① 补码是谁发明的,它的最初作用是什么
补码就是正数的原码的相反数的另一种编码方式。它能把字长内的正数,补足为全是0。
② 一个数的原码,反码,补码怎么算
计算机中的存储系统都是用2进制储存的,对我们输入的每一个信息它都会自动转变成二进制的形式,而二进制在存储的时候就会用到原码,反码和补码
例如:输入25
原码就是:0000000000011001
反码: 1111111111100110
补码: 1111111111100111
~
数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚. "(摘自<<数学发展史>>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题.
数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为
(-127~-0 +0~127)共256个.
有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits
( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确.
因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算:
( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10
(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题.
( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确
问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).
于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:
(-128~0~127)共256个.
注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下:
( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确
( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确
所以补码的设计目的是:
⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.
⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计
所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码
③ c语言里面,反码谁发明的
当然是c语言的专家了。
所谓原码就是二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
原码10010= 反码11101 (10010,1为符号码,故为负)
(11101) 二进制= -2 十进制
补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
提示信息不要太少,可“某某数的反码是某某”,而不是只显示数值。
1.原码的求法:(1)对于正数,转化为二进制数,在最前面添加一符号位(这是规定的),用1表示负数,0表示正数.如:0000 0000是一个字节,其中左边第一个0为符号位,表示是正数,其它七位表示二进制的值.其实,机器不管这些,什么符号位还是值,机器统统看作是值来计算. 正数的原码、反码、补码是同一个数!
(2)对于负数,转化为二进制数,前面符号位为1.表示是负数.
计算原码只要在转化的二进制数前面加上相应的符号位就行了.
2.反码的求法:对于负数,将原码各位取反,符号位不变.
3.补码的求法:对于负数,将反码加上二进制的1即可,也就是反码在最后一位上加上1就是补码了.
④ 补码的整数补码
求给定数值的补码分以下两种情况: 正整数的补码是其二进制表示,与原码相同 。
【例1】+9的补码是00001001。(备注:这个+9的补码是用8位2进制来表示的,补码表示方式很多,还有16位二进制补码表示形式,以及32位二进制补码表示形式,64位进制补码表示形式等。每一种补码表示形式都只能表示有限的数字。) 求负整数的补码,将其对应正数二进制表示所有位取反(包括符号位,0变1,1变0)后加1 。
同一个数字在不同的补码表示形式中是不同的。比如-15的补码,在8位二进制中是11110001,然而在16位二进制补码表示中,就是1111111111110001。以下都使用8位2进制来表示。
【例2】求-5的补码。
-5对应正数5(00000101)→所有位取反(11111010)→加1(11111011)
所以-5的补码是11111011。
【例3】数0的补码表示是唯一的。
[+0]补=[+0]反=[+0]原=00000000
[ -0]补=11111111+1=00000000 已知一个数的补码,求原码的操作其实就是对该补码再求补码:
⑴如果补码的符号位为“0”,表示是一个正数,其原码就是补码。
⑵如果补码的符号位为“1”,表示是一个负数,那么求给定的这个补码的补码就是要求的原码。
【例4】已知一个补码为11111001,则原码是10000111(-7)。
因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”。
其余七位1111001取反后为0000110;
再加1,所以是10000111。 【例5】-65的补码是10111111
若直接将10111111转换成十进制,发现结果并不是-65,而是191。
事实上,在计算机内,如果是一个二进制数,其最左边的位是1,则我们可以判定它为负数,并且是用补码表示。
若要得到一个负二进制补码的数值,只要对补码全部取反并加1,就可得到其数值。
如:二进制值:10111111(-65的补码)
各位取反:01000000
加1:01000001(+65)

⑤ 原码、反码、补码的产生、应用以及优缺点有哪些
1、 原码:是机器数的一种简单的表示法。其符号位用0表示正号,用1表示负号,数值一般用二进制形式表示。
优点:最简单直观。
缺点:不能直接参加运算,可能会出错。
原码来历:在机器中,只能识别二进制数字,所以所以的数字都用原码来表示。
2、 反码:可由原码得到。如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是对它的原码(符号位除外)各位取反而得到的。
优点:解决负数加法运算问题,将减法运算转换为加法运算,从而简化运算规则。
缺点:没有缺点
反码来历:为了解决“正负相加等于0”的问题,在“原码”的基础上,人们发明了“反码”
3、 补码:可由原码得到。如果机器数是正数,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是对它的原码(除符号位外)各位取反,并在未位加1而得到的
优点:可以把负数直接拿来算加法。
缺点:容易忘记公式,计算错误。
补码来历:计算机里面,只有加法器,没有减法器,所有的减法运算,都必须用加法进行,用补数代替原数,可把减法转变为加法。
4、 在计算机中为什么要使用补码:由于原码和反码中,+0与-0的表示并不相同,所以计算机中一般使用补码。其实还有一个更重要的作用,就是利用高位溢出,将减法运算变成加法。
⑥ -5的原码、反码和补码各是多少啊,5呢
-5的原码、反码和补码各是10000101、11111010和11111011。
5的原码、反码和补码各是00000101、01111010和01111011。
计算机中的存储系版统都是用2进制储存权的,对我们输入的每一个信息它都会自动转变成二进制的形式,而二进制在存储的时候就会用到原码,反码和补码。
例如:输入25
原码就是:0000000000011001
反码: 1111111111100110
补码: 1111111111100111

(6)补码发明扩展阅读:
补码是为了计算方便而发明的。原始计算器只能做加法不能做减法,但是科学家发现,例如7+(-5)=2可以这样算:7+(-5) = 7+(10000-5)-10000 = 10002 - 10000 = 2 。
这很奇怪,因为机器太傻,只能做加法,但是虽然不会减法,-10000还是很方便的,只要去掉开头的1;用10000减也是很方便的,因为可以用9999减然后+1,而用9999减,只要把每一位用9减。
⑦ 二进制数字系统是谁发明的
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的专数。它属的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
⑧ 最早发明二进制的人是谁 科举乡试
二进制是计抄算技术中广袭泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
⑨ 二进制的计算“机”发明者是是谁计算机
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示版的数。它的基数权为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。 20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
⑩ 补码存在的意义
补码可复以简化计算机制的设计。
对于人脑而言,做加减题时,第一反应就是根据符号位,来选择对真值区域的加减。但是计算机而言,像加减乘除这类最最基础也是应用得最频繁的基本运算,在物理逻辑的设计上一定要设计的尽量简单。
如果让计算机也先判断符号位再分别做加或者减的运算的话,会使得计算机的电路设计变得较为复杂。人类发明了将符号位也参与进运算的方法来。对于计算机而言,不管是加法还是减法,都统一用加法来做运算,可以使得计算机的设计变得更加的简单。

(10)补码发明扩展阅读:
补码是另一种编码方式。与反码类似,正数的补码是它本身,而负数的补码则是它的反码再+1。同样,对于负数而言,补码也是无法直观地看出数值的,需要转成原码。
CPU 的基本单元 ALU 模块。在ALU里,加法是最基本的运算。通过程序,乘法可以转换为加分,除法可以转换为减法。补码表示,则可以让减法直接转换为加法。这样,ALU 核心只需要加法器即可满足功能,加法器可以通过集成电路中的晶体管来实现。