导航:首页 > 创造发明 > 我国古代数学的许多发明

我国古代数学的许多发明

发布时间:2021-03-20 23:25:16

❶ 我国古代还有哪些发明

孔明灯、龙骨水车、地动仪、纸、铁犁等。

1、孔明灯

孔明灯又叫天灯,俗称许愿灯,又称祈天灯。是一种古老的中国手工艺品,在古代多做军事用途。现代人放孔明灯多作为祈福之用。男女老少亲手写下祝福的心愿,象征丰收成功,幸福年年。一般在元宵节,中秋节等重大节日施放。

相传五代(公元907-960)时,有一名叫莘七娘的女子,随丈夫在福建打仗时,她曾用竹篾扎成方架,糊上纸,做成大灯,底盘上放置燃烧着的松脂,灯就靠热空气飞上天空,用作军事联络信号。

这种松脂灯,在四川称孔明灯。相传这种灯笼的外形像诸葛亮戴的帽子,因而得名孔明灯。

另一种说法是相传是由三国时的诸葛亮所发明。当年,诸葛亮被围困于平阳,无法派兵出城求救。孔明算准风向,制成会飘浮的纸灯笼,系上求救的讯息,其后果然脱险,于是后世就称这种灯笼为孔明灯。

2、龙骨水车

龙骨水车亦称“翻车”、“踏车”、“水车”,省称“龙骨”。汉族历史上的灌溉农具,流行于我国大部分地区。这种提水设施历史悠久。因为其形状犹如龙骨,故名“龙骨水车”。

其结构是以木板为槽,尾部浸入水流中,有小轮轴一。另一端有小轮轴,固定于堤岸的木架上。用时踩动拐木,使大轮轴转动,带动槽内板叶刮水上行,倾灌于地势较高的田中。

后世又有利用流水作动力的水转龙骨车,利用牛拉使齿轮转动的牛拉翻车。以及利用风力转动的风转翻车。广东等地用手摇的较轻便,施于田间水沟,称“手摇拔车”。

3、地动仪

地动仪是中国东汉科学家张衡创造的传世杰作。张衡所处的东汉时代,地震比较频繁。张衡对地震有不少亲身体验,为了掌握全国地震动态,他经过长年研究,终于在阳嘉元年(公元132年)发明了候风地动仪,这也是世界上的第一架地动仪。

地动仪有八个方位,每个方位上均有口含龙珠的龙头,在每条龙头的下方都有一只蟾蜍与其对应。任何一方如有地震发生,该方向龙口所含龙珠即落入蟾蜍口中,由此便可测出发生地震的方向。

汉顺帝阳嘉三年十一月壬寅(公元134年12月13日),地动仪的一个龙机突然发动,吐出了铜球,掉进了那个蟾蜍的嘴里。

当时在京师(洛阳)的人们却丝毫没有感觉到地震的迹象,于是有人开始议论纷纷,责怪地动仪不灵验。

没过几天,陇西(今甘肃省天水地区)有人快马来报,证实那里前几天确实发生了地震,于是人们开始对张衡的高超技术极为信服。陇西距洛阳有一千多里,地动仪标示无误,说明它的测震灵敏度是比较高的。

但由于历史久远张衡地动仪已经失传,只留下一百多字的文字记载。

4、纸

纸,用植物纤维制造,能任意折叠用来书写的片状物。纸是书写、印刷的载体,也可以作为包装、卫生等其他用途,如打印纸、复写纸、卫生纸、面纸等等。纤维无规则交叉排列的纸发明源于中国。

最早的纸在2200年前,西汉初期已有了纸,但还是很粗糙,不被广泛应用。公元105年,东汉蔡伦改进后,被认为是现代造纸术的鼻祖。

华夏殷商时期,发明了文字,开始用甲骨作为书写材料,春秋时期又发现和利用竹片和木片以及缣帛作为书写材料。但由于缣帛太昂贵,竹片太笨重,于是便产生了纸。

中国古代四大发明之一 ,造纸术与指南针,火药,印刷术一起,给中国古代文化的繁荣提供了物质技术的基础。纸的发明结束了古代简牍繁复的历史,大大地促进了文化的传播与发展。

甘肃天水放马滩出土的西汉绘有地图的纸,是目前世界上发现最早的纸浆纸。

5、铁犁

铁犁最早出现在中国的春秋战国时期。河北易县燕下都遗址和河南辉县都出土过战国时期的铁犁铧。铁犁铧的发明是一个了不起的成就,它标志着人类社会发展的新时期,也标志着人类改造自然的斗争进入一个新的阶段。

