1. 通信的发展历史
1、19世纪中叶以后,随着电报、电话的发有,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。
从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列铁技术革新,开始了人类通信的新时代。
2、1837年,美国人塞缪乐.莫乐斯(Samuel Morse)成功地研制出世界上第一台电磁式电报机。他利用自己设计的电码,可将信息转换成一串或长或短的电脉冲传向目的地,再转换为原来的信息。
1844年5月24日,莫乐斯在国会大厦联邦最高法院会议厅进行了“用莫尔斯电码”发出了人类历史上的第一份电报,从而实现了长途电报通信。
3、1864年,英国物理学家麦克斯韦(J.c.Maxwel)建立了一套电磁理论,预言了电磁波的存在,说明了电磁波与光具有相同的性质,两者都是以光速传播的。
4、1875年,苏格兰青年亚历山大.贝尔(A.G.Bell)发明了世界上第一台电话机。并于1876年申请了发明专利。1878年在相距300公里的波士顿和纽约之间进行了首次长途电话实验,并获得了成功,后来就成立了著名的贝尔电话公司。
5、1888年,德国青年物理学家海因里斯.赫兹(H.R.Hertz)用电波环进行了一系列实验,发现了电磁波的存在,他用实验证明了麦克斯韦的电磁理论。这个实验轰动了整个科学界,成为近代科学技术史上的一个重要里程碑,导致了无线电的诞生和电子技术的发展。

(1)PCM是何时发明的扩展阅读
1、互联移动跨时空:移动通信能力飞速发展,全国实现联网
移动通信能力飞速发展。在1988年到1997年的十年间,我国经历了移动通信发展的第一个高峰期间移动交换机容量从不到3万户猛增到2585.7万户,10年间增长861倍。
我国选用900MHz频段的TACS系统主要引进了摩托罗拉(A网)和爱立信(B网)的交换机、基站、控制系统等设备,1995年底,A网覆盖的21个省市和B网覆盖的15个省市实现自动漫游,形成真正的全国联网。
1994年,由电子部联合铁道部、电力部及广电部组建成立中国联通。1998年,中国电信从当时的邮电部脱离组建。1999年,网通成立。
2、布局重组谋生态:“动感地带”推向全国,电信业重组拉开帷幕
2001年,中国移动广东分公司在广州和深圳两地召开品牌推介会,“动感地带”作为新品牌进行试验推行。2003年,中国移动正式将“动感地带”品牌推向全国,它成为中国移动通信史上第一个客户品牌。
2006年8月,纽约证券交易所收市,中国移动段价以33.42美元收盘,总市值达到1325.8亿美元,成为全球市值最高的电信运营公司。2007年,中国移动成功收购Paktel。
2004年1月,村通工程面向全国推行。截至2007年,六家基础电信企业共为3759个无电话行政村新开通电话,全国行政村通电话比重达99.5%,29个省区市实现了所有行政村通电话。2007年5月,政府继续在全国启动自然村的村通工程,形成了行政村和自然村两方面工程并进的局面。
2007年3月,中国移动正式启动超过200亿元的TD—SCDMA网络建设招标,多家中外企业组成的四大阵营竞争激烈。
2008年5月,电信业重组拉开帷幕。随后,工信部等联合发布《关于深化电信体制改革的通告》。通告称,鼓励中国电信收购中国联通CDMA网,中国联通与中国网通合并,中国卫通的基础电信业务并入中国电信,中国铁通并入中国移动。这次改革重组完成后发放3G牌照。
专家称,电信重组在于打破垄断,随着通信技术的发展,移动替代固话趋势明显。重组后,三家运营商都拥有全业务能力,形成充分的竞争格局。
3、代际宏图标准中:通信业增长率高,5G将带动通信产业下一轮发展
不久前召开的全国工业和信息化工作会议中,工信部明确了2018年多项重点工作。其中涉及强化信息通信市场监管方面,工信部相关文件透露,计划开展VoLTE号码携带技术试验,研究制定号码携带全国推广方案。
工信部数据显示,初步核算,2017年电信业务总量达到27557亿元(按照2015年不变单价计算),比上年增长76.4%,增幅同比提高42.5个百分点;电信业务收入12620亿元,比上年增长6.4%,增速同比提高1个百分点。
2018年1-2月,电信业务总量完成6853亿元,同比增长117%;电信业务收入完成2168亿元,同比增长4.9%。
近年来,我国通信产业发展迅速,主要经营指标向好,5G将成为下一个发展契机。2017年8月,国务院印发了《关于进一步扩大和升级信息消费持续释放内需潜力的指导意见》,指出“加快第五代移动通信(5G)标准研究、技术试验和产业推进,力争2020年启动商用”。
由于5G应用前景广泛,5G战略制高点争夺战已风起云涌。
2. pcm技术是何时发明的
原包带的4节电池我自己使用大概70-80小时吧
录音和放歌
这个时间不是持续不间断工作 是停停用用 而且用的是耳塞
整体感觉还可以
3. 调频广播是怎么发展的
在无线电通信的发展史上,阿姆斯特朗的英名为人们所熟悉,他曾对无线电技术做出过两项突出的贡献。一项是1912年他发明的超外差接收方法,为现代无线电接收技术奠定了基础;另一项是他于1933年发明的频率调制方法,开创了崭新的高质量通信方式——调频广播,开始了高保真优质广播的新时代。常用的对载波的调制方式,除了振幅调制外,还有频率调制,以及1937年里布斯发明的脉冲编码调制(PCM)等。
4. 1980年后电子通信网的发展史(80年代至今)
