⑴ 牛顿发明的故事
被誉为近代科学的开创者牛顿,在科学上作出了巨大贡献。他的三大成就——光的分析、万有引力定律和微积分学,对现代科学的发展奠定了基础。
牛顿为什么能在科学上获得巨大成就?他怎样由一个平常的人成为一个伟大的科学家?要回答这些问题,我们不禁要联想到他刻苦学习和勤奋工作的几个故事。
“我一定要超过他!”
一谈到牛顿,人们可能认为他小时候一定是个“神童”、“天才”、有着非凡的智力。其实不然,牛顿童年身体瘦弱,头脑并不聪明。在家乡读书的时候,很不用功,在班里的学习成绩属于次等。但他的兴趣却是广泛的,游戏的本领也比一般儿童高。平时他爱好制作机械模型一类的玩艺儿,如风车、水车、日晷等等。他精心制作的一只水钟,计时较准确,得到了人们的赞许。
有时,他玩的方法也很奇特。一天,他作了一盏灯笼挂在风筝尾巴上。当夜幕降临时,点燃的灯笼借风筝上升的力升入空中。发光的灯笼在空中流动,人们大惊,以为是出现了彗星。尽管如此,因为他学习成绩不好,还是经常受到歧视。
当时,封建社会的英国等级制度很严重,中小学里学习好的学生,可以歧视学习差的同学。有一次课间游戏,大家正玩得兴高采烈的时候,一个学习好的学生借故踢了牛顿一脚,并骂他笨蛋。牛顿的心灵受到这种刺激,愤怒极了。他想,我俩都是学生,我为什么受他的欺侮?我一定要超过他!从此,牛顿下定决心,发奋读书。他早起晚睡,抓紧分秒、勤学勤思。
经过刻苦钻研,牛顿的学习成绩不断提高,不久就超过了曾欺侮过他的那个同学,名列班级前茅。
篱笆下的乐趣
世界上有许多著名的科学家的家境是清贫的。他们在通往成功的道路上,都曾与困苦的境遇作过顽强的斗争。牛顿少年时代的境遇也是十分令人同情的。
牛顿一六四二年出生在英国一个普通农民的家里。在牛顿出生前不久,他的父亲就去世了。母亲在他两岁那年改嫁了。当牛顿十四岁的时候,他的继父不幸故去了,母亲回到家乡,牛顿被迫休学回家,帮助母亲种田过日子。母亲想培养他独立谋生,要他经营农产品的买卖。
一个勤奋好学的孩子多么不愿意离开心爱的学校啊!他伤心地哭闹了几次,母亲始终没有回心转意,最后只得违心地按母亲的意愿去学习经商。每天一早,他跟一个老仆人到十几里外的大镇子去做买卖。牛顿非常不喜欢经商,把一切事务都交托老仆人经办,自己却偷偷跑到一个地方去读书。
时光渐渐流逝,牛顿越发对经商感到厌恶,心里所喜欢的只是读书。后来,牛顿索性不去镇里营商了,仅嘱老仆人独去。怕家里人发觉,他每天与老仆人一同出去,到半路停下,在一个篱笆下读书。每当下午老仆人归来时,再一同回家。
这样,日复一日,篱笆下的读书生活倒也其乐无穷。一天,他正在篱笆下兴致勃勃地读书,赶巧被过路的舅舅看见。舅舅一看这个情景,很是生气,大声责骂他不务正业;把牛顿的书抢了过来。舅舅一看他所读的是数学书,上面画着种种记号,心里受到感动。舅舅一把抱住牛顿,激动地说:“孩子,就按你的志向发展吧,你的正道应该是读书。”
回到家里后,舅舅竭力劝说牛顿的母亲,让牛顿弃商就学。在舅舅的帮助下,牛顿如愿以偿地复学了。
在暴风中研究和计算风力
时间对人是一视同仁的,给人以同等的量,但人对时间的利用不同,而所得的知识也大不一样。
