“文本”,或者先输入一个半角的'号再输入数字,就强制变为文本了。

该回答在由回答者修改过

Ⅳ 谁知道科学记数法的由来

第二章 有理数的运算

本章是继第一章把数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是第一章的延续和发展。本章的主要内容是有理数的加、减、乘、除和乘方运算(包括用计算器进行计算),以及与乘方和有理数运算密切相关的科学记数法、近似数和有效数字等。
数从自然数、分数扩展到有理数后,数的运算从内涵到法则都发生了变化,必须在原有的基础上重新建立。这种数的运算法则的变化,主要原因是增加了负数的概念。而到学了第三章实数,数系扩展到实数后,数的运算的内涵和法则(包括运算律)并没有多大变化,从这个意义上来说,有理数的运算是实数运算的基础和依据,也是代数式四则运算的重要基础。因此,本章内容在第三学段的数学教学中的地位是至关重要的。准确数和近似数、计算器的使用也是本章的教学内容,它是应用有理数解决实际问题所必需的。尤其计算器的使用,是《标准》所倡导的重视数学技术的标志之一。本套教材将计算器取代了传统教材中的全部查表内容,不仅给学生学习带来方便,减轻学生负担,也给学生探索数学问题提供了有效的工具,对改变学生的学习方法和思维方式都产生良好的影响。
有理数的减法是加法的逆运算,有理数的除法是乘法的逆运算,因此,减法和除法可以转化为加法和乘法,而乘方可以看做乘法的特殊情况,所以本章教学的重点是有理数的加法和乘法运算。有理数的混合运算需要运用多种法则,较复杂的符号判别和运算顺序是本章教学的主要难点。
本章教学时间约需16课时 ,具体安排如下:
2.1 有理数的加法 2课时
2.2 有理数的减法 2课时
2.3 有理数的乘法 2课时
2.4 有理数的除法 1课时
2.5 有理数的乘方 2课时
2.5 有理数的混合运算 1课时
2.6 准确数和近似数 1课时
2.7 计算器的使用 1课时
复习、评价3课时,机动使用1课时,
合计 16课时。
一、教科书内容和课程教学目标

yyff.cn/UploadFiles/2005125202924895.doc

Ⅳ 科学计数法

[编辑本段]科学计数法
将一个数字表示成 (a×10的n次幂的形式),其中1≤a<10,n表示整数,这种记数方法叫科学记数法。
用幂的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000
这样的大数,读、写都很不方便,考虑到10的幂有如下特点:
10的二次方=100,10的三次方=1000,10的四次方=10 000……。
一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如:
6 100 000 000=61×1 000 000 000=61×10的九次方。
任何非0实数的0次方都等于1
当有了负整数指数幂的时候,小于1的正数也可以用科学计数法表示。例如:0.00001=10的负5次方,即小于1的正数也可以用科学计数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。
有效数字
有效数字是指从左面数不为0的数
例如:890314000保留三位有效数字为8.90*10的8次方
839960000保留三位有效数字为8.40*10的8次方
0.00934593保留三位有效数字为0.00934

科学计数运算

数字很大的数,一般我们用科学计数法表示,例如6230000000000;我们可以用6.23×10^12表示,而它含义是什么呢?从直面上看是将数字6.23中6后面的小数点向右移去12位。
若将6.23×10^12写成6.23E12,即代表将数字6.23中6后面的小数点向右移去12位,在计数中如
1. 3×10^4+4×10^4=7×10^4可以写成3E4+4E4=7E4
即 aEc+bEc=a+bEc (1)
2. 4×10^4-7×10^4=-3×10^4可以写成4E4-7E4=-3E4
即 aEc-bEc=a-bEc (2)
3. 3000000×600000=1800000000000
3e6*6e5=1.8e12
即 aEM×bEN=abE(M+N) (3)
4. -60000÷3000=-20
-6E4÷3E3=-2E1
即 aEM÷bEN=a/bE(M-N) (4)
5.有关的一些推导
(aEc)^2=(aEc)(aEc)=a^2E2c
(aEc)^3=(aEc)(aEc)(aEc)=a^3E3c
(aEc)^n=a^nEnc
a×10^logb=ab
aElogb=ab

6.n"E"公式

3E4E5=30000E5=3E9
即aEbEc=aEb+c
6E-3E-6E3=0.006E-6E3
=0.000000006E3
=6E-6
即aEbEcEd=aEb+c+d
得aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an

