A. 什么叫做方程的元和次
元就是未知数的个数 而次数就是未知数的最高次数
比如3x+1=2就是一元一次方程 x^2+2x+3=0就是一元二次方程 x+y=3就是二元一次方程
B. 二元一次方程中的元和次是什么意思怎么解二元一次方程
元是抄未知数的个数,次是含有未知数的最高项的次数
解二元一次方程,要先把二元一次方程化成一元一次方程再解,还有一种方法,将两个二元一次方程组连立起来,在进行加或减,求出其中的一个未知数的值,再代入另外一个方程中进行运算,求出另外一个未知数的值
就是两种 加减消元法和代入消元法
C. 一元一次方程中的元和次是什么意思
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)。
数学书上有的,可以去书店看。
D. 方程是谁发明的
方程的发明者是法国数学家韦达。
韦达1540年生于法国的普瓦图(Poitou),今旺代省的丰特奈 -勒孔特(Fontenay.-le-Comte)。1603年12月13日卒于巴黎。年轻时学习法律并当过律师。后从事政治活动,当过议会的议员。
在对西班牙的战争中,曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。
韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。
韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。

(4)方程中的元和次的术语是谁创造的扩展阅读:
早在3600年前,古埃及人写在草纸上的数学问题中,就涉及了方程中含有未知数的等式。
公元825年左右,中亚细亚的数学家阿尔·花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法。
方程中文一词出自古代数学专著《九章算术》,其第八卷即名“方程”。“方”意为并列,“程”意为用算筹表示竖式。
卷第八(一)为:今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?
(现今有上等黍3捆、中等黍2捆、下等黍1捆,打出的黍共有39斗;有上等黍2捆、中等黍3捆、下等黍1捆,打出的黍共有34斗;有上等黍1捆、中等黍2捆、下等黍3捆,打出的黍共有26斗。问1捆上等黍、1捆中等黍、1捆下等黍各能打出多少斗黍?)
白话翻译:卷第八(一)为:现在有上禾三点,中禾二点,下禾一点,实际上三十九斗;上禾二点,中禾三点,下禾一点,实际上三十四斗;上禾一点,中禾二点,下禾三点,实际上两个十六斗。向上、中、下禾是一点各是多少?
(现在有上等黍三捆、中等黍二捆、下等黍子捆,打出来的饭共有三十九斗;有上等黍二捆、中等黍三捆、下等黍子捆,打出来的饭共有三十四斗;有上等黍子捆、中等黍二捆、下等黍三捆,打出来的饭共有二十六斗。问1捆上等人黍、一捆中等黍、1把下等人黍各能打响多少斗黄米?)
答曰:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。
白话翻译:他回答说:上禾一点,九斗、四分一的一,中禾一点,四斗、四分一的一,下禾一点,二斗、四分之三斗。
方程术曰:置上禾三秉,中禾二秉,下禾一秉,实三十九斗,于右方。中、左禾列如右方。以右行上禾遍乘中行而以直除。又乘其次,亦以直除。然以中行中禾不尽者遍乘左行而以直除。左方下禾不尽者,上为法,下为实。实即下禾之实。
求中禾,以法乘中行下实,而除下禾之实。余如中禾秉数而一,即中禾之实。求上禾亦以法乘右行下实,而除下禾、中禾之实。余如上禾秉数而一,即上禾之实。实皆如法,各得一斗。
白话翻译:方程方法是:设置上禾三点,中禾二点,下禾一点,实际上三十九斗,在右边。中、左禾列如右方。以右行上禾遍乘中行而以直任。又乘其次,也可以直接消除。然而以中行中禾不尽的遍乘左行而以直任。左下方禾不尽的,上为法,以下是真实。实立即下禾的事实。
求中禾,因法乘中走下实,而除下禾的事实。我像中禾持数而一,就是中禾的事实。求上禾也因法乘右边走下实,而除下禾、中禾的事实。我像上禾持数而一,登上禾的事实。实际上都像法,各得一斗。
以上是出自《九章算术》中的三元一次方程组,并展示了用“遍乘直除”来消元以解此方程组。
魏晋时期的大数学家刘徽在公元263年前后为《九章算术》作了大量注释,介绍了方程组:二物者再程,三物者三程,皆如物数程之。并列为行,故谓之方程。他还创立了比“遍乘直除”更简便的“互乘相消”法来解方程组。
E. 方程中的元和次代表什么
元代表着方程中有几个未知数,次是代表方程中最高次数,比若说 一个方程 X+Y^2=1,则是二元一次方程。
方程表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。

微分方程
微分方程将一些函数与其导数相关联的数学方程。在应用中,函数通常表示物理量,衍生物表示其变化率,方程定义了两者之间的关系。因为这种关系是非常常见的,微分方程在包括工程,物理,经济学和生物学在内的许多学科中起着突出的作用。
在纯数学中,微分方程从几个不同的角度进行研究,主要涉及到它们的解 - 满足方程的函数集。只有最简单的微分方程可以通过显式公式求解;然而,可以确定给定微分方程的解的一些性质而不找到其确切形式。
如果解决方案的自包含公式不可用,则可以使用计算机数值近似解决方案。动力系统理论强调了微分方程描述的系统的定性分析,而已经开发了许多数值方法来确定具有给定精确度的解决方案。
F. 数学方程的元和次分别表示什么
数学方程的元是指:方程中含有不同未知数的个数;次数是指未知数的最高指回数,最高指数是几,答就是几次。
如:x的平方+y的3次方+z=28,就是一个三元3次方程。
必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。