牛顿十六岁时数学知识还很肤浅,对高深的数学知识甚至可以说是不懂。“知识在于积累,聪明来自学习”。牛顿下决心靠自己的努力攀上数学的高峰。在基础差的不利条件下,牛顿能正确认识自己,知难而进。他从基础知识、基本公式重新学起,扎扎实实、步步推进。他研究完了欧几里德几何学后,又研究笛卡儿几何学,对比之下觉得欧几里德几何学肤浅,便悉心钻研笛氏
几何学,直到掌握要领、融会贯通。遂之发明了代数二项式定理。传说中牛顿“大暴风中算风力”的佳话,可为牛顿身体力学的佐证。有一天,天刮着大风暴。风撒野地呼号着,尘土飞扬,迷迷漫漫,使人难以睁眼。牛顿认为这是个准确地研究和计算风力的好机会。于是,便拿着用具,独自在暴风中来回奔走。他踉踉跄跄、吃力地测量着。几次沙尘迷了眼睛,几次风吹走了算纸,几次风使他不得不暂停工作,但都没有动摇他求知的欲望。他一遍又一遍,终于求得了正确的数据。他快乐极了,急忙跑回家去,继续进行研究。有志者事竟成。经过勤奋学习,牛顿为自己的科学高塔打下了深厚的基础。不久,牛顿的数学高塔就建成了,二十二岁时发明了微分学,二十三岁时发明了积分学,为人类科学事业作出了巨大贡献。
万有引力和光的秘密
牛顿二十三岁时,鼠疫流行于伦敦。剑桥大学为预防学生受传染,通告学生休学回家避疫,学校暂时关闭。牛顿回到故乡林肯郡乡下。在乡下度过的休学日子里,他从没间断过学习和研究。万有引力、微积分、光的分析等发明的基础工作,都是这个期间完成的。
那时,乡下的孩子是常常用投石器打几个转转之后,把石抛得很远。他们还可以把一桶牛奶用力从头上转过,而牛奶不掉下来。
这些事实使他怀疑起来:“什么力量使投石器里面的石头,以及水桶里的牛奶不掉下来呢?对于这个问题,他曾想到刻卜勒和伽利略的思想。他从浩瀚的宇宙太空,周行不息的行星,广寒的月球,直至庞大的地球,进而想到这些庞然大物之间力的相互作用。这时,牛顿一头扎进“引力”的计算和验证中了。牛顿计划用这个原理验证太阳系各行星的行动规律。他首先推求月球距
地球的距离,由于引用的资料数据不正确,计算的结果错了。因为依理推算月球围绕地球转,每分钟的向心加速度应是十六英尺,但据推算仅得十三点九英尺。在失败的困境中,牛顿毫不灰心和气馁,反而以更大的努力进行辛勤地研究。整整经过了七个春秋寒暑,到三十岁时终于把举世闻名的“万有引力定律”全面证明出来,奠定了理论天文学、天体力学的基础。
这时期牛顿还对光学进行了研究,发现了颜色的根源。一次,他在用自制望远镜观察天体时,无论怎样调整镜片,视点总是不清楚。他想,这可能与光线的折光有关。接着就实验起来。他在暗室的窗户上留一个小圆孔用来透光,在室内窗孔后放一个三棱镜,在三棱镜后挂好白屏接受通过三棱镜折进的光。结果,大出意外,牛顿惊异地看到,白屏上所接受的折光呈椭圆形,两端
现出多彩的颜色来。对这个奇异的现象,牛顿进行了深入的思考。得知光受折射后,太阳的白光散为红、橙、黄、绿、蓝、靛、紫七种颜色。因此,白光(阳光)是由红、橙、黄、绿、蓝、 靛、紫七色光线汇合而成。自然界雨后天晴,阳光经过天空中余围的雨滴的折射、反射,形成五彩缤纷的虹霓,正是这个道理。
经过进一步研究,牛顿指出世界万物所以有颜色,并非其自身有颜色。太阳普照万物,各物体只吸收它所接受的颜色,而将它所不能接受的颜色反射出来。这反射出来的颜色就是人们见到的各种物体的颜色。这一学说准确地道出颜色的根源,世界上自古以来所出现的各种颜色学说都被它所推翻。