7.n"E"公式与数列

据n"E"公式aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an
得aESn
等差n项和公式na1+n(n+1)/2×d
aEna1+n(n+1)/2×d
等比n项和公式Sn=a1n(q=1)或 n(1-q^n)/1-q
aESn [Sn=a1n(q=1)或 n(1-q^n)/1-q(q≠1) ]
数列通项计数
等差:aEan=aEa1+(n-1)d
等比:aEan=aEa1q^n-1
8.aEb与aE-b
aEb=a×10^b
aEb=a×10^-b 正负b决定E的方向
科学计数意义
“aE”表示并非具有科学计数意义,并且aE=a
“Ea”表示具有科学计数意义,即Ea=1Ea a=3时 1E3=1000
aEb=c a=c/Eb

科学计数法
将一个数字表示成 (a×10的n次幂的形式),其中1≤a<10,n表示整数,这种记数方法叫科学记数法。
用幂的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000
这样的大数,读、写都很不方便,考虑到10的幂有如下特点:
10的二次方=100,10的三次方=1000,10的四次方=10 000……。
一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如:
6 100 000 000=6.1×1 000 000 000=6.1×10的九次方。
任何数的0次方都等于1
当有了负整数指数幂的时候,小于1的正数也可以用科学计数法表示。例如:0.00001=10的负5次方,即小于1的正数也可以用科学计数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数。
有效数字
有效数字是指从左面数不为0的数
例如:890314000保留三位有效数字为8.90*10的8次方
839960000保留三位有效数字为8.40*10的8次方
0.00934593保留三位有效数字为0.00934

科学计数运算

数字很大的数,一般我们用科学计数法表示,例如6230000000000;我们可以用6.23×10^12表示,而它含义是什么呢?从直面上看是将数字6.23中6后面的小数点向右移去12位。
若将6.23×10^12写成6.23E12,即代表将数字6.23中6后面的小数点向右移去12位,在计数中如
1. 3×10^4+4×10^4=7×10^4可以写成3E4+4E4=7E4
即 aEc+bEc=a+bEc (1)
2. 4×10^4-7×10^4=-3×10^4可以写成4E4-7E4=-3E4
即 aEc-bEc=a-bEc (2)
3. 3000000×600000=1800000000000
3E6×6E5=18E11
即 aEM×bEN=abEM+N (3)
4. -60000÷3000=-20
-6E4÷3E3=-2E1
即 aEM÷bEN=a/bEM-N (4)
5.有关的一些推导
(aEc)^2=(aEc)(aEc)=a^2E2c
(aEc)^3=(aEc)(aEc)(aEc)=a^3E3c
(aEc)^n=a^nEnc
a×10^logb=ab
aElogb=ab

6.n"E"公式

3E4E5=30000E5=3E9
即aEbEc=aEb+c
6E-3E-6E3=0.006E-6E3
=0.000000006E3
=6E-6
即aEbEcEd=aEb+c+d
得aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an

7.n"E"公式与数列

据n"E"公式aEa1Ea2Ea3.......Ean=aEa1+a2+a3+.......+an
得aESn
等差n项和公式na1+n(n+1)/2×d
aEna1+n(n+1)/2×d
等比n项和公式Sn=a1n(q=1)或 n(1-q^n)/1-q
aESn [Sn=a1n(q=1)或 n(1-q^n)/1-q(q≠1) ]
数列通项计数
等差:aEan=aEa1+(n-1)d
等比:aEan=aEa1q^n-1
8.aEb与aE-b
aEb=a×10^b
aEb=a×10^-b 正负b决定E的方向
科学计数意义
“aE”表示并非具有科学计数意义,并且aE=a
“Ea”表示具有科学计数意义,即Ea=1Ea a=3时 1E3=1000
aEb=c a=c/Eb