从70年代中期至80年代中期。这是移动通信蓬勃发展时期。1978年底,美国贝尔试验室研制成功先进移动电话系统(AMPS),建成了蜂窝状移动通信网,大大提高了系统容量。1983年,首次在芝加哥投入商用。同年12月,在华盛顿也开始启用。之后,服务区域在美国逐渐扩大。到1985年3月已扩展到47个地区,约10万移动用户。其它工业化国家也相继开发出蜂窝式公用移动通信网。日本于1979年推出800MHz汽车电话系统(HAMTS),在东京、神户等地投入商用。西德于1984年完成C网,频段为450MHz。英国在1985年开发出全地址通信系统(TACS),首先在伦敦投入使用,以后覆盖了全国,频段为900MHz。法国开发出450系统。加拿大推出450MHz移动电话系统MTS。瑞典等北欧四国于1980年开发出NMT-450移动通信网,并投入使用,频段为450MHz。
这一阶段的特点是蜂窝状移动通信网成为实用系统,并在世界各地迅速发展。移动通信大发展的原因,除了用户要求迅猛增加这一主要推动力之外,还有几方面技术进展所提供的条件。首先,微电子技术在这一时期得到长足发展,这使得通信设备的小型化、微型化有了可能性,各种轻便电台被不断地推出。其次,提出并形成了移动通信新体制。随着用户数量增加,大区制所能提供的容量很快饱和,这就必须探索新体制。在这方面最重要的突破是贝尔试验室在70年代提出的蜂窝网的概念。蜂窝网,即所谓小区制,由于实现了频率再用,大大提高了系统容量。可以说,蜂窝概念真正解决了公用移动通信系统要求容量大与频率资源有限的矛盾。第三方面进展是随着大规模集成电路的发展而出现的微处理器技术日趋成熟以及计算机技术的迅猛发展,从而为大型通信网的管理与控制提供了技术手段。
从80年代中期开始。这是数字移动通信系统发展和成熟时期。
以AMPS和TACS为代表的第一代蜂窝移动通信网是模拟系统。模拟蜂窝网虽然取得了很大成功,但也暴露了一些问题。例如,频谱利用率低,移动设备复杂,费用较贵,业务种类受限制以及通话易被窃听等,最主要的问题是其容量已不能满足日益增长的移动用户需求。解决这些问题的方法是开发新一代数字蜂窝移动通信系统。数字无线传输的频谱利用率高,可大大提高系统容量。另外,数字网能提供语音、数据多种业务服务,并与ISDN等兼容。实际上,早在70年代末期,当模拟蜂窝系统还处于开发阶段时,一些发达国家就接手数字蜂窝移动通信系统的研究。到80年代中期,欧洲首先推出了泛欧数字移动通信网(GSM)的体系。随后,美国和日本也制定了各自的数字移动通信体制。泛欧网GSM已于1991年7月开始投入商用,预计1995年将覆盖欧洲主要城市、机场和公路。可以说,在未来十多年内数字蜂窝移动通信将处于一个大发展时期,及有可能成为陆地公用移动通信的主要系统。
与其它现代技术的发展一样,移动通信技术的发展也呈现加快趋势,目前,当数字蜂窝网刚刚进入实用阶段,正方兴未艾之时,关于未来移动通信的讨论已如火如荼地展开。各种方案纷纷出台,其中最热门的是所谓个人移动通信网。关于这种系统的概念和结构,各家解释并未一致。但有一点是肯定的,即未来移动通信系统将提供全球性优质服务,真正实现在任何时间、任何地点、向任何人提供通信服务这一移动通信的最高目标。
傅立叶变换最早是在19世纪由法国的数学家J.B. Fourier提出,他认为任何信号(例如声音,影像等)均可被分解为频率、振幅。由于傅立叶变换的性质,可以把图象或者信号在频域中进行处. 理,从而达到简化处理过程、增强处理效 对电信发展贡献可想而知...
5. 调频广播是谁发明的
在无线电通信来的发展史上,自阿姆斯特朗的英名为人们所熟悉,他曾对无线电技术做出过两项突出的贡献。一项是1912年他发明的超外差接收方法,为现代无线电接收技术奠定了基础;另一项是他于1933年发明的频率调制方法,开创了崭新的高质量通信方式——调频广播,开始了高保真优质广播的新时代。常用的对载波的调制方式,除了振幅调制外,还有频率调制,以及1937年里布斯发明的脉冲编码调制(PCM)等。
6. 数字通信的发展历史
数字通信的早期历史是与电报的发展联系在一起的。
1937年,英国人A.H.里夫斯提出脉码调制(PCM),从而推动了模拟信号数字化的进程。
1946年,法国人E.M.德洛雷因发明增量调制。
1950年C.C.卡特勒提出差值编码。1947年,美国贝尔实验室研制出供实验用的24路电子管脉码调制装置,证实了实现PCM的可行性。
1953年发明了不用编码管的反馈比较型编码器,扩大了输入信号的动态范围。
1962年,美国研制出晶体管24路1.544兆比/秒脉码调制设备,并在市话网局间使用。
数字通信与模拟通信相比具有明显的优点。它抗干扰能力强,通信质量不受距离的影响,能适应各种通信业务的要求,便于采用大规模集成电路,便于实现保密通信和计算机管理。不足之处是占用的信道频带较宽。
20世纪90年代,数字通信向超高速大容量长距离方向发展,高效编码技术日益成熟,语声编码已走向实用化,新的数字化智能终端将进一步发展。
《数字通信》创刊于1974年,进入新世纪后,为适应市场经济的发展,我们重新对她定位,包装,突出以“数字”为基础;“移动”为核心;“手机”为特色,成为国内第一本面向大众的实用手机月刊。
《数字通信》有《产品》《市场》《应用》《技术》四大版块:包括移动新闻、手机前线、新品抢鲜、品机地带、DC导购、手机秘笈、产业观察、手机乐园等多个栏目若干专题。
《数字通信》集实用性、知识性、趣味性于一体,语言诙谐幽默、贴近生活.《数字通信》每半月拥有25万多的发行量,每期杂志的有效读者约75万人左右。作为中国发行量第一的手机杂志,《数字通信》的读者覆盖全国各地,是目前发行区域最广、渗透率最高的手机杂志。
《数字通信》是全国发行量最大,在手机领域最为权威的专业手机与无线通讯期刊。以专业的评测文章、囊括所有热门机型的玩机指南、及时的手机资讯和市场信息而深受数十万读者好评。

7. 人类通信的发展历史,急急急!!!!!!!!
1.