牛顿所以能取得如此巨大的成就,早年苦学所打下的深厚数学基础起了重要作用。
进入忘我的境界
在一个崎岖的山路上,一位白发苍苍的老人牵着一匹马在缓缓登山。人在前面慢慢地走,马在后面一步步地跟,山谷中响着单调的马蹄声。走啊,走啊,马突然脱缰而跑,老人由于沉浸在极度的思索之中,竟没有发觉。老人依然不畏艰难地登着山,手里还牵着那根马缰绳。当他登到较平坦的地方想要骑马时 一拉缰绳,拽到面前的只是一根绳,回头一看马早已没有了。
牛顿每天除抽出少量的时间锻炼身体外,大部分时间是在书房里度过的。一次,在书房中,他一边思考着问题,一边在煮鸡蛋。苦苦地思索,简直使他痴呆。突然,锅里的水沸腾了,赶忙掀锅一看,“啊!”他惊叫起来,锅里煮的却是一块怀表。原来他考虑问题时竟心不在焉地随手把怀表当做鸡蛋放在锅里了。
还有一次,牛顿邀请一位朋友到他家吃午饭。他研究科学入了迷,把这件事忘掉了。他的佣人照例只准备了牛顿个人吃的午饭。临近中午,客人应邀而来。客人看见牛顿正在埋头计算问题,桌上、床上摆着稿纸、书籍。看到这种情形,客人没有打搅牛顿,见桌上摆着饭菜,以为是给他准备的,便坐下吃了起来。吃完后就悄悄地走了。当牛顿把题计算完了,走到餐桌旁准备吃午
饭时,看见盘子里吃过的鸡骨头,恍然大悟地说:“我以为我没有吃饭呢,我还是吃了。”
这些故事究竟是真是假,并不关重要,不过表明了牛顿是一个怎样沉思默想,不修边幅,虚己敛容的人,他对科学极度的专心,总是想着星辰的旋转,宇宙的变化,而进入了忘我的境界。
谦虚谨慎、一丝不苟的学风
“宽阔的河流平静,学识渊博的人谦虚。”凡是对人类发展作出巨大贡献的伟大人物,都有谦虚的美德。牛顿每当在科学上获得伟大成就时,从不沾沾自喜,自以为很了不起,急忙出版著作,以扬名于世。
当牛顿费尽心血算出“万有引力定律”后,没有急于发表。而是继续孜孜不倦地深思了数年,研究了数年,埋头于数字计算之中,从未对任何人讲过一句。后来,牛顿的朋友,大天文学家哈雷(彗星的发现者),在证明一个关于行星轨道的规律遇到困难时,专程登门请教牛顿。牛顿把自己关于计算“万有引力”的书稿交给哈雷看。哈雷看后才知道他所要请教的问题,正是牛顿
早已解决、早已算好了的问题,心里钦羡不已。
在一六八四年十一月某一天,哈雷又到牛顿的寓所拜访。当谈到有关天文学的学术问题时,牛顿拿出写好的关于论证“万有引力”的论文,请哈雷提意见。哈雷看后,对这一巨著感到非常惊讶。他欣喜地对牛顿说:“这真是伟大的论证、伟大的著作!”他再三奉劝牛顿尽快发表这部伟大著作,以造福于人类。可是牛顿没有听信朋友的好意劝告,轻易地发表自己的著作。而是经
过长时间的一丝不苟的反复验证和计算,确认正确无误后,才于一六八七年七月将《自然哲学的数学原理》发表于世。
牛顿是个十分谦虚的人,从不自高自大。曾经有人问牛顿:“你获得成功的秘诀是什么?”牛顿回答说:“假如我有一点微小成就的话,没有其它秘诀,唯有勤奋而已。”他又说:“假如我看得远些,那是因为我站在巨人们的肩上。”这些话多么意味深长啊!它生动地道出牛顿获得巨大成就的奥妙所在,这就是在前人研究成果的基础上,以献身的精神,勤奋地创造,开辟出科
学的新天地。
这些事例给你提供写作材料,你必须锻炼自己的总结能力.相信你能行!
