① 数学极限的由来
高等数学中,极限是一个重要的概念。
极限可分为数列极限和函数极限,分别定义如下。
首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.14159265......。
数列极限:
定义:设是一数列,如果存在常数a,当n无限增大时,an无限接近(或趋近)于a,则称数列收敛,a称为的极限,或称数列收敛于a,记为liman=a。或:an→a,当n→∞。
函数极限:
设f为定义在[a,+∞)上的函数,A为定数。若对任给的ε>0,存在正数M(>=a),使得当x>M时有:
|f(x)-A|<ε,
则称函数f当x趋于+∞时以A为极限,记作
lim f(x) = A 或 f(x)->A(x->+∞)
有关公式
lim(f(x)+g(x))=limf(x)+limg(x)
lim(f(x)-g(x))=limf(x)-limg(x)
lim(f(x)*g(x))=limf(x)*limg(x)
lim(f(x)/g(x))=limf(x)/limg(x) limg(x)不等于0
lim(f(x))^n=(limf(x))^n
以上limf(x) limg(x)都存在时才成立
========================================================================
举两个例子说明一下
一、0.999999……=1?
谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。
二、“无理数”算是什么数?
我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。
结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。
类似的根源还在物理中(实际上,从科学发展的历程来看,物理可能才是真正的发展动力),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。
真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。
最后再唠叨一句,所谓“定义”极限,本质上就是给“无限接近”提供一个合乎逻辑的判定方法,和一个规范的描述格式。这样,我们的各种说法,诸如“我们可以根据需要写出根号2的任一接近程度的近似值”,就有了建立在坚实的逻辑基础之上的意义。(此前,它们更多的只是被人“本能的”承认而已。)
② 谁最早发现了单侧极限(单侧极限的简史)
对!没错!1、无穷大是极限的一种;2、单侧极限也是极限的一种,这种极限的特点就是单侧有极限,另一侧极限不存在;3、这种极限的麻烦之处是,此处不可导;好处是可积;4、此种极限对
③ 创立极限理论的人是
微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互逆关系 。最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追溯到古希腊的阿基米德都作出了各自的贡献。公元前7世纪老庄哲学中就有无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。刘徽公元263年首创的割圆术求圆面积和方锥体积,求得圆周率约等于3 .1416,他的极限思想和无穷小方法,是世界古代极限思想的深刻体现。
牛顿和莱布尼茨分别是自己独立研究微积分,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼茨早10年左右,但是正式公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上说法不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。
直到 19 世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,後来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础,才使微积分进一步发展开来。
④ 王者荣耀极限换装是谁发明的
好像是以为职业大神 不过第一个极限换装的是梦泪 距爆料梦泪的极限换装是练习一个月多 才练出来的
⑤ 极限运动包括哪些是从哪个国家起源的
极限运动是结合了一些难度较高、挑战性较大之组合运动项目,例如:速降、滑板、极限单车、攀岩、雪板、空中冲浪、街道疾降、跑酷、极限越野、极限滑水、极限轮滑,漂移板等等都是极限运动项目。
极限运动多数起源于欧美国家,例如极限运动中的轮滑是1863年由美国人詹姆士普利普顿发明,后迅速传入欧洲和世界各地,自行车越野是美国70年代中后期兴起,还有滑水板是本世纪初由一位叫拉尔森.萨缪尔森的美国人在滑雪板的基础上试制出来的,多数都是起源于欧美国家。

(5)谁发明极限扩展阅读:
中国极限运动:
CX—中国的极限运动,CX的全称“CHINA X-GAME”,由中国极限运动协会首届于1999年举办,是中国极限运动的权威赛事,是极限运动专业人才以及广大爱好者的嘉年华盛会。
极限运动是多项成型运动项目以及游戏、生活和工作中的各种动作演变来,参与人群以年轻人为主的高难度观赏性体育运动。人类在与自然的融合过程中,借助于现代高科技手段,最大限度地发挥自我身心潜能,向自身挑战的娱乐体育运动。
极限运动带有冒险性和刺激性,除了追求竞技体育超越自我生理极限“更高、更快、更强”的精神外,更强调参与、娱乐和勇敢精神,追求在跨越心理障碍时所获得的愉悦感和成就感。
⑥ 数学极限的起源与发展历史
高等数学中,极限是一个重要的概念。
极限可分为数列极限和函数极限,分别定义如下。
首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.14159265......。
数列极限:
定义:设是一数列,如果存在常数a,当n无限增大时,an无限接近(或趋近)于a,则称数列收敛,a称为的极限,或称数列收敛于a,记为liman=a。或:an→a,当n→∞。
函数极限:
设f为定义在[a,+∞)上的函数,A为定数。若对任给的ε>0,存在正数M(>=a),使得当x>M时有:
|f(x)-A|<ε,
则称函数f当x趋于+∞时以A为极限,记作
lim f(x) = A 或 f(x)->A(x->+∞)
有关公式
lim(f(x)+g(x))=limf(x)+limg(x)
lim(f(x)-g(x))=limf(x)-limg(x)
lim(f(x)*g(x))=limf(x)*limg(x)
lim(f(x)/g(x))=limf(x)/limg(x) limg(x)不等于0
lim(f(x))^n=(limf(x))^n
以上limf(x) limg(x)都存在时才成立
========================================================================
举两个例子说明一下
一、0.999999……=1?
谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。
二、“无理数”算是什么数?
我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。
结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。
类似的根源还在物理中(实际上,从科学发展的历程来看,物理可能才是真正的发展动力),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。
真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。
最后再唠叨一句,所谓“定义”极限,本质上就是给“无限接近”提供一个合乎逻辑的判定方法,和一个规范的描述格式。这样,我们的各种说法,诸如“我们可以根据需要写出根号2的任一接近程度的近似值”,就有了建立在坚实的逻辑基础之上的意义。(此前,它们更多的只是被人“本能的”承认而已。)
⑦ 是谁发明的高数
高数分很多分支。微积分:由牛顿与莱布尼茨首先创造并加以应用,拉格朗日等人将微积分进一步推进。直到法国数学家柯西首先将微积分的一系列结论建立在严格的极限理论上,维尔斯特拉斯给出了极限数学定义式
⑧ 微积分的两个重要的极限公式是谁发明的
这个不存在是谁发明的,肯定是在运用过程中,大家发现了这个东西很重要,所以就总结出来的数学规律。
⑨ 极限理论 是谁提出的
你好撒 极限理论是由柯西完善的
不过是有牛顿和莱布尼茨伴随微积分提出而提出的 当时没有解释趋近于0为什么不约掉这样的问题····
⑩ 数学里面极限的定义是由谁发明的,它来由的历史是什么样的,请教! 别乱粘贴~
这种思想由来已久,现代意义上的极限是由魏尔斯特拉斯给出的。
极限主要是作为微积分的理论基础存在的。