人类进行通信的历史已很悠久。早在远古时期,人们就通过简单的语言、壁画等方式交换信息。千百年来,人们一直在用语言、图符、钟鼓、烟火、竹简、纸书等传递信息,古代人的烽火狼烟、飞鸽传信、驿马邮递就是这方面的例子。现在还有一些国家的个别原始部落,仍然保留着诸如击鼓鸣号这样古老的通信方式。在现代社会中,交通警的指挥手语、航海中的旗语等不过是古老通信方式进一步发展的结果。这些信息传递的基本方都是依靠人的视觉与听觉。
19世纪中叶以后,随着电报、电话的发有,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列铁技术革新,开始了人类通信的新时代。
1837年,美国人塞缪乐.莫乐斯(Samuel Morse)成功地研制出世界上第一台电磁式电报机。他利用自己设计的电码,可将信息转换成一串或长或短的电脉冲传向目的地,再转换为原来的信息。1844年5月24日,莫乐斯在国会大厦联邦最高法院会议厅进行了“用莫尔斯电码”发出了人类历史上的第一份电报,从而实现了长途电报通信。
1864年,英国物理学家麦克斯韦(J.c.Maxwel)建立了一套电磁理论,预言了电磁波的存在,说明了电磁波与光具有相同的性质,两者都是以光速传播的。
1875年,苏格兰青年亚历山大.贝尔(A.G.Bell)发明了世界上第一台电话机。并于1876年申请了发明专利。1878年在相距300公里的波士顿和纽约之间进行了首次长途电话实验,并获得了成功,后来就成立了著名的贝尔电话公司。
1888年,德国青年物理学家海因里斯.赫兹(H.R.Hertz)用电波环进行了一系列实验,发现了电磁波的存在,他用实验证明了麦克斯韦的电磁理论。这个实验轰动了整个科学界,成为近代科学技术史上的一个重要里程碑,导致了无线电的诞生和电子技术的发展。
电磁波的发现产生了巨大影响。不到6年的时间,俄国的波波夫、意大利的马可尼分别发明了无线电报,实现了信息的无线电传播,其他的无线电技术也如雨后春笋般涌现出来。1904年英国电气工程师弗莱明发明了二极管。1906年美国物理学家费森登成功地研究出无线电广播。1907年美国物理学家德福莱斯特发明了真空三极管,美国电气工程师阿姆斯特朗应用电子器件发明了超外差式接收装置。1920年美国无线电专家康拉德在匹兹堡建立了世界上第一家商业无线电广播电台,从此广播事业在世界各地蓬勃发展,收音机成为人们了解时事新闻的方便途径。1924年第一条短波通信线路在瑙恩和布宜诺斯艾利斯之间建立,1933年法国人克拉维尔建立了英法之间和第一第商用微波无线电线路,推动了无线电技术的进一步发展。
电磁波的发现也促使图像传播技术迅速发展起来。1922年16岁的美国中学生菲罗.法恩斯沃斯设计出第一幅电视传真原理图,1929年申请了发明专利,被裁定为发明电视机的第一人。1928年美国西屋电器公司的兹沃尔金发明了光电显像管,并同工程师范瓦斯合作,实现了电子扫描方式的电视发送和传输。1935年美国纽约帝国大厦设立了一座电视台,次年就成功地把电视节目发送到70公里以外的地方。1938年兹沃尔金又制造出第一台符合实用要求的电视摄像机。经过人们的不断探索和改进,1945年在三基色工作原理的基础上美国无线电公司制成了世界上第一台全电子管彩色电视机。直到1946年,美国人罗斯.威玛发明了高灵敏度摄像管,同年日本人八本教授解决了家用电视机接收天线问题,从此一些国家相继建立了超短波转播站,电视迅速普及开来。
图像传真也是一项重要的通信。自从1925年美国无线电公司研制出第一部实用的传真机以后,传真技术不断革新。1972年以前,该技术主要用于新闻、出版、气象和广播行业;1972年至1980年间,传真技术已完成从模拟向数字、从机械扫描向电子扫描、从低速向高速的转变,除代替电报和用于传送气象图、新闻稿、照片、卫星云图外,还在医疗、图书馆管理、情报咨询、金融数据、电子邮政等方面得到应用;1980年后,传真技术向综合处理终端设备过渡,除承担通信任务外,它还具备图像处理和数据处理的能力,成为综合性处理终端。静电复印机、磁性录音机、雷达、激光器等等都是信息技术史上的重要发明。
此外,作为信息超远控制的遥控、遥测和遥感技术也是非常重要的技术。遥控是利用通信线路对远处被控对象进行控制的一种技术,用于电气事业、输油管道、化学工业、军事和航天事业;遥测是将远处需要测量的物理量如电压、电流、气压、温度、流量等变换成电量,利用通信线路传送到观察点的一种测量技术,用于气象、军事和航空航天业;遥感是一门综合性的测量技术,在高空或远处利用传感器接收物体辐射的电磁波信息,经过加工处理或能够识别的图像或电子计算机用的记录磁带,提示被测物体一性质、形状和变化动态,主要用于气象、军事和航空航天事业。
随着电子技术的高速发展,军事、科研迫切需要解决的计算工具也大大改进。1946年美国宾夕法尼亚大学的埃克特和莫希里研制出世界上第一台电子计算机。电子元器件材料的革新进一步促使电子计算机朝小型化、高精度、高可靠性方向发展。20世纪40年代,科学家们发现了半导体材料,用它制成晶体管,替代了电子管。1948年美国贝尔实验室的肖克莱、巴丁和布拉坦发明了晶体三极管,于是晶体管收音机、晶体管电视、晶体管计算机很快代替了各式各样的真空电子管产品。1959年美国的基尔比和诺伊斯发明了集成电路,从此微电子技术诞生了。1967年大规模集成电路诞生了,一块米粒般大小的硅晶片上可以集成1千多个晶体管的线路。1977年美国、日本科学家制成超大规模集成电路,30平方毫米的硅晶片上集成了13万个晶体管。微电子技术极大地推动了电子计算机的更新换代,使电子计算机显示了前所未有的信息处理功能,成为现代高新科技的重要标志。
为了解决资源共享问题,单一计算机很快发展成计算机联网,实现了计算机之间的数据通信、数据共享。通信介质从普通导线、同轴电缆发展到双绞线、光纤导线、光缆;电子计算机的输入输出设备也飞速发展起来,扫描仪、绘图仪、音频视频设备等,使计算机如虎添翼,可以处理更多的复杂问题。20世纪80年代末多媒体技术的兴起,使计算机具备了综合处理文字、声音、图像、影视等各种形式信息的能力,日益成为信息处理最重要和必不可少的工具。
至此,我们可以初步认为:信息技术(Information Technology,简称IT)是以微电子和光电技术为基础,以计算机和通信技术为支撑,以信息处理技术为主题的技术系统的总称,是一门综合性的技术。电子计算机和通信技术的紧密结合,标志着数字化信息时代的到来
2.
通信发展史
有线通信
美国莫尔斯(F.B.Morse):约5km的电报(点,划,空间→字母,数字);
美国贝尔(A.G.Bell):取得电话机专利(电信号→语音);
美国普宾:通信电缆;
1972年 日本:公共通信网的数据通信,传真通信业务;
美国:发表贝尔数据网络,英国:图像信息服务实验;
现代 通信系统利用某些集中转接设施→复杂信息网络
→"交换功能"→实现任意两点之间信号的传输.
无线通信
1864年 英国麦克斯韦:电磁波的存在设想;
1888年 德国赫兹(H.Hertz):证实电磁波的存在;
1895年 意大利马可尼:传距仅数百米的无线通信;
1901年 意大利马可尼:横渡大西洋的无线通信;
1938年 法国里本斯:PCM方式;
1940年 美国CBS:彩色电视实验广播;
1951年 美国CBS:彩色电视正式广播;
现代 无线通信遍及全球并通向宇宙,
如GPS其精度可达数十米之内.
数学分析方法发展史
一,傅立叶分析
1822年 法国数学家傅立叶(J.Fourier):奠定傅立叶级数理论基础;
泊松(Poisson),高斯(Gauss):应用到电学中;
19世纪末 用于工程实际的电容器→处理各种频率的正弦信号;
20世纪 谐振电路,滤波器,正弦振荡器→扩展应用领域.
二,拉普拉斯变换
19世纪末 英国工程师赫维赛德(O.Heaviside):运算法(算子法)-先驱;
法国数学家拉普拉斯(P.S.Laplace):拉普拉斯变换方法;
20世纪70年代后 CAD求解电路分析方法 →替代拉氏变换.
离散等其它系统的发展→
三,Z变换
1730年 英国数学家棣莫弗(De Moivre):生成函数-类似;
19世纪 拉普拉斯: 贡献
20世纪 沙尔(H.L.Seal): 贡献;
20世纪50~60年代 抽样数据控制系统 →Z变换应用.
数字计算机的研究与实践
四,状态方程分析
20世纪50年代 经典的线性系统理论(外特性);
20世纪60年代 现代的线性系统理论(内部特性),
卡尔曼(R.E.Kalman):状态空间方法.