你挑一个吧。
⑵ 牛顿发明了什么东西
在牛顿的全部科学贡献中,数学成就占有突出的地位。他数学生涯中的第一项创造性成果就是发现了二项式定理。据牛顿本人回忆,他是在1664年和1665年间的冬天,在研读沃利斯博士的《无穷算术》时,试图修改他的求圆面积的级数时发现这一定理的。
笛卡尔的解析几何把描述运动的函数关系和几何曲线相对应。牛顿在老师巴罗的指导下,在钻研笛卡尔的解析几何的基础上,找到了新的出路。可以把任意时刻的速度看是在微小的时间范围里的速度的平均值,这就是一个微小的路程和时间间隔的比值,当这个微小的时间间隔缩小到无穷小的时候,就是这一点的准确值。这就是微分的概念。
求微分相当于求时间和路程关系得在某点的切线斜率。一个变速的运动物体在一定时间范围里走过的路程,可以看作是在微小时间间隔里所走路程的和,这就是积分的概念。求积分相当于求时间和速度关系的曲线下面的面积。牛顿从这些基本概念出发,建立了微积分。
微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。
在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
应该说,一门科学的创立决不是某一个人的业绩,它必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样,是牛顿和莱布尼茨在前人的基础上各自独立的建立起来的。
1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。
牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。
在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。二项式定理把能为直接计算所发现的
等简单结果推广如下的形式
推广形式
二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。在今天我们会发觉这个方法只适用于n是正整数,当n是正整数1,2,3,....... ,级数终止在正好是n+1项。如果n不是正整数,级数就不会终止,这个方法就不适用了。但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。
创建微积分
牛顿在数学上最卓越的成就是创建微积分。他超越前人的功绩在于,他将古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法--微分和积分,并确立了这两类运算的互逆关系,如:面积计算可以看作求切线的逆过程。
那时莱布尼兹刚好亦提出微积分研究报告,更因此引发了一场微积分发明专利权的争论,直到莱氏去世才停息。而后世己认定微积是他们同时发明的。
微积分方法上,牛顿所作出的极端重要的贡献是,他不但清楚地看到,而且大胆地运用了代数所提供的大大优越于几何的方法论。他以代数方法取代了卡瓦列里、格雷哥里、惠更斯和巴罗的几何方法,完成了积分的代数化。从此,数学逐渐从感觉的学科转向思维的学科。
微积分产生的初期,由于还没有建立起巩固的理论基础,被有些喜爱思考的人研究。更因此而引发了著名的第二次数学危机。这个问题直到十九世纪极限理论建立,才得到解决。
方程论与变分法
牛顿在代数方面也作出了经典的贡献,他的《广义算术》大大推动了方程论。他发现实多项式的虚根必定成双出现,求多项式根的上界的规则,他以多项式的系数表示多项式的根n次幂之和公式,给出实多项式虚根个数的限制的笛卡儿符号规则的一个推广。
牛顿在还设计了求数值方程的实根近似值的对数和超越方程都适用的一种方法,该方法的修正,现称为牛顿方法。
牛顿在力学领域也有伟大的发现,这是说明物体运动的科学。第—运动定律是伽利略发现的。这个定律阐明,如果物体处于静止或作恒速直线运动,那么只要没有外力作用,它就仍将保持静止或继续作匀速直线运动。这个定律也称惯性定律,它描述了力的一种性质:力可以使物体由静止到运动和由运动到静止,也可以使物体由一种运动形式变化为另一种形式。此被称为牛顿第一定律。力学中最重要的问题是物体在类似情况下如何运动。牛顿第二定律解决了这个问题;该定律被看作是古典物理学中最重要的基本定律。牛顿第二定律定量地描述了力能使物体的运动产生变化。它说明速度的时间变化率(即加速度a与力F成正比,而与物体的质量里成反比,即a=F/m或F=ma;力越大,加速度也越大;质量越大,加速度就越小。力与加速度都既有量值又有方向。加速度由力引起,方向与力相同;如果有几个力作用在物体上,就由合力产生加速度,第二定律是最重要的,动力的所有基本方程都可由它通过微积分推导出来。