Ⅵ 谁发明科学计数法,同时想知道为什么要使用科学计数法,相比使用十进制,有什么好处

更方便

Ⅶ 科学计数法是谁发明的

我们追溯到五千年到八千年前看一看,这时,四大文明古国都早已从母系社会过渡到父系社会了,生产力的发展导致国家雏形的产生,生产规模的扩大则刺激了人们对大数的需要.比如某个原始国家组织了一支部队,国王陛下总不能老是说:“我的这支战无不胜的部队共计有9名士兵!”于是,慢慢地就出现了“十”、“百”、“千”、“万”这些符号.在我国商代的甲骨文上就有“八日辛亥允戈伐二千六百五十六人”的刻文.即在八日辛亥那天消灭敌人共计2656人.在商周的青铜器上也刻有一些大的数字.以后又出现了“亿”、“兆”这样的大数单位. 而在古罗马,最大的记数单位只有“千”.他们用M表示一千.“三千”则写成“MMM”.“一万”就得写成“MMMMMMMMMM”.真不敢想象,如果他们需要记一千万时怎么办,难道要写上一万个M不成? 总之,人们为了寻找记大数的单位是花了不少脑筋的.旧社会在农村读私塾,一些私塾先生告诉:“最大的数叫‘猴子翻跟斗’”.这位私塾先生可能认为孙悟空一个跟斗翻过去的路程是最最远的,不能再远了,所以完全可以用“猴子翻跟斗”来表示最大的数.在古印度,使用了一系列大数单位后,最后的最大的数的单位叫做“恒河沙”.是呀,恒河中的沙子你数得清吗! 然而,古希腊有一位伟大的学者,他却数清了“充满宇宙的沙子数”,那就是阿基米德.他写了一篇论文,叫做《计沙法》,在这篇文章中,他提出的记数方法,同现代数学中表示大数的方法很类似.他从古希腊的最大数字单位“万”开始,引进新数“万万(亿)”作为第二阶单位,然后是“亿亿”(第三阶单位),“亿亿亿”(第四阶单位),等等,每阶单位都是它前一阶单位的1亿倍. 阿基米德的同时代人、天文学家阿里斯塔克斯曾求出地球到天球面距离10,000,000,000斯塔迪姆(1斯塔迪姆=188米),这个距离当然比现在我们所认识的宇宙要小得多,这才仅仅是太阳到土星的距离.阿基米德假定这个“宇宙”里充满了沙子.然后开始计算这些沙子的数目.最后他写道:“显然,在阿里斯塔克斯计算出的天球里所能装入的沙子的粒数,不会超过一千万个第八阶单位”.如果要把这个沙子的数目写出来,就是10,000,000×(100,000,000)7或者就得在1后边写上63个0:1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000.这个数,我们现在可以把它写得简单一些:即写成1×1063.而这种简单的写法,据说是印度某个不知名的数学家发明的. 现在,我们还可更进一步把这种方法推广到记任何数,例如:32,000,000就可记为3.2×107,而0.0000032则可记为3.2×10-6.这种用在1与10间的一个数乘以10的若干次幂的记数方法就是“科学记数法”.这种记数法既方便,又准确,又简洁,还便于进行计算,所以得到了广泛的使用.

Ⅷ 跪求!科学记数法的历史

我们追溯到五千年到八千年前看一看,这时,四大文明古国都早已从母系社会过渡到父系社会了,生产力的发展导致国家雏形的产生,生产规模的扩大则刺激了人们对大数的需要.比如某个原始国家组织了一支部队,国王陛下总不能老是说:“我的这支战无不胜的部队共计有9名士兵!”于是,慢慢地就出现了“十”、“百”、“千”、“万”这些符号.在我国商代的甲骨文上就有“八日辛亥允戈伐二千六百五十六人”的刻文.即在八日辛亥那天消灭敌人共计2656人.在商周的青铜器上也刻有一些大的数字.以后又出现了“亿”、“兆”这样的大数单位.而在古罗马,最大的记数单位只有“千”.他们用M表示一千.“三千”则写成“MMM”.“一万”就得写成“MMMMMMMMMM”.真不敢想象,如果他们需要记一千万时怎么办,难道要写上一万个M不成?总之,人们为了寻找记大数的单位是花了不少脑筋的.旧社会在农村读私塾,一些私塾先生告诉:“最大的数叫‘猴子翻跟斗’”.这位私塾先生可能认为孙悟空一个跟斗翻过去的路程是最最远的,不能再远了,所以完全可以用“猴子翻跟斗”来表示最大的数.在古印度,使用了一系列大数单位后,最后的最大的数的单位叫做“恒河沙”.是呀,恒河中的沙子你数得清吗!然而,古希腊有一位伟大的学者,他却数清了“充满宇宙的沙子数”,那就是阿基米德.他写了一篇论文,叫做《计沙法》,在这篇文章中,他提出的记数方法,同现代数学中表示大数的方法很类似.他从古希腊的最大数字单位“万”开始,引进新数“万万(亿)”作为第二阶单位,然后是“亿亿”(第三阶单位),“亿亿亿”(第四阶单位),等等,每阶单位都是它前一阶单位的1亿倍.阿基米德的同时代人、天文学家阿里斯塔克斯曾求出地球到天球面距离10,000,000,000斯塔迪姆(1斯塔迪姆=188米),这个距离当然比现在我们所认识的宇宙要小得多,这才仅仅是太阳到土星的距离.阿基米德假定这个“宇宙”里充满了沙子.然后开始计算这些沙子的数目.最后他写道:“显然,在阿里斯塔克斯计算出的天球里所能装入的沙子的粒数,不会超过一千万个第八阶单位”.如果要把这个沙子的数目写出来,就是10,000,000×(100,000,000)7或者就得在1后边写上63个0:1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000.这个数,我们现在可以把它写得简单一些:即写成1×1063.而这种简单的写法,据说是印度某个不知名的数学家发明的.现在,我们还可更进一步把这种方法推广到记任何数,例如:32,000,000就可记为3.2×107,而0.0000032则可记为3.2×10-6.这种用在1与10间的一个数乘以10的若干次幂的记数方法就是“科学记数法”.这种记数法既方便,又准确,又简洁,还便于进行计算,所以得到了广泛的使用.

