㈠ 笛卡尔是谁,他的基本贡献是什么
笛卡尔是伟大的哲学家、物理学家、数学家、生理学家。解析几何的创始人。笛卡儿是欧洲近代资产阶级哲学的奠基人之一。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。
㈡ 笛卡尔受到什么动物的启发发明了平面直角坐标系
传说:
有一天,笛卡尔(Descartes 1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条直线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a, b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。
㈢ 笛卡尔提出的方法论原则是什么
笛卡儿在方法论中指出,研究问题的原则:
1. 不接受任何我自己不清楚的真理,就是说要尽量避免鲁莽和偏见,只能是根据自己的判断非常清楚和确定,没有任何值得怀疑的地方的真理。就是说只要没有经过自己切身体会的问题,不管有什么权威的结论,都可以怀疑。这就是著名的“怀疑一切”理论。例如亚里士多德曾下结论说,女人比男人
笛卡儿
笛卡儿
少两颗牙齿。但事实并非如此。
2. 要研究的复杂问题,尽量分解为多个比较简单的小问题,一个一个地分开解决。
3. 小问题从简单到复杂排列,先从容易解决的问题着手。
4. 问题解决后,再综合起来检验,看是否完全,是否将问题彻底解决了。
在1960年代以前,西方科学研究的方法,从机械到人体解剖的研究,基本是按照笛卡儿的方法论进行的,对西方近代科学的飞速发展,起了相当大的促进作用。但也有其一定的缺陷,如人体功能,只是各部位机械的综合,而对其互相之间的作用则研究不透。直到阿波罗号登月工程的出现,科学家们才发现,有的复杂问题无法分解,必须以复杂的方法来对待,因此导致系统工程的出现,方法论的方法才第一次被综合性的方法所取代。系统工程的出现对许多大规模的西方传统科学起了相当大的促进作用,如环境科学,气象学,生物学,人工智能等等。
笛卡儿在方法论中还第一次提出“我思故我在”的名言,第一次引入笛卡儿坐标系。对牛顿和莱布尼茨发明微积分理论有很大的作用。
㈣ 笛卡尔做什么梦发现了直角坐标系
笛卡尔和笛卡尔坐标系的产生 据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找出一点P与之对应,同样道理,用一组数(x、y)可以表示平面上的一个点,平面上的一个点也可以有用一组两个有顺序的数来表示,这就是坐标系的雏形。
直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念用数来表示,几何图形也可以用代数形式来表示。由此笛卡尔在创立直角坐标系的基础上,创造了用代数的方法来研究几何图形的数学分支——解析几何, 他大胆设想:如果把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特征的点组成的。举一个例子来说,我们可以把圆看作是动点到定点距离相等的点的轨迹,如果我们再把点看作是组成几何图形的基本元素,把数看作是组成方程的解,于是代数和几何就这样合为一家人了。
参考:http://ke..com/view/968758.htm
㈤ 笛卡尔坐标系的发明是必然的吗
二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为x-轴和y-轴;两个坐标轴的相交点,称为原点,通常标记为O,既有“零”的意思,又是英语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为xy-平面,又称为笛卡尔平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(见右图),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系,称为二维的右手坐标系,或右手系。如果把这个右手系画在一张透明纸片上,则在平面内无论怎样旋转它,所得到的都叫做右手系;但如果把纸片翻转,其背面看到的坐标系则称为“左手系”。这和照镜子时左右对掉的性质有关。为了要知道坐标轴的任何一点,离原点的距离。假设,我们可以刻画数值于坐标轴。那么,从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是刻画的次数,也是离原点的正值整数距离;同样地,背着坐标轴所指的方向,我们也可以刻画出离原点的负值整数距离。称x-轴刻画的数值为x-坐标,又称横坐标,称y-轴刻画的数值为y-坐标,又称纵坐标。虽然,在这里,这两个坐标都是整数,对应于坐标轴特定的点。按照比例,我们可以推广至实数坐标和其所对应的坐标轴的每一个点。这两个坐标就是直角坐标系的直角坐标,标记为。任何一个点P在平面的位置,可以用直角坐标来独特表达。只要从点P画一条垂直于x-轴的直线。从这条直线与x-轴的相交点,可以找到点P的x-坐标。同样地,可以找到点P的y-坐标。这样,我们可以得到点P的直角坐标。直角坐标系也可以推广至三维空间(3dimension)与高维空间(higherdimension)。直角坐标系的两个坐标轴将平面分成了四个部分,称为象限,分别用罗马数字编号为Ⅰ,Ⅱ,Ⅲ,Ⅳ。依照惯例,象限Ⅰ的两个坐标都是正值;象限Ⅱ的x-坐标是负值,y-坐标是正值;象限Ⅲ的两个坐标都是负值的;象限Ⅳ的x-坐标是正值,y-坐标是负值。所以,象限的编号是按照逆时针方向,从象限Ⅰ编到象限Ⅳ。
㈥ 法国数学家笛卡尔发明了什么
笛卡尔[1596—1650](又译笛卡儿)出生于法国都兰,他洗礼的时候取名“热奈”,表示“再生”的意思.当时一场肺炎的爆发夺去了他母亲的生命,但他死里逃生,好歹活了下来.
他最初学习法律,曾在几支军队里任职.从1620到1628年间,笛卡尔遍游欧洲,最后在荷兰定居.虽然他发明了笛卡尔坐标— 一种绘制图形的方法 —和若干方程式,并研究了惯性,但他最为知名的还是他的哲学.笛卡尔以怀疑一切为出发点,只相信“我思,故我在”.他敦促人们利用自己的感官去确定并了解周围的世界,不要简单地依赖过去的知识.这是一种激进派的观念,它引出了一个叫做启蒙运动的历史阶段,这期间科学得到了长足的发展.1649年,笛卡尔移居瑞典,并逝于该地.[显著成就:在17世纪开现代哲学之先河.]
你可以在网络上搜“笛卡尔”
㈦ 笛卡尔是如何发现/发明的解析几何的
1637年,笛卡尔发表了《几何学》,创立了平面直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点。他进而又创立了解析几何学,据说,笛卡尔曾在一个晚上做了三个奇特的梦。第一个梦是,笛卡尔被风暴吹到一个风力吹不到的地方;第二个梦是他得到了打开自然宝库的钥匙;第三个梦是他开辟了通向真正知识的道路。这三个奇特的梦增强了他创立新学说的信心。这一天是笛卡尔思想上的一个转折点,也有些学者把这一天定为解析几何的诞生日。
㈧ 数对是怎么发明的
阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字。以后,以讹传讹,世界各地都认同了这个说法。
阿拉伯数字是古代印度人在生产和实践中逐步创造出来的。在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。它的特点是从“1”到“9”每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现“0”(零)的符号。“0”这个数字是到了笈多王朝(公元320—550年)时期才出现的。公元四世纪完成的数学著作《太阳手册》中,已使用“0”的符号,当时只是实心小圆点“·”。后来,小圆点演化成为小圆圈“0”。这样,一套从“1”到“0”的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。
㈨ 数对是怎么发明的
数对是笛卡尔发明的,有一次,他生病了,躺在床上,发现墙角有一只蜘蛛。笛卡尔便把蜘蛛的位置作为开始,标为(0,0),便用数对表示出了蜘蛛网上的所有交叉点。
有了数对,我们就能很容易的表示出某一点的位置。我想,数对不仅能表示二维空间(长,宽)还可以表示三维空间(长,宽,高)或四维空间(长,宽,高,时间),世界上的所有点都可以用数对表示,那么数对将给我们的生活带来极大的方便。