此外,牛顿根据这两个定律制定出第三定律。牛顿第三定律指出,两个物体的相互作用总是大小相等而方向相反。对于两个直接接触的物体,这个定律比较易于理解。书本对子桌子向下的压力等于桌子对书本的向上的托力,即作用力等于反作用力。引力也是如此,飞行中的飞机向上拉地球的力在数值上等于地球向下拉飞机的力。牛顿运动定律广泛用于科学和动力学问题上。
牛顿运动定律
牛顿运动定律是艾萨克·牛顿提出了物理学的三个运动定律的总称,被誉为是经典物理学的基础。
为“牛顿第一定律(惯性定律:一切物体在不受任何外力的作用下,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。——它明确了力和运动的关系及提出了惯性的概念)”、“牛顿第二定律(物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。)公式:F=kma(当m单位为kg,a单位为m/s2时,k=1)、牛顿第三定律(两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。)”
⑶ 牛顿的发明
1,反射式望远镜
第一架反射式望远镜诞生于1668年。牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。
他用2.5cm直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45度角的反射镜,使经主镜反射后的会聚光经反射镜以90度角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。

2,光的色散原理
牛顿在1666年最先利用三棱镜观察到光的色散,把白光分解为彩色光带(光谱)。色散现象说明光在介质中的速度v=c/n(或折射率n)随光的频率f而变。光的色散可以用三棱镜,衍射光栅,干涉仪等来实现。光的色散证明了光具有波动性。
3,微积分
牛顿在1671年写了《流数术和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。
牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
4,牛顿运动定律
牛顿运动定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中总结提出。
5,二项式定理
二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。
⑷ 牛顿是如何发明牛顿环的,历史啊……
一种光的干涉图样.是牛顿在1675年首先观察到的.将一块曲率半径较大的平凸透镜放在一块玻璃平板
上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环.圆环分布是中间疏、边缘密,圆心在接触点O.从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的.若用白光入射.将观察到彩色圆环.牛顿环是典型的等厚薄膜干涉.凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉.同一半径的圆环处空气膜厚度相同,上、下表面反射光程差相同,因此使干涉图样呈圆环状.这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉. 牛顿在光学中的一项重要发现就是"牛顿环"。这是他在进一步考察胡克研究的肥皂泡薄膜的色彩问题时提出来的。
⑸ 牛顿发明了什么
牛顿的相关发明有:
1、在力学上,牛顿阐明了角动量守恒的原理。
2、在光学上,版牛顿发明权了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。
3、牛顿系统地表述了冷却定律,并研究了音速。
4、在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。
5、牛顿证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。

(5)牛顿的发明过程扩展阅读:
