Ⅰ 双名法是谁发明的
在生物分抄类系统中,每一个物种都必须有一个独一无二的名字。早先人们以通俗的名称为常见的动植物命名,这些名称通常只描述它们的外形、发现或利用情况,很不科学。18世纪瑞典生物学家林奈发明了为生物命名的方法,叫作双名法。在这个系统中,每个物种都自己的名称,这样既鉴定了物种,也标明了它在整个生物分类学上的位置。例如,生叶常春藤名为CymbalarisaMuralis,前一个单词的意思是“钹状的叶子”,后一个单词的意思是“长在墙上”。
Ⅱ 真空三极管是怎样发明的
1904年的一天,美国科学家抄德福雷斯特正在做真空检波实验。这时,一位朋友告诉他:“英国的弗莱明博士发明真空二极管了!”
“发明了真空二极管?”德福雷斯特如同听到了晴天霹雳,“难道这几年的心血要付之东流吗?”后来,他反复研究了弗莱明的二极管,发现它确实比金属检波器好,不过只能起到检波作用,没有放大功能。“我能不能发明一种既能检波,又能放大信号的真空管呢?”他想到这里,又一头扎进实验室里。
1907年的一天,德福雷斯特为了测试屏极距阴极远近对检波的影响,在真空二极管的灯丝和屏极之间封进了第三个电极,即一片不大的锡箔。
他惊奇地发现:在第三极上施加一个不大的信号,就会使屏极电流产生显著的相应的变化。“哈哈!这说明第三电极具有放大信号的作用!”他激动万分。
他进一步发现,用白金丝扭成网来代替锡箔,放大效果更好。
就这样,世界上第一个真空三极管诞生了!
Ⅲ 是谁发明了真空技术急!
要说技术和原理,应该是爱迪生。
如果说成型的产品,应该是J.A.弗莱明
在1904年,曾经一专度是英国Malcony公司属顾问的J.A.Fleming先生,发明了用在无线电信中检波器的二极真空管。这次发明的原有概念,就是来自爱迪生早在十年前发明的“爱迪生效应”。他由于曾担任伦敦的爱迪生电灯公司顾问,所以当年爱迪生做的实验他也在场,离开爱迪生电灯公司后的他,仍继续不断进行更深入的研究。Fleming将发明了的二极真空管取名Bulb,或称Valve(取其电流只向单方向流,不会反方向流,像一道“活门”)现时流行的叫法是真空管,全部都是同一样东西。
Ⅳ 什么是双真空超导管
Ⅳ 真空三极管是怎么被发明的
1904年的一抄天,德弗雷斯特正在实验室里做真空管检波试验。忽然,一位朋友气喘吁吁地跑来,告诉德弗雷斯特英国的弗莱明博士发明了真空二极管的消息。对德弗雷斯特来说,这仿佛是一个晴天霹雳,经过短暂的犹豫和思想斗争,德弗雷斯特果断而坚定地选择了继续。
于是,德弗雷斯特又一头扎进了研究工作中。他请一位技师制作了几个真空管,接着,对真空管的性能进行检测,以寻找进一步提高的方法。
幸运总会垂青有毅力的人。一天,德弗雷斯特为了试试屏极距阴极远近对检波的影响。在真空二极管的灯丝和屏极之间封进了第三个电极,即一片不大的锡箔。他惊奇地发现:在第三极上施加一个不大的电信号,就会使屏极电流产生相应变化。第三极对屏极电流具有控制作用!这也正是德弗雷斯特长久以来梦寐以求的信号放大作用!
这一发现让德弗雷斯特备受鼓舞,但他很快从兴奋中冷静下来。为了验证准确,他又重复做了几遍实验,结果证实这种物理效果确实存在。德弗雷斯特还发现,用金属丝代替小锡箔,效果更好。于是,他把一根白金丝制成网状,封装在灯丝和屏极之间。就这样,世界上的第一个真空三极管诞生了!
