1. 数学在心理学中的应用。
数学在实验心理学有较多的应用:实验设计,假设检验,实验结果评定。
2. 数学心理学的发展
20世纪下半叶,随着学习心理研究的不断深入,行为主义忽视学习的内在心理过程的严重缺陷已日益明显,越来越多的心理学家转向关注学习的内在过程,这促成了认知主义学习理论的形成。
德国的格式塔是早期的认知主义代表(格式塔是一个德语词,意即完形),其核心人物有韦特海默、考夫卡、苛勒等。该学派主张思维是整体的有意义的知觉,他们以”完形“为基本概念,强调从整体上认识学习的本质,并提出了顿悟学习理论。早期对认知理论的形成施以影响的还有托尔曼,他所提出的中间变量(即学习主体的内在机制)的思想,成为其学习理论的核心概念。
瑞士心理学家皮亚杰是当代认知主义的重要代表人物,他对心理的发生发展、认知结构及其机能等问题进行了深入研究,并提出了著名的认知建构理论、认知发展理论。”运算“(即思维操作)是皮亚杰理论中的关键概念,他据此将儿童认知发展分为四个主要阶段,即感觉-运动阶段、前运算阶段、具体运算阶段和形式运算阶段,并讨论了各阶段认知发展的基本特征及相互联系。皮亚杰在《发生认识论原理》一书中提出同化和顺应的概念,被人们普遍运用于解释学习中的认知发展。他尤其对数学学习特有的心理特征给予了关注,他甚至运用数学方式定义了其认知理论中的一些概念(如思维结构、自反抽象等)。 从20世纪六七十年代始,数学学习理论中的认知主义取代行为主义已成必然之势。布鲁纳提出了发现学习理论,强调学习进程是一种积极的认知过程,提倡知识的发现学习。他进行了大量的数学学习实验,并从中总结出四条数学学习原理,即建构原理、符号原理、比较和变式原理、关联原理。此外奥苏贝尔提出了有意义学习理论,加涅提出了信息加工学习理论。正是如此众多认知学习理论的出现,使数学心理研究范式发生了重要转变,并预示着认知理论将会有新的发展。

3. 心理学的研究领域有哪些
应用领域
心理学研究涉及知觉、认知、情绪、人格、行为、人际关系、社会关系等许多领域,也与日常生活的许多领域——家庭、教育、健康等发生关联。心理学一方面尝试用大脑运作来解释个人基本的行为与心理机能,同时,心理学也尝试解释个人心理机能在社会的社会行为与社会动力中的角色;同时它也与神经科学、医学、生物学等科学有关,因为这些科学所探讨的生理作用会影响个人的心智。[1]
研究领域
发展心理学:研究人从胎儿出生到年老死亡的成长和发展的全过程。
学习心理学:探索人是如何发展成为如今的状态。研究人类和动物的学习发生过程和原因。
人格心理学:关注包括人格特征、动机和个体差异。
感觉与知觉心理学:研究人类怎样感知周围世界,如正在研究人类是如何识别面孔的。
比较心理学:研究和比较不同种系的动物行为。
生理心理学:研究行为与生理过程之间的关系,特别是神经系统的活动。
认知心理学:主要研究思维问题,试图了解推理、问题解决、记忆及其他心理过程与人类行为的关系。

4. 用 自己的想象力写出数学领域的新篇章
数学小论文一
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。
历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。
高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。
广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
5. 当代数学,心理学的名人
心理学主要流派
弗洛伊德 精神分析学派
华生 行为主义心理学
皮亚杰 发生认识论,儿童发展心理学
还有认知心理学、格式塔心理学,代表人物比较多。
这些理论网络就有。
6. 数学是谁发明的
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。
从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。
事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”
