① 請問利率期限結構(term structure of interest rates)和收益率曲線(yield curve)有區別嗎
利率期限結構是指即期利率與到期期限的關系及變化規律。收益率曲線是顯示金融工具收益率的圖表。大多數情況下收益率等於利率,但也會發生收益率與利率的背離。
利率期限結構(Term Structure of Interest Rates) 是指在在某一時點上,不同期限資金的收益率(Yield)與到期期限(Maturity)之間的關系。利率的期限結構反映了不同期限的資金供求關系,揭示了市場利率的總體水平和變化方向,為投資者從事債券投資和政府有關部門加強債券管理提供可參考的依據。
利率期限結構是指某個時點不同期限的即期利率與到期期限的關系及變化規律。 由於零息債券的到期收益率等於相同期限的市場即期利率,從對應關繫上來說,任何時刻的利率期限結構是利率水平和期限相聯系的函數。因此利率的期限結構即零息債券的到期收益率與期限的關系可以用一條曲線來表示,如水平線、向上傾斜和向下傾斜的曲線。甚至還可能出現更復雜的收益率曲線,即債券收益率曲線是上述部分或全部收益率曲線的組合。收益率曲線的變化本質上體現了債券的到期收益率與期限之間的關系,即債券的短期利率和長期利率表現的差異性。
收益率曲線(Yield Curve)是顯示一組貨幣和信貸風險均相同,但期限不同的債券或其他金融工具收益率的圖表。縱軸代表收益率,橫軸則是距離到期的時間。 收益率是指個別項目的投資收益率,利率是所有投資收益的一般水平,在大多數情況下,收益率等於利率,但也往往會發生收益率與利率的背離,這就導致資本流入或流出某個領域或某個時間,從而使收益率向利率靠攏。債券收益率在時期中的走勢未必均勻,這就有可能形成向上傾斜、水平以及向下傾斜的三種收益曲線。
收益率曲線是分析利率走勢和進行市場定價的基本工具,也是進行投資的重要依據。國債在市場上自由交易時,不同期限及其對應的不同收益率,形成了債券市場的「基準利率曲線」。市場因此而有了合理定價的基礎,其他債券和各種金融資產均在這個曲線基礎上,考慮風險溢價後確定適宜的價格。
② 債券久期、期貨合約 、期點價值、利益期限結構曲線、期貨品種
140.ABCD
141.BCD
142.AD
143.ABC
144.CD
145.ACD
③ 利率的風險結構與期限結構有什麼區別
一、利率的風險結構
債權工具的到期期限相同但利率卻不相同的現象稱為利率的風險結構。這種現象是由三個原因引起的:違約風險、流動性和所得稅因素。
債務人無法依約付息或歸還本金的風險稱為違約風險,它影響著債權工具的利率。各種債權工具都存在著違約風險,公司債券的利率往往高於同等條件下的政府債券的利率,普通公司債券的違約風險比信用等級較高的公司債券的違約風險要大。一般來說,債券違約風險越大,其利率越高。
影響債權工具利率的另一個重要因素是債券的流動性。流動性是指資產能夠以一個合理的價格順利變現的能力,它是一種投資的時間尺度(賣出它所需多長時間)和價格尺度(與公平市場價格相比的折扣)之間的關系。各種債券工具由於交易費用、償還期限、是否可轉換等條件的不同,變現所需要的時間或成本也不同,流動性就不同。一般來說,國債的流動性強於公司債券;期限較長的債券,流動性較差。流動性較差的債券,風險相對較大,利率定得就高一些;反之亦然。
所得稅也是影響利率風險結構的重要因素。在同等條件下,具有免稅特徵的債券利率要低。在美國,市政債券的違約風險高於國債,流動性低於國債,但由於市政債券的利息收入是免稅的,所以長期以來,美國市政債券的利率低於國債的利率。
二、利率的期限結構
債券的期限和收益率在某一既定時間存在的關系就稱為利率的期限結構,表示這種關系的曲線通常稱為收益曲線。利率期限結構主要討論金融產品到期時的收益與到期期限這兩者之間的關系及變化趨勢。在理論分析中,如果將影響收益的其他因素看成是既定的,那麼就可以用一條曲線來表示到期收益率與到期期限的函數關系。
一般而言,隨著利率水平的上升,長期收益與短期收益之差將減少或變成負值。也就是說,當平均利率水平較高時,收益曲線為水平的(有時甚至是向下傾斜的);當利率較低時,收益率曲線通常較陡。
收益曲線是指那些期限不同,卻有著相同流動性、稅率結構與信用風險的金融資產的利率曲線。金融資產收益曲線反映了這樣一種現象,即期限不同的有價證券,其利率變動具有相同特徵。
不同期限的債券,其利率經常朝同方向變動。利率水平較低時,收益率曲線經常呈現正斜率;利率水平較高時,收益率曲線經常出現負斜率。收益率曲線通常為正斜率。
收益曲線的表現形態有:
①正常的收益曲線(上升曲線),即常態曲線,指有價證券期限與利率呈正相關關系的曲線;
②顛倒的收益曲線(下降曲線),指有價證券期限與利率呈負相關關系的曲線。
④ 利率期限結構與收益率曲線的問題
利率期限結構與抄收益率曲線是互相影響的,在不考慮信用風險的其他因素前提下,同樣期限的市場利率與同樣剩餘期限的債券的收益率是近似的,主要是資金成本問題,借方和貸方是不會在同一個市場上多支付或少收取相關的利息。