Ⅵ 真空三极管的发明
德福雷斯特(De Forest Lee)将二极管加以改良,于1907年制造出第一支三极管。
金属之所以能导电,就是因为金属的自由电子较多,便于电子的相互流动,因此电子材料必须由导电性佳的材质制成。电子还有个特性,带负电的电子容易受到正电压的吸引,所谓同性相斥、异性相吸。
又从爱迪生效应中得知,当加热金属物质时,活跃于质子外围的自由电子容易产生游离现象,温度高导致电子活性增强,此时若空间中有一正电压强力吸引,游离的电子就会在空间中流动。
基于这几个当时已被了解的知识,佛来明(J.A. Fleming)于1904年制造出第一支二极真空管,德福雷斯特(De Forest Lee)将二极管加以改良,于1907年制造出第一支三极管,既然成功研发了三极管,真空管的应用开始实现,真空管的发展从此一日千里。

(6)双真空法发明扩展阅读:
真空管拥有三个最基本的极,第一是“阴极”(Cathode,以K代表):阴极当然是阴性的,它是释放出电子流的地方,它可以是一块金属板或是灯丝本身,当灯丝加热金属板时,电子就会游离而出,散布在小小的真空玻璃瓶里。
第二个极是“屏极”(Plate,以P代表),基本上它是真空管最外围的金属板,眼睛见到真空管最外层深灰色或黑色的金属板,通常就是屏极。屏极连接正电压,它负责吸引从阴极散发出来的电子(利用异性相吸的原理),作为电子游离旅行的终点。
第三个极为“栅极”(Grid,以G代表),从构造看来,它犹如一圈圈的细线圈,就如同栅栏一般,固定在阴极与屏极之间,电子流必须通过栅极而到屏极,在栅极之间通电压,可以控制电子的流量,它的作用就如同一个水龙头一般,具有流通与阻挡的功能。
Ⅶ 真空技术的发展史
真空技术
真空技术是建立低于大气压力的物理环境,以及在此环境中进行工艺制作、物理测量和科学试验等所需的技术。真空技术主要包括真空获得、真空测量、真空检漏和真空应用四个方面。在真空技术发展中,这四个方面的技术是相互促进的。
真空是指低于大气压力的气体的给定空间,即每立方厘米空间中气体分子数大约少于两千五百亿亿个的给定空间。真空是相对于大气压来说的,并非空间没有物质存在。用现代抽气方法获得的最低压力,每立方厘米的空间里仍然会有数百个分子存在。气体稀薄程度是对真空的一种客观量度 ,最直接的物理量度是单位体积中的气体分子数。气体分子密度越小,气体压力越低,真空就越高。但由于历史原因,量度真空通常都用压力表示。
远在1643年,意大利物理学家托里拆利发现,真空和自然空间有大气和大气压力存在。他将一根一端封闭的长玻璃管灌满汞,并倒立于汞槽中时,发现管中汞面下降,直至与管外的汞面相差76厘米时为止。托里拆利认为,玻璃管汞面上的空间是真空,76厘米高的汞柱是因为存在大气压力的缘故。
1650年,德国的盖利克制成活塞真空泵。1654年,他在马德堡进行了著名的马德堡半球试验:用真空泵将两个合在一起的、直径为14英寸(35.5厘米)的铜半球抽成真空,然后用两组各八匹马以相反方向拉拽铜球,始终未能将两半球分开。这个著名的试验又一次证明,空间有大气存在,且大气有巨大的压力。为了纪念托里拆利在科学上的重大发现和贡献,以往习用的真空压力单位就是用他的名字命名的。
19世纪中后期,英国工业革命的成功,促进了生产力和科学实验发展,同时也推动了真空技术的发展。1850年和1865年,先后发明了汞柱真空泵和汞滴真空泵,从而研制成了白炽灯泡(1879)、阴极射线管(1879)、杜瓦瓶(1893)和压缩式真空计(1874)。压缩式真空计的应用首次使低压力的测量成为可能。
20世纪初,真空电子管出现,促使真空技术向高真空发展。1935~1937年发明了气镇真空泵、油扩散泵和冷阴极电离计。这些成果和1906年制成的皮拉尼真空计至今仍为大多数真空系统所常用。