1687年的巨作《自然哲学的数学原理》,开辟了大科学时代。牛顿是最有影响的科学家,被誉为“物理学之父”,他是经典力学基础的牛顿运动定律的建立者。他发现的运动三定律和万有引力定律,为近代物理学和力学奠定了基础,他的万有引力定律和哥白尼的日心说奠定了现代天文学的理论基础。
⑹ 牛顿发明过什么东西
是发复现,不是发明。
1.以牛顿制三大运动定律为基础建立牛顿力学。
2.发现万有引力定律。
3.建立行星定律理论的基础。
4.致力于三菱镜色散之研究并发明反射式望远镜。
5.发现数学的二项式定理及微积分法等。
6.近代原子理论的起源
⑺ 牛顿发明了什么
牛顿不是发明家,没有发明什么物品。不过他发现了许多规律,提出了许多定理。具体如下:
1、发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。
2、他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。
3、在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。
4、在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。
5、在经济学上,牛顿提出金本位制度。
6、天文成就
牛顿1672年创制了反射望远镜。他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替。他还用万有引力原理说明潮汐的各种现象,指出潮汐的大小不但同月球的位相有关,而且同太阳的方位有关。牛顿预言地球不是正球体。岁差就是由于太阳对赤道突出部分的摄动造成的。
7、哲学成就
牛顿的哲学思想基本属于自发的唯物主义,他承认时间、空间的客观存在。如同历史上一切伟大人物一样,牛顿虽然对人类作出了巨大的贡献,但他也不能不受时代的限制。例如,他把时间、空间看作是同运动着的物质相脱离的东西,提出了所谓绝对时间和绝对空间的概念;
他对那些暂时无法解释的自然现象归结为上帝的安排,提出一切行星都是在某种外来的“第一推动力”作用下才开始运动的说法。

人物轶事
在中小学教科书中,学生们肯定不止一次接触到牛顿这一非同凡响的名字。正如人们所熟知的那样,他是英国伟大的物理学家、数学家和天文学家,提出过万有引力定律、力学三大定律、白光由各色光组成的理论,并开创了微积分学,等等。
在迈克尔·怀特所著的《100位杰出人物》一书中,艾萨克·牛顿(1642~1727年)被列为最具影响力人物之第二,排在穆罕默德之后,耶稣基督之前。他之所以能够获得如此殊荣,当然是因为他对科学发展的杰出贡献。
人们往往倾向于把科学史上具有划时代意义的伟大科学家看作是品德高尚的天才和圣人,无数荣誉和光环围绕着他们,使人们难以了解他们作为普通人的真实性情。新近出版的《牛顿传:最后的炼金术士》,通过大量翔实的资料和原始档案,还原了一个真实的牛顿。
这位站立在巫术终结和科学兴起的历史转折点上的天才,通过对未知世界永无止境的探索,使他成为有史以来最伟大的科学家之一,也使他将自己一生中更多的精力花费在炼金术上,牛顿总共留下50多万英文单词的炼金术手稿和100多万单词的神学手稿,而这些工作与他的科学发现很难说是毫无关联的。除此之外,他还专门研究过治疗想像中他所患疾病的药物。
此书作者基于科学发生学的视角,提出了牛顿痴迷炼金术与奠立近代科学基础之间的重大关联。他借助牛顿遗留下来的重要信件和从未发表过的笔记,阐释了牛顿从事炼金术和神学研究对于他发现万有引力,以及后来进行的统一场论研究的作用。
值得一提的是,直到1936年,牛顿真实的另一面才逐渐显露出来,而这要归功于20世纪的经济学大师、牛顿研究者约翰·梅纳德·凯恩斯。当时有一批牛顿遗留下来的文件在苏富比拍卖公司拍卖,这些文件是大约50年前由剑桥大学所接受的捐赠中被认为“不具科学价值”的一部分收藏品。结果,凯恩斯在拍卖中购得这批文件。
凯恩斯在研读这批从未向世人公布过的秘密文件后,于1942年在英国皇家学会发表演说,将历史上这位最著名和最崇高的科学家描绘成一个受到争议的性格偏执者。
凯恩斯对牛顿的重新评价值得我们正视和思考:“从18世纪以来,牛顿一向被认为是第一个,也是最伟大的近代科学家,是一个理性主义者,他教导我们作出冷静的思考和无偏的推理。可是现在我要说,我不认为如此,我不认为任何人在看完那一箱文件之后,还会把他看成是那样一位道德高尚的伟人。”
莱布尼茨和牛顿各自独立地创造了微积分,尽管牛顿发现微积分要比莱布尼茨早若干年,但他很晚才出版自己的著作。于是,谁是微积分的第一创造者,成了当时科学界争吵的一件大事。牛津大学教授基尔在<哲学通报>上发表一篇讨论离心力的文章,文中把发明微积分的主要功劳记在牛顿名下,同时也提到了莱布尼兹。<哲学通报>到达莱布尼兹手上,立即惹怒了他。