8. 存储器的发展史
存储器设备发展
1.存储器设备发展之汞延迟线
汞延迟线是基于汞在室温时是液体,同时又是导体,每比特数据用机械波的波峰(1)和波谷(0)表示。机械波从汞柱的一端开始,一定厚度的熔融态金属汞通过一振动膜片沿着纵向从一端传到另一端,这样就得名“汞延迟线”。在管的另一端,一传感器得到每一比特的信息,并反馈到起点。设想是汞获取并延迟这些数据,这样它们便能存储了。这个过程是机械和电子的奇妙结合。缺点是由于环境条件的限制,这种存储器方式会受各种环境因素影响而不精确。
1950年,世界上第一台具有存储程序功能的计算机EDVAC由冯.诺依曼博士领导设计。它的主要特点是采用二进制,使用汞延迟线作存储器,指令和程序可存入计算机中。
1951年3月,由ENIAC的主要设计者莫克利和埃克特设计的第一台通用自动计算机UNIVAC-I交付使用。它不仅能作科学计算,而且能作数据处理。
2.存储器设备发展之磁带
UNIVAC-I第一次采用磁带机作外存储器,首先用奇偶校验方法和双重运算线路来提高系统的可靠性,并最先进行了自动编程的试验。
磁带是所有存储器设备发展中单位存储信息成本最低、容量最大、标准化程度最高的常用存储介质之一。它互换性好、易于保存,近年来,由于采用了具有高纠错能力的编码技术和即写即读的通道技术,大大提高了磁带存储的可靠性和读写速度。根据读写磁带的工作原理可分为螺旋扫描技术、线性记录(数据流)技术、DLT技术以及比较先进的LTO技术。
根据读写磁带的工作原理,磁带机可以分为六种规格。其中两种采用螺旋扫描读写方式的是面向工作组级的DAT(4mm)磁带机和面向部门级的8mm磁带机,另外四种则是选用数据流存储技术设计的设备,它们分别是采用单磁头读写方式、磁带宽度为1/4英寸、面向低端应用的Travan和DC系列,以及采用多磁头读写方式、磁带宽度均为1/2英寸、面向高端应用的DLT和IBM的3480/3490/3590系列等。
磁带库是基于磁带的备份系统,它能够提供同样的基本自动备份和数据恢复功能,但同时具有更先进的技术特点。它的存储容量可达到数百PB,可以实现连续备份、自动搜索磁带,也可以在驱动管理软件控制下实现智能恢复、实时监控和统计,整个数据存储备份过程完全摆脱了人工干涉。
磁带库不仅数据存储量大得多,而且在备份效率和人工占用方面拥有无可比拟的优势。在网络系统中,磁带库通过SAN(Storage Area Network,存储区域网络)系统可形成网络存储系统,为企业存储提供有力保障,很容易完成远程数据访问、数据存储备份或通过磁带镜像技术实现多磁带库备份,无疑是数据仓库、ERP等大型网络应用的良好存储设备。
3.存储器设备发展之磁鼓
1953年,随着存储器设备发展,第一台磁鼓应用于IBM 701,它是作为内存储器使用的。磁鼓是利用铝鼓筒表面涂覆的磁性材料来存储数据的。鼓筒旋转速度很高,因此存取速度快。它采用饱和磁记录,从固定式磁头发展到浮动式磁头,从采用磁胶发展到采用电镀的连续磁介质。这些都为后来的磁盘存储器打下了基础。
磁鼓最大的缺点是利用率不高, 一个大圆柱体只有表面一层用于存储,而磁盘的两面都利用来存储,显然利用率要高得多。 因此,当磁盘出现后,磁鼓就被淘汰了。
4.存储器设备发展之磁芯
美国物理学家王安1950年提出了利用磁性材料制造存储器的思想。福雷斯特则将这一思想变成了现实。
为了实现磁芯存储,福雷斯特需要一种物质,这种物质应该有一个非常明确的磁化阈值。他找到在新泽西生产电视机用铁氧体变换器的一家公司的德国老陶瓷专家,利用熔化铁矿和氧化物获取了特定的磁性质。
对磁化有明确阈值是设计的关键。这种电线的网格和芯子织在电线网上,被人称为芯子存储,它的有关专利对发展计算机非常关键。这个方案可靠并且稳定。磁化相对来说是永久的,所以在系统的电源关闭后,存储的数据仍然保留着。既然磁场能以电子的速度来阅读,这使交互式计算有了可能。更进一步,因为是电线网格,存储阵列的任何部分都能访问,也就是说,不同的数据可以存储在电线网的不同位置,并且阅读所在位置的一束比特就能立即存取。这称为随机存取存储器(RAM),在存储器设备发展历程中它是交互式计算的革新概念。福雷斯特把这些专利转让给麻省理工学院,学院每年靠这些专利收到1500万~2000万美元。
最先获得这些专利许可证的是IBM,IBM最终获得了在北美防卫军事基地安装“旋风”的商业合同。更重要的是,自20世纪50年代以来,所有大型和中型计算机也采用了这一系统。磁芯存储从20世纪50年代、60年代,直至70年代初,一直是计算机主存的标准方式。
5.存储器设备发展之磁盘
世界第一台硬盘存储器是由IBM公司在1956年发明的,其型号为IBM 350 RAMAC(Random Access Method of Accounting and Control)。这套系统的总容量只有5MB,共使用了50个直径为24英寸的磁盘。1968年,IBM公司提出“温彻斯特/Winchester”技术,其要点是将高速旋转的磁盘、磁头及其寻道机构等全部密封在一个无尘的封闭体中,形成一个头盘组合件(HDA),与外界环境隔绝,避免了灰尘的污染,并采用小型化轻浮力的磁头浮动块,盘片表面涂润滑剂,实行接触起停,这是现代绝大多数硬盘的原型。1979年,IBM发明了薄膜磁头,进一步减轻了磁头重量,使更快的存取速度、更高的存储密度成为可能。20世纪80年代末期,IBM公司又对存储器设备发展作出一项重大贡献,发明了MR(Magneto Resistive)磁阻磁头,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度比以往提高了数十倍。1991年,IBM生产的3.5英寸硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此,硬盘容量开始进入了GB数量级。IBM还发明了PRML(Partial Response Maximum Likelihood)的信号读取技术,使信号检测的灵敏度大幅度提高,从而可以大幅度提高记录密度。
目前,硬盘的面密度已经达到每平方英寸100Gb以上,是容量、性价比最大的一种存储设备。因而,在计算机的外存储设备中,还没有一种其他的存储设备能够在最近几年中对其统治地位产生挑战。硬盘不仅用于各种计算机和服务器中,在磁盘阵列和各种网络存储系统中,它也是基本的存储单元。值得注意的是,近年来微硬盘的出现和快速发展为移动存储提供了一种较为理想的存储介质。在闪存芯片难以承担的大容量移动存储领域,微硬盘可大显身手。目前尺寸为1英寸的硬盘,存储容量已达4GB,10GB容量的1英寸硬盘不久也会面世。微硬盘广泛应用于数码相机、MP3设备和各种手持电子类设备。
另一种磁盘存储设备是软盘,从早期的8英寸软盘、5.25英寸软盘到3.5英寸软盘,主要为数据交换和小容量备份之用。其中,3.5英寸1.44MB软盘占据计算机的标准配置地位近20年之久,之后出现过24MB、100MB、200MB的高密度过渡性软盘和软驱产品。然而,由于USB接口的闪存出现,软盘作为数据交换和小容量备份的统治地位已经动摇,不久会退出存储器设备发展历史舞台。