另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,另一方面,如果所考虑的领域存在于数学之外,数学就起着用科学的作用,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”
从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。
基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛性”王梓坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重要性。
7. 数学是谁发明的
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。
从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显著的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
对于上述关于数学本质特征的看法,我们应当以历史的眼光来分析,实际上,对数本质特征的认识是随数学的发展而发展的。由于数学源于分配物品、计算时间、丈量土地和容积等实践,因而这时的数学对象(作为抽象思维的产物)与客观实在是非常接近的,人们能够很容易地找到数学概念的现实原型,这样,人们自然地认为数学是一种经验科学;随着数学研究的深入,非欧几何、抽象代数和集合论等的产生,特别是现代数学向抽象、多元、高维发展,人们的注意力集中在这些抽象对象上,数学与现实之间的距离越来越远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。
事实上,上述对数学本质特征的认识是从数学的来源、存在方式、抽象水平等方面进行的,并且主要是从数学研究的结果来看数学的本质特征的。显然,结果(作为一种理论的演绎体系)并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,而且从总体上来说,数学是一个动态的过程,是一个“思维的实验过程”,是数学真理的抽象概括过程。逻辑演绎体系则是这个过程的一种自然结果。在数学研究的过程中,数学对象的丰富、生动且富于变化的一面才得以充分展示。波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的,”数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。库朗和罗宾逊(Courani Robbins)也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。”
另外,对数学还有一些更加广义的理解。如,有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我几乎更喜欢把它看作一门艺术,因为数学家在理性世界指导下(虽然不是控制下)所表现出的经久的创造性活动,具有和艺术家的,例如画家的活动相似之处,这是真实的而并非臆造的。数学家的严格的演绎推理在这里可以比作专门注技巧。就像一个人若不具备一定量的技能就不能成为画家一样,不具备一定水平的精确推理能力就不能成为数学家,这些品质是最基本的,它与其它一些要微妙得多的品质共同构成一个优秀的艺术家或优秀的数学家的素质,其中最主要的一条在两种情况下都是想象力。”“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。尼斯(Mogens Niss)等在《社会中的数学》一文中认为,数学是一门学科,“在认识论的意义上它是一门科学,目标是要建立、描述和理解某些领域中的对象、现象、关系和机制等。如果这个领域是由我们通常认为的数学实体所构成的,数学就扮演着纯粹科学的角色。在这种情况下,数学以内在的自我发展和自我理解为目标,独立于外部世界,另一方面,如果所考虑的领域存在于数学之外,数学就起着用科学的作用,数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。数学也是一个工具、产品以及过程构成的系统,它有助于我们作出与掌握数学以外的实践领域有关的决定和行动,数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验,作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”