汉代的农具铁犁已有犁壁,能起翻土和碎土的作用。当铁犁在17世纪传入荷兰以后,引发了欧洲的农业革命。

参考资料来源:网络——孔明灯

参考资料来源:网络——龙骨水车

参考资料来源:网络——纸

参考资料来源:网络——铁犁

参考资料来源:网络——地动仪

❷ 中国古代的高等数学成就

《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。

《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。

中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。

赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”。他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。另外,《海岛算经》也是刘徽编撰的一部数学论著。

南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。

祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。

隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。

公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。

从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。

贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。

秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。

李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。

公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。

公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。

14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。

明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。

由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》[2卷]、《割圆八线表》[6卷]和罗雅谷的《测量全义》[10卷]是介绍西方三角学的著作。

❸ 中国古代伟大数学家及数学发明

中国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。

例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。

开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。

从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。

《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。

这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。

对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。

《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书·艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。

从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。

《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足”(也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。

《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。

《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。

《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书·律历志》中(参见本书第101页)。

《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。

中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。

特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括:

秦九韶著的《数书九章》(公元1247年);

李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年);

杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年),

朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。

《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。

宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。

宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。

宋元以后,明清时期也有很多算书。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了。特别是在明末清初以后的许多算书中,有 不少是介绍西方数学的。这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程。

中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了。我们深信,经过努力,中国数学一定能迎头赶上世界

❹ 数学家发明了什么(中国)

法国:1642年法国的布莱斯·帕斯卡钧发明计算器来帮助收税员摆脱枯燥乏味的计算工作,但无人问津,被认为太复杂

德国:1671年德国的戈特弗里德·威廉·莱布尼兹发明机械演算机,用于加、减、乘、除 早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”。 《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。 南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。 祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。 隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。 公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。 从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。 秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。 14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。 明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。 由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》﹝2卷﹞、《割圆八线表》﹝6卷﹞和罗雅谷的《测量全义》﹝10卷﹞是介绍西方三角学的著作。

❺ 中国古代发明的数学

南朝的祖冲之利用刘微的割图术更精确地算出了π——3.1415926〈π〈3.1415927
刘微 数学 225 ~ 295年 割图术 刘微--魏晋时期的刘微,发明了割图术的方法,他取л值3.14。他还发明了介线性方程组的新分法。提出了不定方程问题,建立了等差级数前几项和公式。刘微应和欧几里德、阿基米德相提并论。 朱世杰数学 元代 《四元玉鉴》 朱世杰--中国元代数学家。1299 年编撰成中国第一本算学启蒙,从四则运算到天元术,形成了较完整的体系。1303年,他又写成了 《四元玉鉴》,把天元术推广为“四元术”,这是一种高次方程的解法(最高可包括4个未知数)。欧洲到 1775 年才提出同样的解法 ——消元法。美国科学史家萨顿评价他所著的《四元玉鉴》是整个世界中最杰出的数学著作之一。
秦九韶数学 1202~1247 创叫爷爷一天一iiygjhgjjyhj立解一次同余式的“大 衍求一术”和求高次方程数值解的正负开方术 秦九韶—— 1202~1247 年,中国数学家。写有《数书九章》。李治数学 测园海镜 李治——中国数学家,著有“测园海镜”是中国第一本系统改述“天元术”的巨书。
孙子 三国时期孙子算经孙子—— 300 年,乘余定理的起源一题为“物不知数”,写了“孙子算经”一书系统论述了筹算记数制。