⑤ 2、舉例說明何時持有債券比持有股票有利(利用利率期限結構曲線)
當利率曲線是下降的,未來債券的價格會上升,而股票價格則不會像債券那樣版對利率敏感,權故股價走勢變動小於債券價格變動。此外債券價格的影響因素比股票少,主要是宏觀經濟因素。而股票還包括行業和公司業績影響。總體而言,債券在利率曲線下降時,價格上升的趨勢會增大,這時持有債券更有利。
⑥ 試述利率期限結構的三種理論,他們的基本假設和結論分別是什麼
1流動性偏好理論(Liquidity Preference Theory)
長期債券收益要高於短期債券收益,因內為短期債券流動性高,易於容變現。而長期債券流動性差,人們購買長期債券在某種程度上犧牲了流動性,因而要求得到補償。
2預期理論(Expectation Theory)
如果人們預期利率會上升(例如在經濟周期的上升階段),長期利率就會高於短期利率。 如果所有投資者預期利率上升,收益曲線將向上傾斜;當經濟周期從高漲、繁榮即將過渡到衰退時如果人們預期利率保持不變,那麼收益曲線將持平。
如果在經濟衰退初期人們預期未來利率會下降,那麼就會形成向下傾斜的收益曲線。
3 市場分隔理論(Market Segmentation Theory)
因為人們有不同的期限偏好,所以長期、中期、短期債券便有不同的供給和需求,從而形成不同的市場,它們之間不能互相替代。根據供求量的不同,它們的利率各不相同。
⑦ 利率的期限結構往往呈現哪些特點
利率期抄限結構是平的襲指平坦型利率曲線。
收益率曲線主要包括四種類型。
一條漸升型利率曲線,表示期限越長的債券利率越高。這種曲線形狀被稱為「正向的」利率曲線。
一條漸降型利率曲線,表示期限越長的債券利率越低。這種曲線形狀被稱為「相反的」或「反向的」利率曲線。
一條平坦型利率曲線,表示不同期限的債券利率相等,這通常是正利率曲線與反利率曲線轉化過程中出現的暫時現象。
一條隆起型利率曲線,表示期限相對較短的債券,利率與期限呈正向關系;期限相對較長的債券,利率與期限呈反向關系
⑧ 如何理解「利率期限結構在市場分割理論」
該理抄論認為,由於存在法律襲、偏好或其他因素的限制,投資者和債券的發行者都不能無成本地實現資金在不同期限的證券之間的自由轉移。因此,證券市場並不是一個統一的無差別的市場,而是分別存在著短期市場、中期市場和長期市場。
不同市場上的利率分別由各市場的供給需求決定。當長期債券供給曲線與需求曲線的交點高於短期債券供給曲線和需求曲線的交點時,債券的收益率曲線向上傾斜;相反,則相反。
⑨ 利率期限結構理論 如何解釋 利率的同向變動 和 收益曲線 向上傾斜兩種現象
利率期復限結構理論及其發制展主要有三個:
預期假說 市場分割理論 流動性偏好假說
其中預期假說只能解釋利率同向變動
市場分割理論只能解釋收益曲線向上傾斜
只有流動性偏好假說可以同時解釋利率的同向變動 和 收益曲線 向上傾斜
下面是流動性偏好假說的說明
流動性偏好假說 希克思首先提出了不同期限債券的風險程度與利率結構的關系,較為完整地建立了流動性偏好理論。
根據流動性偏好理論,不同期限的債券之間存在一定的替代性,這意味著一種債券的預期收益確實可以影響不同期限債券的收益。但是不同期限的債券並非是完全可替代的,因為投資者對不同期限的債券具有不同的偏好。范·霍恩(Van Home)認為,遠期利率除了包括預期信息之外,還包括了風險因素,它可能是對流動性的補償。影響短期債券被扣除補償的因素包括:不同期限債券的可獲得程度及投資者對流動性的偏好程度。在債券定價中,流動性偏好導致了價格的差別。
⑩ 利率的風險結構與期限結構有什麼區別
一、利率的風險結構 ;
債權工具的到期期限相同,但利率卻不相同的現象稱為利率的風險結構。這種現象是由三個原因引起的,違約風險、流動性和所得稅因素。
債務人無法依約付息或歸還本金的風險稱為違約風險,它影響著債權工具的利率。各種債權工具都存在著違約風險,公司債券的利率往往高於同等條件下的政府債券的利率,普通公司債券的違約風險比信用等級較高的公司債券的違約風險要大。
影響債權工具利率的另一個重要因素是債券的流動性。流動性是指資產能夠以一個合理的價格順利變現的能力,它是一種投資的時間尺度之間的關系。各種債券工具由於交易費用、償還期限、是否可轉換等條件的不同,變現所需要的時間或成本也不同,流動性就不同
所得稅也是影響利率風險結構的重要因素。在同等條件下,具有免稅特徵的債券利率要低。
二、利率的期限結構
債券的期限和收益率在某一既定時間存在的關系就稱為利率的期限結構,表示這種關系的曲線通常稱為收益曲線。利率期限結構主要討論金融產品到期時的收益與到期期限這兩者之間的關系及變化趨勢。
在理論分析中,如果將影響收益的其他因素看成是既定的,那麼就可以用一條曲線來表示到期收益率與到期期限的函數關系。
一般而言,隨著利率水平的上升,長期收益與短期收益之差將減少或變成負值。也就是說,當平均利率水平較高時,收益曲線為水平的(有時甚至是向下傾斜的);當利率較低時,收益率曲線通常較陡。