从上所述可以看出,人们是从数学内部(又从数学的内容、表现形式及研究过程等几个角度)。数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。它们都从一个侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。
基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。比较普遍的观点是,数学有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。A,。亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后是它的应用的极端广泛性”王梓坤说,“数学的特点是:内容的抽象性、应用的广泛性、推理的严谨性和结论的明确必”这种看法主要从数学的内容、表现形式和数学的作用等方面来理解数学的特点,是数学特点的一个方面。另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。“可证伪性”的特点。对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。比较、类比、归纳、联想等思维过程的重
8. 数学领域中的发明心理学的读后感
数学有两种品格,其一是工具品格,其二是文化品格。由于数学在应用上的极端广泛性,因而在人类社会发展中,那种挥之不去的短期效益思维模式特别是在实用主义观点日益强化的思潮中,必然会导致数学之工具品格愈来愈受到重视,更会进一步向数学纯粹工具论的观点倾斜。相反的,数学之另一种更为重要的文化品格,却已面临被人淡忘的境况。
《数学领域中的发明心理学》是法国著名数学家雅克·阿达玛的一本名著,是一本数学方法论的经典著作。着重论述了以“无意识思维”为核心的数学发明心理过程,给人以强烈印象。虽然严格地说,无意识问题应是专门的心理学家所关心的事,但他同时牵涉到数学和心理学这两个领域。具有相当深厚的文化理念内涵和价值。他又不仅仅是关于数学方法论的论述,而且还能够让学习数学和研究数学的人们从中认识到关于数学发明的一般性思维规律的论述。
在数学的(乃至一般的)发明创造过程中,往往存在着创造灵感,或称之曰“顿悟”的现象,这种顿悟的出现,既不能简单地归之于机遇,也不能无为地说成是逻辑推理“对中间阶段的跳跃”,而是经历了一种很复杂的,至今尚未被我们完全认识的“无意识思维”过程之后的结果。所谓无意识思维,乃是指思维者本人既没有意识到他的存在,也没有受到意识支配的一种思维过程。
关于发明所需要的条件,已被近几十年最伟大的天才人物所阐明,他的名字为科学界所熟知,而且整个近代数学都在随着他的脉搏跳动,此人就是亨利·庞加莱。庞加莱的例子取自他自己的最了不起的发现中的一个,即他关于富克斯群和富克斯函数理论的研究,在这个理论中闪烁着他的思想光辉。起先,庞加莱对这种函数冥思苦想了整整两个星期,企图证明它的不存在,但这个想法以后被证明是错误的。后来,在一个不眠之夜,并且是一种我们以后要谈到的特定条件下,他构造出了第一类这种函数。就在此时,他又开始地质考察的旅行生活,途中的许多事使他忘掉了自己的数学工作,当他正要去驾车其他地方时,他刚把脚放到马车上的一刹那,一个思想突然闪现在他的脑海,这个思想就是他用以富克斯函数的变换与非欧几何的变换是等价的。在旅行结束后,庞加莱给出了这个思想的证明。此后他就把注意力转换到与此有关系的一些算术运算问题上去,但没有取得什么成功,并且看起来也不像与他以前的研究工作有什么联系。由于庞加莱对自己的失败感到厌烦,到海边度过了几天,并考虑了一些其他的事情。有一天,当他正在悬崖上散步时,一种新的思想在他的脑海中又和上一次同样地突然闪出来,而且,同样是一种简单而确定的思想,这个思想就是不定三元二次型的算术变换与非欧几何变换是等价的。