❻ 我国古代有哪些发明

中国古代有这些发明:
东汉蔡伦改进造纸术

战国鲁班夫人发明雨伞

战国鲁班发明云梯、冲车、锯子

战国时已发明司南,是指南针的前身,但何人发明已经无法考证。

古代炼丹术士发明火 药。

三国马钧发明翻车

东汉张衡发明地动仪、候风仪、浑天仪

诸葛亮发明连弩、木牛流马

唐朝出现雕版印刷术

北宋毕升发明活字印刷术

祖冲之发明千里船

西晋时已有计程车

东汉杜太阳风暴——最早发现的太 阳黑 子
有星孛入于北斗——彗星的观测
朔月辛卯 日有食之——日食记录
日月星辰——阴阳合历
世界最古老的星表——石氏星表
现存最早最完整的历法著作——《太初历》
土圭测日影
星陨如雨——流星群的观测
演示天体视运动的仪器——浑天仪
我国最古老的记时仪器——壶漏
大地测量——子午线的测定
历法革命——沈括的《十二气历》
科苑奇葩——郭守敬发明和研制的天文仪器
我国古代最优秀的历法——郭守敬的《授时历》
周公观景——天文台的设置
我国最早的数学专著——《周髀算经》
精推细算——《九章算术》
运筹帷幄——零与筹算
十进制记数法
中国剩余定理——大衍求一术
祖冲之和圆周率
贾宪三角
一元高次方乘——天元术
朱世杰和他的《四元玉鉴》
双假设法——盈不足术
级数与垛积术的应用
中国——算盘的故乡
磁石的魔力——指南针的发明
《墨经》与第一运动定律
被中香炉与常平架
磁偏角和磁倾角
测量工具——游标卡尺
投影 幻灯——走马灯
神秘的倒影
奇异的镜子——透光镜
世界最早的潜望镜
世界最早的人工磁化法——指南鱼
杰出的机械——指南车
火 药的发明
火柴的发明
漆和漆器
China——世界著名的瓷器
石油和天然气
会燃 烧的石头——煤的开发和利用
张衡的地动仪
最早的测风仪
云向西 雨没犁——云的观测和云图集
温度观测仪和降水观测仪
天气预报
古老的物候历
我国最早的水利工程——都江堰
引泾往洛—一郑国渠
贯通南北的水利工程——京杭大运河
我国最早的水位站——涪陵石鱼
我国最早的潮汐图——窦叔蒙《涛时图》
古代地理学名著——《水经注》
青铜时代——铜矿开采
煮海为盐——盐卤开采
最早的植物志—— 《南方草木状》
草木鱼虫鸟兽——动植物分类
举杯邀明月 把酒问青天——制曲和酿酒
山中有玉者木旁枝工垂——植物探矿
贾思勰和《齐民要术》
特色鲜明的《王祯农书》
精耕细作五谷丰登
茶的种植与茶文化
鲁桑百丰绵绵——桑蚕技术
济世之谷——豆类植物的栽培和豆类食品
徐光启的《农政全书》
善其事 利其器——铁犁的发明
蓄力播种机——三角耧
扬场工具——扇车
水利灌溉机械——龙骨水车
两利俱全十倍禾稼——桑基鱼塘
内园分得温汤水二月中旬已进瓜——栽培技术
地下渠道——坎儿井
望齐侯之色——中医的诊断术和治疗术
张仲景的《伤寒杂病论》
神农尝百草——中草药治病
伏羲制九针——针灸疗法
华陀麻醉术——麻沸散
免疫法——种痘术
养生延年——激素的提取
铁的冶炼技术
百炼成钢——多种多样炼钢技术
黄铜和锌的冶炼
中国银——含镍白铜的冶炼和西传
水法冶金——胆铜法
三大铸造技术
粮食加工工具——水碓和水磨
最早记录里程的车辆——记里鼓车
纵横驰骋——蹄铁术与马蹬的发明
鲁班与锯刨伞的发明
巨龙横卧——万里长城
世界第八奇迹——秦兵马俑
巧夺天工——风格独具的桥梁
百千家似围棋局十二街如种菜畦——隋大兴城
宫殿建筑的瑰宝——故宫
最高最占老的重楼式木塔——山西应县木塔
不沉之舟之奥秘——水密隔舱
运河船闸
大风起兮车如飞——风帆和帆车
飞行者的至宝——降落伞
凌波之至宝——舵
高效率的推进工具——橹
航海史上的壮举——郑和下“西洋”
航空模型之始——风筝
天文与地文航海技术
水平旋翼和螺旋桨
“骑士阶层”的大敌——火 药及火 药武器
兵学圣典——《孙子兵法》
战车战船
异彩纷呈的冷兵器
人类文明发展的里程碑——造纸术的发明
雕版印刷术
雕版印刷的最高成就——彩色套印
泥活字印刷技术
木活字印刷术和检字盘
世界上最早的纸币——交子
我国最早的建筑学专著——《营造法式》
嫘祖和原始纺织技术
手摇脚踏纺车
织机和提花机
染料和染色
我国最早的诗歌总集——《诗经》
我国最早的编年体史书——《春秋》
我国第一部纪传体通史——《史记》
我国最早文学理论专著——《文心雕龙》
我国第一部纪事本末体史书——《通鉴纪事本末》
我国古代最大的网络全书——《永乐大典》
我国古代书籍装帧形式
中国最古老的文字——甲骨文
青铜器与金文
秦代标准字体——小篆
今文字的开端——隶书
笔势飞动 直抒性灵——草书
点画萦带 体势流美——行书
结构完美的字体——楷书
我国文献语言学的奠基作——《说文解字》
民族文化中的瑰宝——文房四宝
石窟艺术与敦煌壁画
唐代杰出的艺术品——唐三彩
形式整齐 声调和谐——律诗
婉约豪放说宋词
历史悠久的中国古乐器
朱载堉与“十二平均律”
闻名中外的曾侯乙编钟
我国第一部介绍戏曲作家 作品的专著——《录鬼簿》
生旦净丑——中国的传统戏曲
元曲与关汉卿
中国古代保健体操——五禽戏
中国功夫——武术
中国古代足球——蹴球
古老的棋类运动——中国象棋
奥妙无穷的黑白世界——围棋
造纸为我国古代四大发明之一。
水运仪象台建于北宋末年,由吏部尚书苏颂主持建造,是一座大型天文仪器,是具有世界性影响的中国古代的伟大科技成就。
蚊香的发明可能与古人端午节的卫生习俗及烧香祭祀的习俗有关。
黑 火 药,指南针,印刷术。
人类文明的曙光——火
人类最早的远程武器——弓 箭
人类最早的工具——石器
中医中药对世界最伟大的贡献是其防病治病的实践技术。
中国是数学古国,《九章算术》、《数术九章》是古代数学名著。
中国还是天文学古国,中国是世界上最早有文字记载太阳 黑 子、哈雷彗星、超新星等天象的国家。
在造纸术、指南针、火 药、活字印刷术四大发明,中医中药、10进位值制、赤道坐标系、雕版印刷术新四大发明之外,瓷器、丝绸、金属冶铸、深耕细作等影响世界科技发展的中国古代发明还可以列举出许多。
24节气堪称我国古代第五大发明
在物理学、化学、生物学等方面也出现了许多新的进展。我们的祖先创造了中国古代科学技术繁荣发展的两个黄金时代。