(6)方程中的元和次的术语是谁创造的扩展阅读:
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:直接开平方法;配方法;公式法;分解因式法。
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
G. 数学方程中的元次是谁创造的
康熙皇帝。康熙是我国历史上数学水平最高的一位帝王,他天资聪慧,十分热爱数学,14岁起跟着从比利时来华的传教士南怀仁学习数学,是康熙首创“元”、“次”、“根”等方程术语的汉译名。
比利时传教士南怀仁在给康熙讲解方程时,由于他汉语、满语水平都很有限,有些术语讲不清楚,解释很久还是不得要领,康熙就建议:将未知数翻译为“元”,最高次数翻译为“次”,使方程左右两边相等的未知数的值翻译为“根”或“解”。
南怀仁惊疑地盯着康熙,愣了一会儿,突然按照西方最亲切的礼节一下子将康熙紧紧抱住,激动地说:“我读书和教书几十年,无论是老师还是学生,还从来没见过一个像您这样肯动脑筋的人!”康熙创造的这几个方程术语,驭繁为简,准确科学,非常便于理解和记忆。

(7)方程中的元和次的术语是谁创造的扩展阅读
南怀仁简介
南怀仁(Ferdinand Verbiest,1623年10月9日—1688年1月28日,享年66岁),字敦伯,又字勋卿,西属尼德兰皮特姆(今比利时布鲁塞尔附近)人,耶稣会传教士,清代天文学家、科学家,1623年10月9日出生,1641年9月29日入耶稣会,1658年来华,是清初最有影响的来华传教士之一,为近代西方科学知识在中国的传播做出了重要贡献。
他是康熙皇帝的科学启蒙老师,精通天文历法、擅长铸炮,是当时国家天文台(钦天监)业务上的最高负责人,官至工部侍郎,正二品。1688年1月28日南怀仁在北京逝世,享年66岁,卒谥勤敏。著有《康熙永年历法》、《坤舆图说》、《西方要记》等。
H. 数学方程式中的元和次是谁创立的
数学方程式中的元和次是中国清朝时期的康熙皇帝创立的。
康熙皇帝是中国历史上声名显赫,又有远大抱负,聪明好学的一位皇帝。他除了其文治武功之外 ,还十分爱好数学,曾拜比利时的南怀仁等传教士为师,学习数学 、天文、地理以及拉丁文等,康熙皇帝虽然聪颖过人,但是听外籍教师讲课也有困难,因为南怀仁等人的汉语和满语水平有限,日常会话勉强对付,但要将严谨而高深的科学知识表达出来就显得力不从心了。而当时课本多是外文,即使中译本也是半通不通的。这样,学习中就必然有许多精 力被消耗在语言沟通上,进度不快 。
不过,康熙学习很刻苦,也很有耐心,不懂就请教,直至真正弄懂为止。南怀仁在讲方程时,句子冗长,吐音又很不清楚,康熙的脑子常常被搞得晕晕糊糊的,怎样才能让老师讲得好懂呢?一阵冥思苦想后,一个妙法突然冒出来。他向南怀仁建议 ,将未知数翻译为“元”,最高次数翻译为“次”(限整式方程),使方程左右两边相等的未知数的值翻译为“根”(解)⋯⋯南怀仁用笔认真地记了下来 ,随即用这些新创术语换下自己原先使用的繁琐词语 :“求二‘元’一‘次’方程的‘根 ’(解 )⋯⋯“如此一来,果然简单了很多,而且还可以提高教学效率,南怀仁惊疑地盯着康熙,愣怔了一会儿,突然按照西方最亲切的礼节一下子将康熙紧紧抱住:“我读书和教书几十年,无论是老师还是学生,还从来没见过一个像您这样肯动脑筋的人 !”
正因为康熙创造的这几个数学术语科学而简洁,十分便于理解和记忆,因此一直延用到今天 。
I. 我们现在数学用的方程,根,解等名词都是康熙创造出来的吗有何依据(正史,谢谢!)
康熙教皇子数学、天文学、地理学、医学、测量学、农学等。先以观测日食回为例。康熙三十六年答(1697年)闰三月初一日,日食。时康熙帝亲征噶尔丹在外,皇太子在北京观测,使用皇父所赐嵌有三层玻璃的小镜子,装于自鸣钟之上,用望日千里眼观望。日食似不到十分,日光、房屋、墙壁及人影俱可见,甚属明耀。观测奏报自京城发出,送皇父览阅。康熙帝得到奏报后,朱批曰:“览尔所奏,果然如此。”后来皇四子胤禛(雍正)回忆道:“昔年遇日食四五分之时,日光照耀,难以仰视。皇考亲率朕同诸兄弟在乾清宫,用千里镜,四周用夹纸遮蔽日光,然后看出考验所亏分数。此朕身经实验者。”又以几何学为例。法国耶稣会士白晋写给法王路易十四的信中说,康熙帝亲自给皇三子胤祉讲解几何学,并培养其科学才能。后又让胤祉等向意大利耶稣会士德理格学习律吕知识,“命臣德理格在皇三子、皇十五子、皇十六子殿下前,每日讲究其精微,修造新书”。康熙帝命在畅春园蒙养斋开馆,派允祉主持纂修《律历渊源》,汇律吕、历法和算法于一书。允祉还为《古今图书集成》的纂辑做出贡献,成为康熙朝一位杰出的学者。但他在雍正继位后,仍未逃过劫难:被夺爵,禁景山永安亭而死。
J. 一元一次方程中的“元”产生于什么年代是哪位数学家发明的原来的意思是什么
一元一次方程中的“元”产生的年代没有明确的记录,据说是康熙皇帝在学习西方数学时专提出的,因属当时没有可以代替“未知数”的代词,因此采用“元”为方程的未知数。
公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。

(10)方程中的元和次的术语是谁创造的扩展阅读:
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。