6. 存储器设备发展之光盘
光盘主要分为只读型光盘和读写型光盘。只读型指光盘上的内容是固定的,不能写入、修改,只能读取其中的内容。读写型则允许人们对光盘内容进行修改,可以抹去原来的内容,写入新的内容。用于微型计算机的光盘主要有CD-ROM、CD-R/W和DVD-ROM等几种。
上世纪60年代,荷兰飞利浦公司的研究人员开始使用激光光束进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。
从LD的诞生至计算机用的CD-ROM,经历了三个阶段,即LD-激光视盘、CD-DA激光唱盘、CD-ROM。下面简单介绍这三个存储器设备发展阶段性的产品特点。
LD-激光视盘,就是通常所说的LCD,直径较大,为12英寸,两面都可以记录信息,但是它记录的信号是模拟信号。模拟信号的处理机制是指,模拟的电视图像信号和模拟的声音信号都要经过FM(Frequency Molation)频率调制、线性叠加,然后进行限幅放大。限幅后的信号以0.5微米宽的凹坑长短来表示。
CD-DA激光唱盘 LD虽然取得了成功,但由于事先没有制定统一的标准,使它的开发和制作一开始就陷入昂贵的资金投入中。1982年,由飞利浦公司和索尼公司制定了CD-DA激光唱盘的红皮书(Red Book)标准。由此,一种新型的激光唱盘诞生了。CD-DA激光唱盘记录音响的方法与LD系统不同,CD-DA激光唱盘系统首先把模拟的音响信号进行PCM(脉冲编码调制)数字化处理,再经过EMF(8~14位调制)编码之后记录到盘上。数字记录代替模拟记录的好处是,对干扰和噪声不敏感,由于盘本身的缺陷、划伤或沾污而引起的错误可以校正。
CD-DA系统取得成功以后,使飞利浦公司和索尼公司很自然地想到利用CD-DA作为计算机的大容量只读存储器。但要把CD-DA作为计算机的存储器,还必须解决两个重要问题,即建立适合于计算机读写的盘的数据结构,以及CD-DA误码率必须从现有的10-9降低到10-12以下,由此就产生了CD-ROM的黄皮书(Yellow Book)标准。这个标准的核心思想是,盘上的数据以数据块的形式来组织,每块都要有地址,这样一来,盘上的数据就能从几百兆字节的存储空间上被迅速找到。为了降低误码率,采用增加一种错误检测和错误校正的方案。错误检测采用了循环冗余检测码,即所谓CRC,错误校正采用里德-索洛蒙(Reed Solomon)码。黄皮书确立了CD-ROM的物理结构,而为了使其能在计算机上完全兼容,后来又制定了CD-ROM的文件系统标准,即ISO 9660。
在上世纪80年代中期,光盘存储器设备发展速度非常快,先后推出了WORM光盘、磁光盘(MO)、相变光盘(Phase Change Disk,PCD)等新品种。20世纪90年代,DVD-ROM、CD-R、CD-R/W等开始出现和普及,目前已成为计算机的标准存储设备。
光盘技术进一步向高密度发展,蓝光光盘是不久将推出的下一代高密度光盘。多层多阶光盘和全息存储光盘正在实验室研究之中,可望在5年之内推向市场。
7.存储器设备发展之纳米存储
纳米是一种长度单位,符号为nm。1纳米=1毫微米,约为10个原子的长度。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。与纳米存储有关的主要进展有如下内容。
1998年,美国明尼苏达大学和普林斯顿大学制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系。一个量子磁盘相当于我们现在的10万~100万个磁盘,而能源消耗却降低了1万倍。
1988年,法国人首先发现了巨磁电阻效应,到1997年,采用巨磁电阻原理的纳米结构器件已在美国问世,它在磁存储、磁记忆和计算机读写磁头等方面均有广阔的应用前景。
2002年9月,美国威斯康星州大学的科研小组宣布,他们在室温条件下通过操纵单个原子,研制出原子级的硅记忆材料,其存储信息的密度是目前光盘的100万倍。这是纳米存储材料技术研究的一大进展。该小组发表在《纳米技术》杂志上的研究报告称,新的记忆材料构建在硅材料表面上。研究人员首先使金元素在硅材料表面升华,形成精确的原子轨道;然后再使硅元素升华,使其按上述原子轨道进行排列;最后,借助于扫瞄隧道显微镜的探针,从这些排列整齐的硅原子中间隔抽出硅原子,被抽空的部分代表“0”,余下的硅原子则代表“1”,这就形成了相当于计算机晶体管功能的原子级记忆材料。整个试验研究在室温条件下进行。研究小组负责人赫姆萨尔教授说,在室温条件下,一次操纵一批原子进行排列并不容易。更为重要的是,记忆材料中硅原子排列线内的间隔是一个原子大小。这保证了记忆材料的原子级水平。赫姆萨尔教授说,新的硅记忆材料与目前硅存储材料存储功能相同,而不同之处在于,前者为原子级体积,利用其制造的计算机存储材料体积更小、密度更大。这可使未来计算机微型化,且存储信息的功能更为强大。
以上就是本文向大家介绍的存储器设备发展历程的7个关键时期
9. PCM设备和PDH设备有什么区别
数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code molation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。现在的数字传输系统都是采用脉码调制(Pulse-code molation)体制。PCM最初并非传输计算机数据用的,而是使交换机之间有一条中继线不是只传送一条电话信号。
PDH光传输设备,在数字通信系统中,传送的信号都是数字化的脉冲序列。这些数字信号流在数字交换设备之间传输时,其速率必须完全保持一致,才能保证信息传送的准确无误,这就叫做“同步”。
在数字传输系统中,有两种数字传输系列,一种叫“准同步数字系列”(Plesiochronous Digital Hierarchy),简称PDH;另一种叫“同步数字系列”(Synchronous Digital Hierarchy),简称SDH。
两者属于完全不同的两者设备。PCM是综合业务接入设备,PDH设备是光传输设备。
10. 数据压缩技术的数据压缩技术简史
电脑里的数据压缩其实类似于美眉们的瘦身运动,不外有两大功用。第一,可以节省空间。拿瘦身美眉来说,要是八个美眉可以挤进一辆出租车里,那该有多省钱啊!第二,可以减少对带宽的占用。例如,我们都想在不到 100Kbps 的 GPRS 网上观看 DVD 大片,这就好比瘦身美眉们总希望用一尺布裁出七件吊带衫,前者有待于数据压缩技术的突破性进展,后者则取决于美眉们的恒心和毅力。