❼ 中国古代的数学成就

《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。

《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。

中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。

赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”。他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。另外,《海岛算经》也是刘徽编撰的一部数学论著。

南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。

祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。

隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。

公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。

从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。

贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。

秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。

李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。

公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。

公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。

14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。

明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。

由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》[2卷]、《割圆八线表》[6卷]和罗雅谷的《测量全义》[10卷]是介绍西方三角学的著作。

❽ 中国古代数学的成就

中国古代数学成就非常突出,有很多项世界之最:

中国是世界上最早采用了十进位制的国家,距今4000年左右的陕西、山东、上海的出土文物中除表示个位的数字外,已经有10、20、30这样的记号,比古埃及早1000多年。

殷商时已经有了四则运算,春秋战国时正整数乘法口诀“九九歌”已形成,从此“九九歌”成为普及数学知识的基础之一,一直延续至今。

在计算工具方面,殷商时就发明了“算筹”,算筹是圆形小竹棍,以后有了骨制、铁制的。以算筹表示数目,有纵、横两种形式,如“2”可表示为“=”或“Ⅱ”。

勾股定理相传是在商代由商高发现,比毕达哥拉斯早500多年。

公元前1世纪的《周髀算经》和东汉时期的《九章算术》是最著名的中国古代数学著作。

算盘的最早记载是公元190年。明清两代,算盘成为当时工商业贸易中不可缺少的工具。算盘携带方便,运算准确迅速,即便是现在,仍发挥着巨大作用。

三国时期,刘徽运用割圆术求圆周率π=3.1416。南北朝时期的数学家祖冲之又将圆周率进一步精确到3.1415926~3.1415927之间。
唐代僧一行创立了不等间距二次内插法,王孝通得到求解三次方程的方法;宋元时期得到关于高次方程组的求解法一次同余式解法。这些成果都处于当时的领先地位。

阅读全文

与我国古代数学的许多发明相关的资料

热点内容
武汉疫情投诉 浏览:149
知识产权合作开发协议doc 浏览:932
广州加里知识产权代理有限公司 浏览:65
企业知识产权部门管理办法 浏览:455
消费315投诉 浏览:981
马鞍山钢城医院 浏览:793
冯超知识产权 浏览:384
介绍小发明英语作文 浏览:442
版权使用权协议 浏览:1000
2018年基本公共卫生服务考核表 浏览:884
马鞍山候车亭 浏览:329
学校矛盾纠纷排查领导小组 浏览:709
张江管委会知识产权合作协议 浏览:635
关于开展公共卫生服务项目相关项目督导的函 浏览:941
闺蜜证书高清 浏览:11
转让房转让合同协议 浏览:329
矛盾纠纷排查调处工作协调交账会议纪要 浏览:877
云南基金从业资格证书查询 浏览:313
新知识的摇篮创造力 浏览:187
股转转让协议 浏览:676