Ⅸ 科学计数法的历史

我们追溯到五千年到八千年前看一看,这时,四大文明古国都早已从母系社会过渡到父系社会了,生产力的发展导致国家雏形的产生,生产规模的扩大则刺激了人们对大数的需要.比如某个原始国家组织了一支部队,国王陛下总不能老是说:“我的这支战无不胜的部队共计有9名士兵!”于是,慢慢地就出现了“十”、“百”、“千”、“万”这些符号.在我国商代的甲骨文上就有“八日辛亥允戈伐二千六百五十六人”的刻文.即在八日辛亥那天消灭敌人共计2656人.在商周的青铜器上也刻有一些大的数字.以后又出现了“亿”、“兆”这样的大数单位.
而在古罗马,最大的记数单位只有“千”.他们用M表示一千.“三千”则写成“MMM”.“一万”就得写成“MMMMMMMMMM”.真不敢想象,如果他们需要记一千万时怎么办,难道要写上一万个M不成?

总之,人们为了寻找记大数的单位是花了不少脑筋的.旧社会在农村读私塾,一些私塾先生告诉:“最大的数叫‘猴子翻跟斗’”.这位私塾先生可能认为孙悟空一个跟斗翻过去的路程是最最远的,不能再远了,所以完全可以用“猴子翻跟斗”来表示最大的数.在古印度,使用了一系列大数单位后,最后的最大的数的单位叫做“恒河沙”.是呀,恒河中的沙子你数得清吗!

然而,古希腊有一位伟大的学者,他却数清了“充满宇宙的沙子数”,那就是阿基米德.他写了一篇论文,叫做《计沙法》,在这篇文章中,他提出的记数方法,同现代数学中表示大数的方法很类似.他从古希腊的最大数字单位“万”开始,引进新数“万万(亿)”作为第二阶单位,然后是“亿亿”(第三阶单位),“亿亿亿”(第四阶单位),等等,每阶单位都是它前一阶单位的1亿倍.

阿基米德的同时代人、天文学家阿里斯塔克斯曾求出地球到天球面距离10,000,000,000斯塔迪姆(1斯塔迪姆=188米),这个距离当然比现在我们所认识的宇宙要小得多,这才仅仅是太阳到土星的距离.阿基米德假定这个“宇宙”里充满了沙子.然后开始计算这些沙子的数目.最后他写道:“显然,在阿里斯塔克斯计算出的天球里所能装入的沙子的粒数,不会超过一千万个第八阶单位”.如果要把这个沙子的数目写出来,就是10,000,000×(100,000,000)7或者就得在1后边写上63个0:1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000.这个数,我们现在可以把它写得简单一些:即写成1×1063.而这种简单的写法,据说是印度某个不知名的数学家发明的.

现在,我们还可更进一步把这种方法推广到记任何数,例如:32,000,000就可记为3.2×107,而0.0000032则可记为3.2×10-6.这种用在1与10间的一个数乘以10的若干次幂的记数方法就是“科学记数法”.这种记数法既方便,又准确,又简洁,还便于进行计算,所以得到了广泛的使用.

Ⅹ 409400科学计数法

409400科学计算法。这是一道简单的数学除法题,它可以运用简便的算法得出结果。

阅读全文

与是谁发明的科学计数法相关的资料

热点内容
武汉疫情投诉 浏览:149
知识产权合作开发协议doc 浏览:932
广州加里知识产权代理有限公司 浏览:65
企业知识产权部门管理办法 浏览:455
消费315投诉 浏览:981
马鞍山钢城医院 浏览:793
冯超知识产权 浏览:384
介绍小发明英语作文 浏览:442
版权使用权协议 浏览:1000
2018年基本公共卫生服务考核表 浏览:884
马鞍山候车亭 浏览:329
学校矛盾纠纷排查领导小组 浏览:709
张江管委会知识产权合作协议 浏览:635
关于开展公共卫生服务项目相关项目督导的函 浏览:941
闺蜜证书高清 浏览:11
转让房转让合同协议 浏览:329
矛盾纠纷排查调处工作协调交账会议纪要 浏览:877
云南基金从业资格证书查询 浏览:313
新知识的摇篮创造力 浏览:187
股转转让协议 浏览:676