Ⅰ 利率的期限結構如何決定
利率的期限結構是指風險相同但期限不同的證券收益率之間的關系。
利率期限結構理論認為利率的高低主要取決於金融工具到期時的收益與到期期限之間的關系。
Ⅱ 簡述利率期限結構理論
利率期限結構是指在某一時點上,不同期限資金的收益率與到期期限之間的關系。利率的期限結構反映了不同期限的資金供求關系,揭示了市場利率的總體水平和變化方向,為投資者從事債券投資和政府有關部門加強債券管理提供可參考的依據。
利率期限結構理論主要分為四種:預期理論;分割市場理論;流動性溢價理論;期限優先理論。
1、預期理論:預期理論提出了以下命題:長期債券的利率等於在其有效期內人們所預期的短期利率的幾何平均值。這一理論關鍵的假定是,債券投資者對於不同到期期限的債券沒有特別的偏好,因此如果某債券的預期回報率低於到期期限不同的其他債券,投資者就不會持有這種債券。
2、分割市場理論:分割市場理論將不同到期期限的債券市場看做完全獨立和相互分割的。到期期限不同的每種債券的利率取決於該債券的供給與需求,其他到期期限的債券的預期回報率對此毫無影響。關鍵假定:不同到期期限的債券根本無法相互替代。
3、流動性溢價理論:流動性溢價理論是預期理論與分割市場理論結合的產物。它認為長期債權的利率應當等於長期債權到期之前預期短期利率的平均值與隨債券供求狀況變動而變動的流動性溢價之和。不同期限債券的偏好。換句話講,不同到期期限的債券可以相互替代,但並非完全替代品。
4、期限優先理論:採取了較為間接地方法來修正預期理論,但得到的結論是相同的。它假定投資者對某種到期期限的債券有著特別的偏好,即更願意投資於這種期限的債券。
(2)利率的期限機構擴展閱讀
利率期限結構由於零息債券的到期收益率等於相同期限的市場即期利率,從對應關繫上來說,任何時刻的利率期限結構是利率水平和期限相聯系的函數。因此,利率的期限結構,即零息債券的到期收益率與期限的關系可以用一條曲線來表示,如水平線、向上傾斜和向下傾斜的曲線。
甚至還可能出現更復雜的收益率曲線,即債券收益率曲線是上述部分或全部收益率曲線的組合。收益率曲線的變化本質上體現了債券的到期收益率與期限之間的關系,即債券的短期利率和長期利率表現的差異性。
環球青藤友情提示:以上就是[ 簡述利率期限結構理論? ]問題的解答,希望能夠幫助到大家!
Ⅲ 什麼是利率期限結構
利率期限結構(Term Structure of Interest Rates) 是指在某一時點上,不同期限資金的收益率(Yield)與到期期限(Maturity)之間的關系。利版率的期限結構反映權了不同期限的資金供求關系,揭示了市場利率的總體水平和變化方向,為投資者從事債券投資和政府有關部門加強債券管理提供可參考的依據。
Ⅳ 利率的期限結構反應的是市場利率嗎
利率的期限結構反應是市場利率的其中一個組成部分,但是這兩個概念之間是不能等同的,包括市場的虧損利率也是包括在利率當中的。
Ⅳ 利率期限結構的簡介
什麼是利率期限結構
嚴格地說,利率期限結構是指某個時點不同期限回的即期利率與到答期期限的關系及變化規律。 由於零息債券的到期收益率等於相同期限的市場即期利率,從對應關繫上來說,任何時刻的利率期限結構是利率水平和期限相聯系的函數。因此,利率的期限結構,即零息債券的到期收益率與期限的關系可以用一條曲線來表示,如水平線、向上傾斜和向下傾斜的曲線。甚至還可能出現更復雜的收益率曲線,即債券收益率曲線是上述部分或全部收益率曲線的組合。收益率曲線的變化本質上體現了債券的到期收益率與期限之間的關系,即債券的短期利率和長期利率表現的差異性。
Ⅵ 利率的期限結構問題
這有點類似債券利率和存款利率關系 如果存款利率下降 勢必債券利率就會上升
Ⅶ 利率期限結構是平的是什麼意思
利率期來限結構是平的自指平坦型利率曲線。
收益率曲線主要包括四種類型。
一條漸升型利率曲線,表示期限越長的債券利率越高。這種曲線形狀被稱為「正向的」利率曲線。
一條漸降型利率曲線,表示期限越長的債券利率越低。這種曲線形狀被稱為「相反的」或「反向的」利率曲線。
一條平坦型利率曲線,表示不同期限的債券利率相等,這通常是正利率曲線與反利率曲線轉化過程中出現的暫時現象。
一條隆起型利率曲線,表示期限相對較短的債券,利率與期限呈正向關系;期限相對較長的債券,利率與期限呈反向關系
Ⅷ 利率的期限結構是什麼
利率期限結構是指在在某一時點上,不同期限資金的收益率與到期期限之間的關系。
Ⅸ 利率的風險結構與期限結構有什麼區別
一、利率的風險結構
債權工具的到期期限相同但利率卻不相同的現象稱為利率的風險結構。這種現象是由三個原因引起的:違約風險、流動性和所得稅因素。
債務人無法依約付息或歸還本金的風險稱為違約風險,它影響著債權工具的利率。各種債權工具都存在著違約風險,公司債券的利率往往高於同等條件下的政府債券的利率,普通公司債券的違約風險比信用等級較高的公司債券的違約風險要大。一般來說,債券違約風險越大,其利率越高。
影響債權工具利率的另一個重要因素是債券的流動性。流動性是指資產能夠以一個合理的價格順利變現的能力,它是一種投資的時間尺度(賣出它所需多長時間)和價格尺度(與公平市場價格相比的折扣)之間的關系。各種債券工具由於交易費用、償還期限、是否可轉換等條件的不同,變現所需要的時間或成本也不同,流動性就不同。一般來說,國債的流動性強於公司債券;期限較長的債券,流動性較差。流動性較差的債券,風險相對較大,利率定得就高一些;反之亦然。
所得稅也是影響利率風險結構的重要因素。在同等條件下,具有免稅特徵的債券利率要低。在美國,市政債券的違約風險高於國債,流動性低於國債,但由於市政債券的利息收入是免稅的,所以長期以來,美國市政債券的利率低於國債的利率。
二、利率的期限結構
債券的期限和收益率在某一既定時間存在的關系就稱為利率的期限結構,表示這種關系的曲線通常稱為收益曲線。利率期限結構主要討論金融產品到期時的收益與到期期限這兩者之間的關系及變化趨勢。在理論分析中,如果將影響收益的其他因素看成是既定的,那麼就可以用一條曲線來表示到期收益率與到期期限的函數關系。
一般而言,隨著利率水平的上升,長期收益與短期收益之差將減少或變成負值。也就是說,當平均利率水平較高時,收益曲線為水平的(有時甚至是向下傾斜的);當利率較低時,收益率曲線通常較陡。
收益曲線是指那些期限不同,卻有著相同流動性、稅率結構與信用風險的金融資產的利率曲線。金融資產收益曲線反映了這樣一種現象,即期限不同的有價證券,其利率變動具有相同特徵。
不同期限的債券,其利率經常朝同方向變動。利率水平較低時,收益率曲線經常呈現正斜率;利率水平較高時,收益率曲線經常出現負斜率。收益率曲線通常為正斜率。
收益曲線的表現形態有:
①正常的收益曲線(上升曲線),即常態曲線,指有價證券期限與利率呈正相關關系的曲線;
②顛倒的收益曲線(下降曲線),指有價證券期限與利率呈負相關關系的曲線。