简单地说,如果没有数据压缩技术,我们就没法用 WinRAR 为 Email 中的附件瘦身;如果没有数据压缩技术,市场上的数码录音笔就只能记录不到 20 分钟的语音;如果没有数据压缩技术,从 Internet 上下载一部电影也许要花半年的时间……可是这一切究竟是如何实现的呢?数据压缩技术又是怎样从无到有发展起来的呢? 一千多年前的中国学者就知道用“班马”这样的缩略语来指代班固和司马迁,这种崇尚简约的风俗一直延续到了今天的 Internet 时代:当我们在 BBS 上用“ 7456 ”代表“气死我了”,或是用“ B4 ”代表“ Before ”的时候,我们至少应该知道,这其实就是一种最简单的数据压缩呀。
严格意义上的数据压缩起源于人们对概率的认识。当我们对文字信息进行编码时,如果为出现概率较高的字母赋予较短的编码,为出现概率较低的字母赋予较长的编码,总的编码长度就能缩短不少。远在计算机出现之前,著名的 Morse 电码就已经成功地实践了这一准则。在 Morse 码表中,每个字母都对应于一个唯一的点划组合,出现概率最高的字母 e 被编码为一个点“ . ”,而出现概率较低的字母 z 则被编码为“ --.. ”。显然,这可以有效缩短最终的电码长度。
信息论之父 C. E. Shannon 第一次用数学语言阐明了概率与信息冗余度的关系。在 1948 年发表的论文“通信的数学理论( A Mathematical Theory of Communication )”中, Shannon 指出,任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关。 Shannon 借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式。这篇伟大的论文后来被誉为信息论的开山之作,信息熵也奠定了所有数据压缩算法的理论基础。从本质上讲,数据压缩的目的就是要消除信息中的冗余,而信息熵及相关的定理恰恰用数学手段精确地描述了信息冗余的程度。利用信息熵公式,人们可以计算出信息编码的极限,即在一定的概率模型下,无损压缩的编码长度不可能小于信息熵公式给出的结果。
有了完备的理论,接下来的事就是要想办法实现具体的算法,并尽量使算法的输出接近信息熵的极限了。当然,大多数工程技术人员都知道,要将一种理论从数学公式发展成实用技术,就像仅凭一个 E=mc 2 的公式就要去制造核武器一样,并不是一件很容易的事。 设计具体的压缩算法的过程通常更像是一场数学游戏。开发者首先要寻找一种能尽量精确地统计或估计信息中符号出现概率的方法,然后还要设计一套用最短的代码描述每个符号的编码规则。统计学知识对于前一项工作相当有效,迄今为止,人们已经陆续实现了静态模型、半静态模型、自适应模型、 Markov 模型、部分匹配预测模型等概率统计模型。相对而言,编码方法的发展历程更为曲折一些。
1948 年, Shannon 在提出信息熵理论的同时,也给出了一种简单的编码方法—— Shannon 编码。 1952 年, R. M. Fano 又进一步提出了 Fano 编码。这些早期的编码方法揭示了变长编码的基本规律,也确实可以取得一定的压缩效果,但离真正实用的压缩算法还相去甚远。
第一个实用的编码方法是由 D. A. Huffman 在 1952 年的论文“最小冗余度代码的构造方法( A Method for the Construction of Minimum Rendancy Codes )”中提出的。直到今天,许多《数据结构》教材在讨论二叉树时仍要提及这种被后人称为 Huffman 编码的方法。 Huffman 编码在计算机界是如此著名,以至于连编码的发明过程本身也成了人们津津乐道的话题。据说, 1952 年时,年轻的 Huffman 还是麻省理工学院的一名学生,他为了向老师证明自己可以不参加某门功课的期末考试,才设计了这个看似简单,但却影响深远的编码方法。
Huffman 编码效率高,运算速度快,实现方式灵活,从 20 世纪 60 年代至今,在数据压缩领域得到了广泛的应用。例如,早期 UNIX 系统上一个不太为现代人熟知的压缩程序 COMPACT 实际就是 Huffman 0 阶自适应编码的具体实现。 20 世纪 80 年代初, Huffman 编码又出现在 CP/M 和 DOS 系统中,其代表程序叫 SQ 。今天,在许多知名的压缩工具和压缩算法(如 WinRAR 、 gzip 和 JPEG )里,都有 Huffman 编码的身影。不过, Huffman 编码所得的编码长度只是对信息熵计算结果的一种近似,还无法真正逼近信息熵的极限。正因为如此,现代压缩技术通常只将 Huffman 视作最终的编码手段,而非数据压缩算法的全部。
科学家们一直没有放弃向信息熵极限挑战的理想。 1968 年前后, P. Elias 发展了 Shannon 和 Fano 的编码方法,构造出从数学角度看来更为完美的 Shannon-Fano-Elias 编码。沿着这一编码方法的思路, 1976 年, J. Rissanen 提出了一种可以成功地逼近信息熵极限的编码方法——算术编码。 1982 年, Rissanen 和 G. G. Langdon 一起改进了算术编码。之后,人们又将算术编码与 J. G. Cleary 和 I. H. Witten 于 1984 年提出的部分匹配预测模型( PPM )相结合,开发出了压缩效果近乎完美的算法。今天,那些名为 PPMC 、 PPMD 或 PPMZ 并号称压缩效果天下第一的通用压缩算法,实际上全都是这一思路的具体实现。
对于无损压缩而言, PPM 模型与算术编码相结合,已经可以最大程度地逼近信息熵的极限。看起来,压缩技术的发展可以到此为止了。不幸的是,事情往往不像想象中的那样简单:算术编码虽然可以获得最短的编码长度,但其本身的复杂性也使得算术编码的任何具体实现在运行时都慢如蜗牛。即使在摩尔定律大行其道, CPU 速度日新月异的今天,算术编码程序的运行速度也很难满足日常应用的需求。没办法,如果不是后文将要提到的那两个犹太人,我们还不知要到什么时候才能用上 WinZIP 这样方便实用的压缩工具呢。 逆向思维永远是科学和技术领域里出奇制胜的法宝。就在大多数人绞尽脑汁想改进 Huffman 或算术编码,以获得一种兼顾了运行速度和压缩效果的“完美”编码的时候,两个聪明的犹太人 J. Ziv 和 A. Lempel 独辟蹊径,完全脱离 Huffman 及算术编码的设计思路,创造出了一系列比 Huffman 编码更有效,比算术编码更快捷的压缩算法。我们通常用这两个犹太人姓氏的缩写,将这些算法统称为 LZ 系列算法。
