导航:首页 > 创造发明 > 数学中的元次谁发明的

数学中的元次谁发明的

发布时间:2021-03-09 03:21:50

A. 数学方程中:元.次等术语,是谁创业造的

选康熙创造

B. 数学方程式中的元和次是谁创立的

数学方程式中的元和次是中国清朝时期的康熙皇帝创立的。

康熙皇帝是中国历史上声名显赫,又有远大抱负,聪明好学的一位皇帝。他除了其文治武功之外 ,还十分爱好数学,曾拜比利时的南怀仁等传教士为师,学习数学 、天文、地理以及拉丁文等,康熙皇帝虽然聪颖过人,但是听外籍教师讲课也有困难,因为南怀仁等人的汉语和满语水平有限,日常会话勉强对付,但要将严谨而高深的科学知识表达出来就显得力不从心了。而当时课本多是外文,即使中译本也是半通不通的。这样,学习中就必然有许多精 力被消耗在语言沟通上,进度不快 。

不过,康熙学习很刻苦,也很有耐心,不懂就请教,直至真正弄懂为止。南怀仁在讲方程时,句子冗长,吐音又很不清楚,康熙的脑子常常被搞得晕晕糊糊的,怎样才能让老师讲得好懂呢?一阵冥思苦想后,一个妙法突然冒出来。他向南怀仁建议 ,将未知数翻译为“元”,最高次数翻译为“次”(限整式方程),使方程左右两边相等的未知数的值翻译为“根”(解)⋯⋯南怀仁用笔认真地记了下来 ,随即用这些新创术语换下自己原先使用的繁琐词语 :“求二‘元’一‘次’方程的‘根 ’(解 )⋯⋯“如此一来,果然简单了很多,而且还可以提高教学效率,南怀仁惊疑地盯着康熙,愣怔了一会儿,突然按照西方最亲切的礼节一下子将康熙紧紧抱住:“我读书和教书几十年,无论是老师还是学生,还从来没见过一个像您这样肯动脑筋的人 !”

正因为康熙创造的这几个数学术语科学而简洁,十分便于理解和记忆,因此一直延用到今天 。

C. 一元三次方程求根公式是谁发明

1500年的某天,意大利北部的布里西亚,一户人家生了一个男孩,取名叫丰坦那。不久,意大利与法国发生战争,法军攻陷了布里西亚地区,大肆屠杀意大利人。丰坦那的父亲死于战祸,小丰坦那的头部和下颚也受了重伤。好在他的母亲是一位聪明而勇敢的妇女,她见儿子受伤,又没有医生看病治疗,她就想到了狗用舌头舔愈伤口的情景。于是,她也学着这个方法,用自己的舌头治好了儿子的伤口。谁知痊愈后的小丰坦那却得了一个口吃的毛病,说话不连贯,人们就给他取个外号叫塔尔塔利亚(意译为口吃者)。久而久之,塔尔塔利亚就成了他的名字,丰坦那的名字也被人忘记了。

因为父亲死于战乱,塔尔塔利亚的家境十分贫寒,母亲无力送他上学读书。但是,塔尔塔利亚从小求知欲极强,母亲就在他父亲坟墓的石板上教他认字、算题。由于他天资聪明,意志坚强,竟独自学会了拉丁文和希腊文,对数学的钻研成绩更为突出。经过长期自学,成人后,他终于取得了成功,先后在他的家乡布里西亚和威尼斯等地从事教学工作。塔尔塔利亚专门喜欢解各种数学难题,在这方面不少数学爱好者败在他的手下。

1530年的一天,有一位叫科拉的数学教师向塔尔塔利亚提出两道数学难题进行挑战:

1.一个数的立方加上它的平方的3倍等于5,求这个数。实际上是一个一元三次方程,即:x3+3x2=5

2.三个数,第二个数比第一个数多2,第三个数比第二个数多2,三个数的乘积是1000,求这三个数各是多少。实际上这也是一个一元三次方程,即:x(x+2)(x+2+2)=1000,展开后是x3+6x2+8x=1000

当时,人类还没有找到三次方程的解法。塔尔塔利亚于是全身心地投入进去,废寝忘食地解这两道题。不久,居然让他解开了,并因此找到了解开一元三次方程的办法。于是,塔尔塔利亚向外公开宣称,他已经知道了一元三次方程的解法,但不能公开自己的步骤,他要保密。此时,有一位叫菲俄的人也宣称,他也找到了解开一元三次方程的办法,并宣称,他的方法是得到了当时著名数学家波伦那大学教授费罗的真传。

他们二人谁真谁假?谁优谁劣?于是,1535年2月22日,在意大利有名的米兰大教堂里,举行了一次仅有塔尔塔利亚和菲俄参加的数学竞赛。竞赛内容专门限于一元三次方程。他们各自给对方出30道题,谁解得对解得快谁就得胜。两个小时之后,塔尔塔利亚解完了全部30道题,而菲俄却一道题也解不出来。竞赛结果,塔尔塔利亚大获全胜。