1940年以后,真空应用扩大到核研究(回旋加速器和同位素分离等)、真空冶金、真空镀膜和冷冻干燥等方面,真空技术开始成为一个独立的学科。第二次世界大战期间,原子物理试验的需要和通信对高质量电真空器件的需要,又进一步促进了真空技术的发展。
在地球上,通常是对特定的封闭空间抽气来获得真空,用来抽气的设备称为真空泵。早先制成的真空泵,抽气速度不大,极限真空低,很难满足生产和科学试验的需要。后来相继制成一系列抽气机理不同的真空泵,抽速和极限真空都得到不断的提高。如低温泵的抽气速率可达60000升/秒,极限真空可达千亿分之一帕数量级。
为了保证真空系统能达到和保持工作需要的真空,除需要配备合适的、抽气性能良好的真空泵以外,真空系统或其零部件还必须经过严格的检漏,以便消除破坏真空的漏孔。低(粗)真空、中真空和高真空系统一般用气压检漏 ;对于超高真空系统,在采用一般检漏法粗检以后,还要采用灵敏度较高的检漏仪,如卤素检漏仪和质谱检漏仪来检漏。
随着真空获得技术的发展,真空应用日渐扩大到工业和科学研究的各个方面。真空应用是指利用稀薄气体的物理环境完成某些特定任务。有些是利用这种环境制造产品或设备,如灯泡、电子管和加速器等。 这些产品在使用期间始终保持真空;而另一些则仅把真空当作生产中的一个步骤,最后产品在大气环境下使用,如真空镀膜、真空干燥和真空浸渍等。
真空的应用范围极广,主要分为低真空、中真空、高真空和超高真空应用。低真空是利用低(粗)真空获得的压力差来夹持、提升和运输物料,以及吸尘和过滤,如吸尘器、真空吸盘 。
中真空一般用于排除物料中吸留或溶解的气体或水分、制造灯泡、真空冶金和用作热绝缘。如真空浓缩生产炼乳,不需加热就能蒸发乳品中的水分。
真空冶金可以保护活性金属,使其在熔化、浇铸和烧结等过程中不致氧化,如活性难熔金属钨、钼、钽、铌、钛和锆等的真空熔炼;真空炼钢可以避免加入的一些少量元素在高温中烧掉和有害气体杂质等的渗入,可以提高钢的质量。
高真空可用于热绝缘、电绝缘和避免分子电子、离子碰撞的场合。高真空中分子自由程大于容器的线性尺寸,因此高真空可用于电子管、光电管、阴极射线管、X 射线管、加速器、质谱仪和电子显微镜等器件中,以避免分子、电子和离子之间的碰撞。这个特性还可应用于真空镀膜 ,以供光学、电学或镀制装饰品等方面使用。
外层空间的能量传输与超高真空中的能量传输相似,故超高真空可用作空间模拟。在超高真空条件下,单分子层形成的时间长(以小时计),这就可以在一个表面尚未被气体污染前 ,利用这段充分长的时间来研究其表面特性,如摩擦、粘附和发射等。
Ⅷ 真空泵是如何发明的
托里拆利用汞柱倒置的方法使玻璃管的上方出现真空,人们称之为托里拆利真空,可以说这是最早获得真空的方法。他的发现传开后,人们又做了许多实验来研究这个现象。例如,1647年有一位法国物理学家叫罗伯维尔(G.Roberval),做了一个有趣的实验,他从鲤鱼肚里取出鱼鳔,尽可能将里面空气排尽,再把开口扎紧,放在托里拆利真空区内,结果鱼鳔膨胀起来。这个实验令人信服地说明了,大气压下留在鱼鳔中的残余空气,当外部气压减小到零时,会膨胀为很大的体积。不久有人著书评述了这个实验,认为空气具有弹性,就好像海绵或羊毛一样,受到压力会收缩,压力减轻会膨胀。
德国人格里克在事先不知道托里拆利实验的情况下也发现了真空。他的经历饶有兴趣。有一天,他让家人用唧筒抽酒桶中的水,在抽的过程中唧筒脱落了,他们用布条重新绑好,由于填塞过严,桶口封住了,结果把桶内的空气也抽掉了,只听得里面一片沸腾的噪音。格里克从这件事得到启发,就用铜球壳代替木桶,让家人再用唧筒抽。家人越抽越费劲,最后只听嘭的一声,铜球塌瘪了。