这两个结果使庞加莱认为:肯定存在着另外的富克斯群,因此也就还存在着与他在那个不眠之夜所想到的富克斯函数不同的富克斯函数,以前找到的只是一类特殊情况。然而更严重的困难使得他的工作由此陷于停顿。此时如果坚持不懈地致力于这个问题,或许可以得到好的结果。但他当时没有这样做,亦即未能克服面前的困难。直到后来,当庞加莱在军队中服役的日子里,跟上两次一样,这一问题却又出乎意料地获解了。庞加莱为此而补充说:“最令人惊奇的首先是这种‘顿悟’的出现,所说的这种‘顿悟’,乃是在此之前的一段长时间内无意识工作的结果。在我看来,在数学的发明中,这种无意识工作的作用确实是毋庸置疑的。”
面对庞加莱的这种情况呈现在我们面前的解答是:①与前些日子的努力似乎毫无关系,因而难以认为是以前工作的结果;②出现得非常突然,几乎无暇细想。这种突然性和自发性,在若干年之前也曾被当代科学的伟大学者赫姆霍尔兹指出来过,他在1896年的一个重要讲话中就曾说到过这一点。由于赫姆霍尔兹和庞加莱的讲话,这种情况已被认为是任何一类发明所共有的。格拉哈姆·沃尔斯在他的《思维的艺术》一文中,提议将这种现象称为“顿悟”。在顿悟之前一般地有一个酝酿阶段,在此阶段,研究似乎完全中断,问题仿佛被丢弃在了一边。
我们不仅不能否认无意识的存在,而且我们还必须强调指出,如果没有无意识,恐怕我们什么事情都做不成。首先,思想只有当用语言表达出来时,才是最清楚的,然而当我们讲出一句话的时候,下一句话在哪儿?显然这第二句话并不在我们当时的意识范围内,因为此时的意识只有被第一句话所占有;然而此时我们却在思考第二句话的内容,这句话是准备在下一时刻出现在我们的意识中的,如果我们此时不在无意识中思考着句话,那么下一时刻他就不会出现了,但是我们这儿所说的无意识是很表面的,因为他很接近于意识,它可以立即转化为意识。
这种情况就是弗兰西斯·高尔顿的所谓意识“前室”现象。为了表示这种较浅的无意识过程,我们当然可以用以与“无意识”泾渭分明的“下意识”这个词。但是还有另外一个词,这就是“意识的边缘”。对心理学而言,在运用内反省法时,下意识状态是很有用的。事实上,离开了下意识,内部反省是不可能进行的。但是对某种状态,用下意识这个词就不一定确切。这一点沃拉斯等心理学家曾用视野做过比喻:“在我们的视野中有一个很小的圆圈,在这圆圈中,我们看的很最清楚,而在这个圆圈的旁边还是有一个不规则的区域,即视野边缘。在这个区域中,离开视野中心愈远,我们就看得愈模糊。人们往往对视野边缘的存在性不太关心,因为其中任一对象一旦引起我们的关心,我们就会立即把视野中心对准它。由此我们就可明白,为什么我们往往会忽视意识边缘中的事情,因为我们一旦对它有兴趣,它就立即成为我们的全部意识的对象了。但有时,我们也可作些努力,使它仍然处在意识边缘的地位而去观察它。”一般地说,把意识和意识边缘截然区分开是很困难的,但是关于我们目前感兴趣的“发明”这样一件事中,这种区分就稍微容易些。因为在发明过程中,我们把思想高度集中在问题的求解上,只有当问题获解之后,我们才有可能去顾及当时在意识边缘所发生的事情。
现在很多人的问题肯能出现了,问题在于对无意识的理解是否正确,无意识是不是一种特殊的神秘的东西。事实上,真正神秘之处使我们大脑的功能,即我们的大脑为什么能够思考!这种精神过程是怎么回事?人类已有几千年的历史,而我们对这些问题的了解即毫无进展,不管是对这种或那种精神过程,我们至今还是一无所知。至于说无意识和意识究竟哪个更高级,我认为提出这种问题是愚蠢的。当你骑在一匹马上时,你说它比你高级还是低级?当然,马比你强壮,又比你跑得快,但你却能让它做你所要它做的事。同样的,我也不知道氧气和氢气哪个更高级,也不知道左腿和右腿哪个更高级,实际上,它们在行走中是相互合作的,意识和无意识也是这样,一种合作而相互彼此的关系。