原来,一元三次方程的问题是1404年被人引起来的。当时意大利著名数学家巴巧利说:“x3+mx=n,x3+n=mx之不可解,正像化圆为方问题一样。”谁知此问题提出不久,就被费罗解出了。1510年,他将方法透露给了他的学生菲俄。于是,当塔尔塔利亚宣称他找到一元三次方程解法时,便出现了要举行竞赛的事情。

初时,塔尔塔利亚面对出名的学者未免心虚,因为他的方法还不完善。据说在竞赛之前的10天,即2月12日深夜,塔尔塔利亚一夜未睡,直至黎明。他头脑昏昏,走出室外,伸伸懒腰,吸吸新鲜空气。顿时,他的思路豁然开朗,多日的深思熟虑,终于取得了结果。因此,才在竞赛中大获全胜。

为了使自己的成果更完善,塔尔塔利亚又艰苦努力了6年,才在1541年真正找到一元三次方程的解法。很多人请求他把这种方法公布出来,但却遭到他的拒绝。原来,塔尔塔利亚准备在译完欧几里得和阿基米德的著作之后,再把自己的发明发现写成一本专著,以便流传后世。

在这之前60几年,米兰有一位学者卡当,对一元三次方程的问题十分感兴趣,苦苦央求塔尔塔利亚把解法告诉他,并起誓发愿,决不泄密。1539年,塔尔塔利亚被卡当的至诚之心所动,就把此法传授给他。

卡当是意大利的数学家,后来又开业行医,也常常为人占卜,曾受雇于教皇当过占星术士。没过多久,卡当背信弃义,写成了一部叫《大术》的书。此书1545年在纽伦堡出版发行。在书中,卡当公布了一元三次方程的解法,声称这是他的发明。当时人们信以为真,便把三次方程的求根公式称为“卡当公式”。

在《大术》一书中,卡当说:“大约在30年前,波伦那的费罗教授发现了这一法则,并传授给了威尼斯的菲俄,菲俄曾与塔尔塔利亚进行过公开竞赛。塔尔塔利亚也发现了这一方法,他在我的恳求下,把三次方程的解法告诉了我,但是没有给出证明。借助塔尔塔利亚的帮助,我找到了几种证明方法,它是非常困难的。”

卡当的背信弃义激怒了塔尔塔利亚,他向卡当宣战,要求进行公开竞赛。双方各拟31道试题,限期15天完成。卡当临阵怯场,只派了他的一个高徒应战。结果,塔尔塔利亚在7天之内就解出了大部分试题,而卡当的高徒仅做对一题,其余全是错的。接着,二人又进行了一场激烈的争鸣和辩论。就这样,人们才明白事情的真相,塔尔塔利亚才被人们知道,他才是一元三次方程求根公式的真正发明人。

塔尔塔利亚经过这场风波之后,准备心平气和地把自己的成果写成一部数学专著,可是他已经心力憔悴,1557年,他没有实现自己的愿望就与世长辞了。

D. 一元一次方程中的“元”产生于什么年代是哪位数学家发明的原来的意思是什么

一元一次方程中的“元”产生的年代没有明确的记录,据说是康熙皇帝在学习西方数学时专提出的,因属当时没有可以代替“未知数”的代词,因此采用“元”为方程的未知数。

公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。

(4)数学中的元次谁发明的扩展阅读:

一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。

如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。

E. 数学方程的" 元""次"是谁 发明的

解:数学方程的元次是康熙首先提出的。

F. 数学谁发明的

数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ?
mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail
B.
Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”

G. 谁发明的“元”“次”“根”

是 康熙。康熙拜比抄利时的传教士袭为师,学习数学。但听他讲课很不轻松,而且讲方程是句子冗长,,所以康熙就建议 ,吧未知数翻译成“元”最高次翻译成“次”方程的解翻译成“根” 康熙创造的几个学术用语一直沿用至今!

H. 一元二次方程是谁发明的

最早的方程求解算是《九章算术》吧,是我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作,书中收集了246个应用问题和其他问题的解法,分为九章。“方程”是其中的一章,二元一次方程已有涉及。
规范的公式应该是出现在中亚细亚的阿尔花拉子模在公元820年左右出版的《代数学》一书中。书中给出了一元二欠方程的求根公式,并把方程的未知数叫做「根」,后译成拉丁文radix。

阅读全文

与数学中的元次谁发明的相关的资料

热点内容
武汉疫情投诉 浏览:149
知识产权合作开发协议doc 浏览:932
广州加里知识产权代理有限公司 浏览:65
企业知识产权部门管理办法 浏览:455
消费315投诉 浏览:981
马鞍山钢城医院 浏览:793
冯超知识产权 浏览:384
介绍小发明英语作文 浏览:442
版权使用权协议 浏览:1000
2018年基本公共卫生服务考核表 浏览:884
马鞍山候车亭 浏览:329
学校矛盾纠纷排查领导小组 浏览:709
张江管委会知识产权合作协议 浏览:635
关于开展公共卫生服务项目相关项目督导的函 浏览:941
闺蜜证书高清 浏览:11
转让房转让合同协议 浏览:329
矛盾纠纷排查调处工作协调交账会议纪要 浏览:877
云南基金从业资格证书查询 浏览:313
新知识的摇篮创造力 浏览:187
股转转让协议 浏览:676