1654年,格里克为了向公众演示抽气实验,他安排了两个引人注目的表演。由于他那时是德国马德堡市的市长,所以这两个实验也叫马德堡半球实验。实验之一,两个严密对接的半球形金属壳,中间抽空后,用16匹马也没有将两金属壳拉开。实验之二,一对抽空的半球吊在支架上,可以承受非常大的负荷。格里克没有对吸力的起因提供解释,他的贡献,主要是发明了真空泵。马德堡市长的新奇实验轰动了德国,当消息传到英吉利海峡对岸时,引起一番波澜,又有人做了许多新奇实验。其中一位就是大名鼎鼎的玻意耳。
Ⅸ 真空管的发明经过
真空管当然不是无缘无故做几片金属板封装在抽真空的玻璃瓶里进行实验的,它的发展与发明大王爱迪生有着一段故事。
电流与电子流动的方向恰巧相反
在此之前试问一个小问题:电路分析上“电流”的方向与实际上“电子”流动的方向是否相同?答案是否定的,电流与电子流的方向是恰巧相反的。过去的科学家无法观察电子流动的方向,于是统一说法,将电池的某一极设定为正极,其电压为正电压,电流由正极流至负极而形成一个封闭的回路。由于大家统一说法与作法,因此多年来并没有发生任何冲突之事,直到了近代科学家有了更精良的设备,观察之后遂推翻了之前的说法:“原来电子是由电池的负端流出来的”!(换言之,电子是从扩大机的喇叭负端流出,而从喇叭正端回流的) 身为使用者并不需要在意何者为真,只要按照科学家的结论行事就可以了。说这一段就是因为当初爱迪生发明灯泡之后,发现他生产的灯泡灯丝老是从正极端烧断,于是进一步实验在灯泡中加入一块小金属板,点灯之后将金属板连接电表,分别施以正电压以及负电压,观察电流的情形。
对于当时的科学而言,位于真空状态下且不连接的金属板,不论如何连接是不可能产生电流的,但怪事发生了,爱迪生发现某种物质(其实就是电子)会透过金属板,会从电池的负极腾空“跳”到正极,此发现当然激起更大的实验动机,此现象便称为“爱迪生效应”。这也是科学家首次质疑电流流动的方向,以及自由电子在空间中流动的现象。 金属之所以能导电,就是因为金属的自由电子较多,便于电子的相互流动,因此电子材料必须由导电性佳的材质制成。电子还有个特性,带负电的电子容易受到正电压的吸引,所谓同性相斥、异性相吸。又从爱迪生效应中得知,当加热金属物质时,活跃于质子外围的自由电子容易产生游离现象,温度高导致电子活性增强,此时若空间中有一正电压强力吸引,游离的电子就会在空间中流动。基于这几个当时已被了解的知识,佛来明(J.A. Fleming)于1904年制造出第一支二极真空管,德福雷斯特(De Forest Lee)将二极管加以改良,于1907年制造出第一支三极管,既然成功研发了三极管,真空管的应用开始实现,真空管的发展从此一日千里。

Ⅹ 名人勇于打破常规,发明创新的事例
1.司马光砸缸
司马光跟大家在后院玩耍,有个小孩失足掉到缸里的水中。别的版孩子们一见出了事,权都吓跑了,司马光却急中生智,从地上捡起一块大石头,使劲向水缸击去。水涌出来,小孩也得救了。

2.袁隆平
1986年提出杂交水稻育种分为“三系法品种间杂种优势利用、两系法亚种间杂种优势利用到一系法远缘杂种优势利用”的战略设想。被同行们誉为“杂交水稻之父”。
3.哥白尼的“日心说”
日心说,也称为地动说,是关于天体运动的和地心说相对立的学说,它认为太阳是宇宙的中心,而不是地球。哥白尼提出的“日心说”,有力地打破了长期以来居于宗教统治地位的“地心说”,实现了天文学的根本变革。
4.牛顿
通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。
5.盛田昭夫
东京通信工业株式会社在逐渐迈入国际化时,盛田昭夫感觉公司全名过于冗长,有碍国际化发展,于是就和井深大翻阅字典找寻新名称,最终决定使用“SONY”。1958年1月,盛田昭夫和井深大说服了持反对意见的董事会,正式将“东京通信工业株式会社”的名称改为“SONY”(索尼)。