按照时间顺序, LZ 系列算法的发展历程大致是: Ziv 和 Lempel 于 1977 年发表题为“顺序数据压缩的一个通用算法( A Universal Algorithm for Sequential Data Compression )”的论文,论文中描述的算法被后人称为 LZ77 算法。 1978 年,二人又发表了该论文的续篇“通过可变比率编码的独立序列的压缩( Compression of Indivial Sequences via Variable Rate Coding )”,描述了后来被命名为 LZ78 的压缩算法。 1984 年, T. A. Welch 发表了名为“高性能数据压缩技术( A Technique for High Performance Data Compression )”的论文,描述了他在 Sperry 研究中心(该研究中心后来并入了 Unisys 公司)的研究成果,这是 LZ78 算法的一个变种,也就是后来非常有名的 LZW 算法。 1990 年后, T. C. Bell 等人又陆续提出了许多 LZ 系列算法的变体或改进版本。
说实话, LZ 系列算法的思路并不新鲜,其中既没有高深的理论背景,也没有复杂的数学公式,它们只是简单地延续了千百年来人们对字典的追崇和喜好,并用一种极为巧妙的方式将字典技术应用于通用数据压缩领域。通俗地说,当你用字典中的页码和行号代替文章中每个单词的时候,你实际上已经掌握了 LZ 系列算法的真谛。这种基于字典模型的思路在表面上虽然和 Shannon 、 Huffman 等人开创的统计学方法大相径庭,但在效果上一样可以逼近信息熵的极限。而且,可以从理论上证明, LZ 系列算法在本质上仍然符合信息熵的基本规律。
LZ 系列算法的优越性很快就在数据压缩领域里体现 了 出来,使用 LZ 系列算法的工具软件数量呈爆炸式增长。 UNIX 系统上最先出现了使用 LZW 算法的 compress 程序,该程序很快成为了 UNIX 世界的压缩标准。紧随其后的是 MS-DOS 环境下的 ARC 程序,以及 PKWare 、 PKARC 等仿制品。 20 世纪 80 年代,著名的压缩工具 LHarc 和 ARJ 则是 LZ77 算法的杰出代表。
今天, LZ77 、 LZ78 、 LZW 算法以及它们的各种变体几乎垄断了整个通用数据压缩领域,我们熟悉的 PKZIP 、 WinZIP 、 WinRAR 、 gzip 等压缩工具以及 ZIP 、 GIF 、 PNG 等文件格式都是 LZ 系列算法的受益者,甚至连 PGP 这样的加密文件格式也选择了 LZ 系列算法作为其数据压缩的标准。
没有谁能否认两位犹太人对数据压缩技术的贡献。我想强调的只是,在工程技术领域,片面追求理论上的完美往往只会事倍功半,如果大家能像 Ziv 和 Lempel 那样,经常换个角度来思考问题,没准儿你我就能发明一种新的算法,就能在技术方展史上扬名立万呢。 LZ 系列算法基本解决了通用数据压缩中兼顾速度与压缩效果的难题。但是,数据压缩领域里还有另一片更为广阔的天地等待着我们去探索。 Shannon 的信息论告诉我们,对信息的先验知识越多,我们就可以把信息压缩得越小。换句话说,如果压缩算法的设计目标不是任意的数据源,而是基本属性已知的特种数据,压缩的效果就会进一步提高。这提醒我们,在发展通用压缩算法之余,还必须认真研究针对各种特殊数据的专用压缩算法。比方说,在今天的数码生活中,遍布于数码相机、数码录音笔、数码随身听、数码摄像机等各种数字设备中的图像、音频、视频信息,就必须经过有效的压缩才能在硬盘上存储或是通过 USB 电缆传输。实际上,多媒体信息的压缩一直是数据压缩领域里的重要课题,其中的每一个分支都有可能主导未来的某个技术潮流,并为数码产品、通信设备和应用软件开发商带来无限的商机。
让我们先从图像数据的压缩讲起。通常所说的图像可以被分为二值图像、灰度图像、彩色图像等不同的类型。每一类图像的压缩方法也不尽相同。
传真技术的发明和广泛使用促进了二值图像压缩算法的飞速发展。 CCITT (国际电报电话咨询委员会,是国际电信联盟 ITU 下属的一个机构)针对传真类应用建立了一系列图像压缩标准,专用于压缩和传递二值图像。这些标准大致包括 20 世纪 70 年代后期的 CCITT Group 1 和 Group 2 , 1980 年的 CCITT Group 3 ,以及 1984 年的 CCITT Group 4 。为了适应不同类型的传真图像,这些标准所用的编码方法包括了一维的 MH 编码和二维的 MR 编码,其中使用了行程编码( RLE )和 Huffman 编码等技术。今天,我们在办公室或家里收发传真时,使用的大多是 CCITT Group 3 压缩标准,一些基于数字网络的传真设备和存放二值图像的 TIFF 文件则使用了 CCITT Group 4 压缩标准。 1993 年, CCITT 和 ISO (国际标准化组织)共同成立的二值图像联合专家组( Joint Bi-level Image Experts Group , JBIG )又将二值图像的压缩进一步发展为更加通用的 JBIG 标准。
实际上,对于二值图像和非连续的灰度、彩色图像而言,包括 LZ 系列算法在内的许多通用压缩算法都能获得很好的压缩效果。例如,诞生于 1987 年的 GIF 图像文件格式使用的是 LZW 压缩算法, 1995 年出现的 PNG 格式比 GIF 格式更加完善,它选择了 LZ77 算法的变体 zlib 来压缩图像数据。此外,利用前面提到过的 Huffman 编码、算术编码以及 PPM 模型,人们事实上已经构造出了许多行之有效的图像压缩算法。
但是,对于生活中更加常见的,像素值在空间上连续变化的灰度或彩色图像(比如数码照片),通用压缩算法的优势就不那么明显了。幸运的是,科学家们发现,如果在压缩这一类图像数据时允许改变一些不太重要的像素值,或者说允许损失一些精度(在压缩通用数据时,我们绝不会容忍任何精度上的损失,但在压缩和显示一幅数码照片时,如果一片树林里某些树叶的颜色稍微变深了一些,看照片的人通常是察觉不到的),我们就有可能在压缩效果上获得突破性的进展。这一思想在数据压缩领域具有革命性的地位:通过在用户的忍耐范围内损失一些精度,我们可以把图像(也包括音频和视频)压缩到原大小的十分之一、百分之一甚至千分之一,这远远超出了通用压缩算法的能力极限。也许,这和生活中常说的“退一步海阔天空”的道理有异曲同工之妙吧。
这种允许精度损失的压缩也被称为有损压缩。在图像压缩领域,著名的 JPEG 标准是有损压缩算法中的经典。 JPEG 标准由静态图像联合专家组( Joint Photographic Experts Group , JPEG )于 1986 年开始制定, 1994 年后成为国际标准。 JPEG 以离散余弦变换( DCT )为核心算法,通过调整质量系数控制图像的精度和大小。对于照片等连续变化的灰度或彩色图像, JPEG 在保证图像质量的前提下,一般可以将图像压缩到原大小的十分之一到二十分之一。如果不考虑图像质量, JPEG 甚至可以将图像压缩到“无限小”。