莱布尼兹寄信给皇家学会,要求收回那种说法。当莱布尼兹在<教师学报>上写了一篇评论,严厉批评牛顿的工作时,立场坚定的争论就开始了。莱布尼兹使用的外交手段,是把自己隐藏在无所不知的编辑名义下,匿名写下这篇评论的,而<教师学报>是莱布尼兹本人在1682年创办并自任主编的杂志。
那并非一场公开的战争,莱布尼兹一方面在大众面前赞扬牛顿,一方面唆使别人,特别要约翰伯努利写信攻击牛顿来为他辩护,伯努利照他的意思去做,没有在信上署名。莱布尼茨请求英国皇家学会予以裁定,而作为皇家学会会长的牛顿指定了一个公正的委员会来审查,皇家学会发表结论,正式谴责莱布尼茨剽窃。
至于牛顿为什么痴迷于炼金术,我们要考虑他所处的时代背景.在17世纪,炼金术和化学掺杂在一起,因为这时的化学还没有从炼金术中脱离出来,一个人要想研究化学而不接触炼金术是不可能的。因为没有人可以找出一本17世纪的没有炼金术内容化学著作。
而牛顿对于化学一定充满了求知欲。所以他像研究数学物理那样去研究化学,而可以供他参考自学的书只有炼金术著作,所以他不得不选择炼金术。
其实试图把化学从炼金术中分离出来的就是牛顿,因为他曾经写过一本名叫《化学》的书,后来在那次大火中被烧毁了,所以他对化学的贡献我们一无所知。留下的只是他学习过程中的一些手稿,一些没有经过分离的炼金术资料。
如果我们以今天的眼光来审视炼金术,我们应当承认它至少带来了一些有用的技术和工具。并且炼金术可能或多或少地激发了牛顿的灵感,有助于他在科学领域中的探索和发现。
科学巨人同样可能走向歧途,他们的人格或个性也可能存在着这样或那样的缺陷,但是他们对世界文明的贡献是第一位的,而这些有利于社会进步的探索永远不会被贬低或者忘却。
⑻ 牛顿发明电灯过程
爱迪生在1877年开始了改革弧光灯的试验,提出了要搞分电流,变弧光灯为白光灯。这项试验要达到满意的程度。必须找到一种能燃烧到白热的物质做灯丝,这种灯丝要经住热度在二千度一千小时以上的燃烧。同时用法要简单,能经受日常使用的击碰,价格要低廉,还要使一个灯的明和灭不影响另外任何一个灯的明和灭,保持每个灯的相对独立性为了选择这种做灯。这在当时是极大胆的设想,需要下极大的功夫去探索,去试验。 丝用的物质,爱迪生先是用炭化物质做试验,失败后又以金属铂与铱高熔点合金做灯丝试验,还做过上质矿石和矿苗共一千六百种不同的试验,结果都失败了。但这时他和他的助手们已取得了很大进展,已知道白热灯丝必须密封在一个高度真空玻璃球内,而不易熔掉的道理。这样,他的试验又回到炭质灯丝上来了。他昼夜不息地用到了1880年的上半年,爱迪生的白热灯试验仍无结果。有一天,他把试验室里的一把芭蕉扇边上缚着一条竹丝撕成细丝,全副精力在炭化上下功夫,仅植物类的炭化试验就达六千多种。他的试验笔记簿多达二百多本,共计四万余页,先后经过三年的时间。他每天工作十八、九个小时。每天清早三、四点的时候,他才头枕两、三本书,躺在实验用的桌子下面睡觉。有时他一天在凳子上睡三、四次,每次只半小时。 到了1880年的上半年,爱迪生的白热灯试验仍无结果,就连他的助手也灰心了。有一天,他把试验室里的一把芭蕉扇边上缚着一条竹丝撕成细丝,经炭化后做成一根灯丝,结果这一次比以前做的种种试验都优异,这便是爱迪生最早发明的白热电灯——竹丝电灯。这种竹丝电灯继续了好多年。直到1908年发明用钨做灯丝后才代替它。爱迪生在这以后开始研制的碱性蓄电池,困难很大,他的钻研精神,更是十分惊人。这种蓄电池是用来供给原动力的。他和一个精选的助手苦心孤诣地研究了近十年的时间,经历了许许多多的艰辛与失败,一会儿他以为走到目的地了,但一会儿又知道错了。但爱迪生从来没有动摇过,而再重新开始。大约经过五万次的试验,写成试验笔记一百五十多本,方才达到目的
⑼ 牛顿发明过什么
1)在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察版,发展出了权颜色理论。他还系统地表述了冷却定律,并研究了音速。
2)在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发明微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。 在经济学上,牛顿提出金本位制度。
3)牛顿是一个物理学家而不是发明家,他的主要成就在对物理学和数学的发现上,并没有发明过太出名的东西。