大量的例子表明,这种无意识思维过程的存在,而且,一旦承认了无意识思维的存在性,顿悟现在便得到很好的科学解释。无意识思维在发明创造中占有举足轻重的地位,而且这是由发明的本质所决定的。任何领域中的发明,都是思想组合的方式进行的。也即,发明就是将各种“观念原子”(这使庞加莱用以描述各种基本思想元素的一个形象化的比喻)进行千千万万的组合,再从中选出有用的组合,而这种选择的标准时所谓“科学的美感”。在发明过程的组合与选择这样两大步骤中,由于无意识思维不受理智之条条框框的约束,而仅仅服从于人的直觉中之和谐的美感,因而比有意识的思维过程更为深刻和奏效。然而我们并不能如下所述那样去理解上面的说法,即由此而认为当你面对一个问题时,你可以什么也不要干,而只要抱有求解此问题的愿望,然后就可以去睡觉了,等到明天早晨醒来时,答案就会突然出现在你面前。显然这是一种荒唐可笑的误解。
事实上,情况完全不是这样,任何问题,只有经过了深思熟虑以后,认识才会产生飞跃。例如,我们在开头所提到的,庞加莱把脚放在马车他班上时所发生的事情,就是在此之前经过了深思熟虑以后所产生的飞跃。牛顿关于万有引力的发现也是一个典型的例子。他曾经被问到,他是如何发现这个定律的。他回答说:“我就是不断地想,想,想。”这件事也许是轶事,但是始终如一的努力,一定是发现这个定律的必要条件。他有一个信念,即任何东西(不论是不是苹果)既然都掉向地球,那么月亮也一定是这样掉向地球,正是这种自觉的信念和顽强的努力,才使他发现了万有引力定律。如果不是经过一定时间的有意识的艰苦努力,尽管这些努力没有产生结果,完全是一种盲目的摸索,那么突然的灵感是不会产生的,可是这些努力并不是白费的。实际上,正是通过这些努力才使得无意识机器能以开动起来,亦即如果没有这些艰苦努力,无意识机器是不会开动起来的,从而什么灵感也不会出现,那么牛顿也只是看着苹果掉下来,只是有幸捡到了一个苹果,而发现不了万有引力定律。
伴随着灵感而出现的绝对的感觉一般是正确的,但是也可能欺骗我们。究竟是对是错,还要由我们称之为“理由”的东西来确定,或者说,还要去证明它们。当然这一证明过程是有意识的。庞加莱说过,无意识不可能做相当长的运算。如果我们以为无意识具有这种能力,具有自动运算的性质,那我们就可以在睡觉之前考虑一个代数运算的问题,而到第二天早晨醒来时就得到结果了,显然永远不会有这种事发生。实际上,对于无意识的自动性质是不能这样来理解的。正确的运算必须注意力高度集中,并且具有顽强的意志和符合规则,因而完全是自觉的和有意识的工作。这种工作是在灵感产生以后的又一个有意识阶段。如此,我们这里似乎遇到了一种自相矛盾的结论,当然我将对此做些说明,如同我对牛顿的情况所作的说明那样。所说的自相矛盾,就是一方面我们看到了作为我们灵魂的最高本能之一,我们的愿望,我们的意识在整个发明中占据相当重要的地位,他是支配着无意识的;但在这里,他似乎是从属于无意识的,因为他是在无意识以后产生的。但实际上,这两个阶段不仅很难分开,而且是相辅相成的,也就是说,它们是一件事情的两个方面。
至此,我以根据阿达玛在数学发明工作中的体会,以及对我所了解的无意识思维有关问题就此结束。总之,我们所观察到的在发明过程中所出现的无意识的种种情况,都将在数学之文化品格和心理学中放射光芒。
数学乃是一切科学的基础、工具和精髓,因为数学的内容和方法不仅要渗透到其他任何一个学科中去,而且要是真的没有了数学,则就无法想象其他任何学科的存在和发展了。尤其是我们谈到的数学之文化品格之无意识思维,会让我们更好地学习数学,了解数学,体会数学的本意,并实际的运用在我们日常生活之中,服务我们,方便我们。书中说到过的:对于那些当年接受过立足于数学之文化品格数学训练的学生来说,当他们后来真正成为哲学大师、著名律师或运筹帷幄的将帅时,可能早已把学生时代所学到的那些非实用性的数学知识忘得一干二净了。但那种铭刻于头脑中的数学精神和数学文化理念,却会长期的在他们的事业中发挥着重要作用。也就是说,他们当年所受到的数学训练,一只会在他们的生存方式和思维方式中潜在地起着根本性的作用,并且受用终身。
9. 数学心理学的历史
1860年德国心理学家费希纳在心理物理学研究中,最早用数学公式描述了客观物理量和主观感觉强度之间的函数关系。
1927年瑟斯顿在制定心理量表时提出了比较判断率,并用公式来表明两个刺激间的主观距离。
第二次世界大战后,在信息论、控制论、统计决策论和计算机科学的推动下,数学心理学发展迅速。
20世纪50年代初,埃斯蒂斯、布什和莫斯蒂勒提出的学习模型,是这一新方向的开端。
目前实验心理学的许多重要领域,如测量、决策、学习和社会的相互作用等方面,都已制定出大量的数学模型。