JPEG 标准的最新进展是 1996 年开始制定, 2001 年正式成为国际标准的 JPEG 2000 。与 JPEG 相比, JPEG 2000 作了大幅改进,其中最重要的是用离散小波变换( DWT )替代了 JPEG 标准中的离散余弦变换。在文件大小相同的情况下, JPEG 2000 压缩的图像比 JPEG 质量更高,精度损失更小。作为一个新标准, JPEG 2000 暂时还没有得到广泛的应用,不过包括数码相机制造商在内的许多企业都对其应用前景表示乐观, JPEG 2000 在图像压缩领域里大显身手的那一天应该不会特别遥远。
JPEG 标准中通过损失精度来换取压缩效果的设计思想直接影响了视频数据的压缩技术。 CCITT 于 1988 年制定了电视电话和会议电视的 H.261 建议草案。 H.261 的基本思路是使用类似 JPEG 标准的算法压缩视频流中的每一帧图像,同时采用运动补偿的帧间预测来消除视频流在时间维度上的冗余信息。在此基础上, 1993 年, ISO 通过了动态图像专家组( Moving Picture Experts Group , MPEG )提出的 MPEG-1 标准。 MPEG-1 可以对普通质量的视频数据进行有效编码。我们现在看到的大多数 VCD 影碟,就是使用 MPEG-1 标准来压缩视频数据的。
为了支持更清晰的视频图像,特别是支持数字电视等高端应用, ISO 于 1994 年提出了新的 MPEG-2 标准(相当于 CCITT 的 H.262 标准)。 MPEG-2 对图像质量作了分级处理,可以适应普通电视节目、会议电视、高清晰数字电视等不同质量的视频应用。在我们的生活中,可以提供高清晰画面的 DVD 影碟所采用的正是 MPEG-2 标准。
Internet 的发展对视频压缩提出了更高的要求。在内容交互、对象编辑、随机存取等新需求的刺激下, ISO 于 1999 年通过了 MPEG-4 标准(相当于 CCITT 的 H.263 和 H.263+ 标准)。 MPEG-4 标准拥有更高的压缩比率,支持并发数据流的编码、基于内容的交互操作、增强的时间域随机存取、容错、基于内容的尺度可变性等先进特性。 Internet 上新兴的 DivX 和 XviD 文件格式就是采用 MPEG-4 标准来压缩视频数据的,它们可以用更小的存储空间或通信带宽提供与 DVD 不相上下的高清晰视频,这使我们在 Internet 上发布或下载数字电影的梦想成为了现实。
就像视频压缩和电视产业的发展密不可分一样,音频数据的压缩技术最早也是由无线电广播、语音通信等领域里的技术人员发展起来的。这其中又以语音编码和压缩技术的研究最为活跃。自从 1939 年 H. Dudley 发明声码器以来,人们陆续发明了脉冲编码调制( PCM )、线性预测( LPC )、矢量量化( VQ )、自适应变换编码( ATC )、子带编码( SBC )等语音分析与处理技术。这些语音技术在采集语音特征,获取数字信号的同时,通常也可以起到降低信息冗余度的作用。像图像压缩领域里的 JPEG 一样,为获得更高的编码效率,大多数语音编码技术都允许一定程度的精度损失。而且,为了更好地用二进制数据存储或传送语音信号,这些语音编码技术在将语音信号转换为数字信息之后又总会用 Huffman 编码、算术编码等通用压缩算法进一步减少数据流中的冗余信息。
对于电脑和数字电器(如数码录音笔、数码随身听)中存储的普通音频信息,我们最常使用的压缩方法主要是 MPEG 系列中的音频压缩标准。例如, MPEG-1 标准提供了 Layer I 、 Layer II 和 Layer III 共三种可选的音频压缩标准, MPEG-2 又进一步引入了 AAC ( Advanced Audio Coding )音频压缩标准, MPEG-4 标准中的音频部分则同时支持合成声音编码和自然声音编码等不同类型的应用。在这许多音频压缩标准中,声名最为显赫的恐怕要数 MPEG-1 Layer III ,也就是我们常说的 MP3 音频压缩标准了。从 MP3 播放器到 MP3 手机,从硬盘上堆积如山的 MP3 文件到 Internet 上版权纠纷不断的 MP3 下载, MP3 早已超出了数据压缩技术的范畴,而成了一种时尚文化的象征了。
很显然,在多媒体信息日益成为主流信息形态的数字化时代里,数据压缩技术特别是专用于图像、音频、视频的数据压缩技术还有相当大的发展空间——毕竟,人们对信息数量和信息质量的追求是永无止境的。 从信息熵到算术编码,从犹太人到 WinRAR ,从 JPEG 到 MP3 ,数据压缩技术的发展史就像是一个写满了“创新”、“挑战”、“突破”和“变革”的羊皮卷轴。也许,我们在这里不厌其烦地罗列年代、人物、标准和文献,其目的只是要告诉大家,前人的成果只不过是后人有望超越的目标而已,谁知道在未来的几年里,还会出现几个 Shannon ,几个 Huffman 呢?
谈到未来,我们还可以补充一些与数据压缩技术的发展趋势有关的话题。
1994年, M. Burrows 和 D. J. Wheeler 共同提出了一种全新的通用数据压缩算法。这种算法的核心思想是对字符串轮转后得到的字符矩阵进行排序和变换,类似的变换算法被称为 Burrows-Wheeler 变换,简称 BWT 。与 Ziv 和 Lempel 另辟蹊径的做法如出一辙, Burrows 和 Wheeler 设计的 BWT 算法与以往所有通用压缩算法的设计思路都迥然不同。如今, BWT 算法在开放源码的压缩工具 bzip 中获得了巨大的成功, bzip 对于文本文件的压缩效果要远好于使用 LZ 系列算法的工具软件。这至少可以表明,即便在日趋成熟的通用数据压缩领域,只要能在思路和技术上不断创新,我们仍然可以找到新的突破口。
分形压缩技术是图像压缩领域近几年来的一个热点。这一技术起源于 B. Mandelbrot 于 1977 年创建的分形几何学。 M. Barnsley 在 20 世纪 80 年代后期为分形压缩奠定了理论基础。从 20 世纪 90 年代开始, A. Jacquin 等人陆续提出了许多实验性的分形压缩算法。今天,很多人相信,分形压缩是图像压缩领域里最有潜力的一种技术体系,但也有很多人对此不屑一顾。无论其前景如何,分形压缩技术的研究与发展都提示我们,在经过了几十年的高速发展之后,也许,我们需要一种新的理论,或是几种更有效的数学模型,以支撑和推动数据压缩技术继续向前跃进。
人工智能是另一个可能对数据压缩的未来产生重大影响的关键词。既然 Shannon 认为,信息能否被压缩以及能在多大程度上被压缩与信息的不确定性有直接关系,假设人工智能技术在某一天成熟起来,假设计算机可以像人一样根据已知的少量上下文猜测后续的信息,那么,将信息压缩到原大小的万分之一乃至十万分之一,恐怕就不再是天方夜谭了。
回顾历史之后,人们总喜欢畅想一下未来。但未来终究是未来,如果仅凭你我几句话就可以理清未来的技术发展趋势,那技术创新的工作岂不就索然无味了吗?依我说,未来并不重要,重要的是,赶快到 Internet 上下载几部大片,然后躺在沙发里,好好享受一下数据压缩为我们带来的无限快乐吧。
