Ⅰ 是誰創立了解析幾何學是哪個國家的
十七世紀的法國學者笛卡爾,實現了幾何和代數的結合
Ⅱ 幾何學是哪個國家發明的
埃及產生了幾何學的初步知識.
希臘人由於跟埃及人通商,從埃及學到了測量與繪畫等的幾何初步知識.希臘人在這些幾何初步知識的基礎上,逐步充實並提高成為一門完整的幾何學.
Ⅲ 幾何是哪發明的為什麼發明他
在我國古代,這門數學分科並不叫「幾何」,而是叫作「形學」。「幾何」二字,在中文裡原先也不是一個數學專有名詞,而是個虛詞,意思是「多少」。比如三國時曹操那首著名的《短歌行》詩,有這么兩句:「對酒當歌,人生幾何?」這里的「幾何」就是多少的意思。明末傑出的科學家徐光啟首先把「幾何」一詞作為數學的專業名詞來使用的。
幾何最早的有記錄的開端可以追溯到古埃及(參看古埃及數學),古印度(參看古印度數學),和古巴比倫(參看古巴比倫數學),其年代大約始於公元前3000年。早期的幾何學是關於長度,角度,面積和體積的經驗原理,被用於滿足在測繪,建築,天文,和各種工藝製作中的實際需要。在它們中間,有令人驚訝的復雜的原理,以至於現代的數學家很難不用微積分來推導它們。例如,埃及和巴比倫人都在畢達哥拉斯之前1500年就知道了畢達哥拉斯定理(勾股定理);埃及人有方形棱錐的錐台(截頭金字塔形)的體積的正確公式;而巴比倫有一個三角函數表。
中國文明和其對應時期的文明發達程度相當,因此它可能也有同樣發達的數學,但是沒有那個時代的遺跡可以使我們確認這一點。也許這是部分由於中國早期對於原始的紙的使用,而不是用陶土或者石刻來記錄他們的成就。
Ⅳ 幾何學是誰發明的
在我國古代,這門數學分科並不叫「幾何」,而是叫作「形學」。「幾何」二字,在中文裡原先也不是一個數學專有名詞,而是個虛詞,意思是「多少」。比如三國時曹操那首著名的《龜雖壽》詩,有這么兩句:「對酒當歌,人生幾何?」這里的「幾何」就是多少的意思。那麼,是誰首先把「幾何」一詞作為數學的專業名詞來使用的,用它來稱呼這門數學分科的呢?這是明末傑出的科學家徐光啟。 ==簡史==
幾何學有悠久的歷史。最古老的[[歐氏幾何]]基於一組公設和定義,人們在公設的基礎上運用基本的邏輯推理構做出一系列的命題。可以說,《[[幾何原本]]》是公理化系統的第一個範例,對西方數學思想的發展影響深遠。
一千年後,[[笛卡兒]]在《[[方法論]]》的附錄《幾何》中,將[[坐標]]引入幾何,帶來革命性進步。從此幾何問題能以[[代數]]的形式來表達。實際上,幾何問題的代數化在[[中國數學史]]上是顯著的方法。笛卡兒的創造,是否有東方數學的影響在裡面,由於東西方數學交流史研究的欠缺,尚不得而知。
歐幾里得幾何學的第五公設,由於並不自明,引起了歷代數學家的關注。最終,由羅巴切夫斯基和黎曼建立起兩種非歐幾何。
幾何學的現代化則歸功於[[克萊因]]、[[希爾伯特]]等人。克萊因在普呂克的影響下,應用群論的觀點將幾何變換視為特定不變數約束下的變換群。而希爾比特為幾何奠定了真正的科學的公理化基礎。應該指出幾何學的公理化,影響是極其深遠的,它對整個數學的嚴密化具有極其重要的先導作用。它對數理邏輯學家的啟發也是相當深刻的。
Ⅳ 數學幾何是誰創造的
我覺得後面有半句你還沒說,那就是:害得我現在學得苦逼苦逼的
Ⅵ 哪個國家最早使用幾何
人們感性地、朴復素地運制用幾何知識,應該早在沒有「國家」的時候,就開始了,也很難追溯「哪個國家」什麼的。
不過,最早把幾何知識發展成系統的、邏輯嚴密的知識,那是算「歐幾里得」。
歐幾里得(希臘文:Ευκλειδης ,公元前330年—公元前275年),古希臘數學家。他活躍於托勒密一世(公元前364年-公元前283年)時期的亞歷山大里亞,被稱為「幾何之父」,他最著名的著作《幾何原本》是歐洲數學的基礎,提出五大公式,歐幾里得幾何,被廣泛的認為是歷史上最成功的教科書。歐幾里得也寫了一些關於透視、圓錐曲線、球面幾何學及數論的作品。
Ⅶ 數學最早在哪個國家誕生
1,什麼是數學?數學本身是一個歷史的概念,數學的內涵隨著時代的變化而變化,給數學下一個一勞永逸的定義是不可能的。我們在這里就從歷史的角度來談談「什麼是數學」這個問題。公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」 從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」 二.數與形的概念的產生人類在蒙昧時代就已具有識別事物多寡的能力。原始人在採集、狩獵等生產活動中首先注意到一隻羊與許多羊、一頭狼與整群狼在數量上的差異。通過一隻羊與許多羊、一頭狼與整群狼的比較,就逐漸看到了一隻羊、一頭狼、一條魚、一棵樹等等之間存在著某種共通的東西(即它們的單位性)。當對數的認識變得越來越明確時,人們感到有必要以某種方式來表達事物的這一屬性,於是導致了記數。 古代的記數方法: 1. 手指計數:利用兩只手的十個手指。亞里士多德指出:十進制的廣泛採用,只不過是我們絕大多數人生來具有10個手指這一事實的結果。 2. 石子記數:在地上擺小石子,但記數的石子堆很難長久保存。 3. 結繩記數:在一根繩子上打結來表示事物的多少。比如今天獵到五頭羊,就以在繩子上打五個結來表示;約定三天後再見面,就在繩子上打三個結,過一天解一個結;等等。秘魯的印加族人(印第安人中的一部分)古時(公元前1500年前)每收進一捆莊稼,就在繩上打個結,用來記錄收獲的多少。中國古代文獻《周易 系辭下》有「上古結繩而治」之說。「結繩而治」即結繩記數或結繩記事。結繩記數這種方法,不但在遠古時候使用,而且一直在某些民族中沿用下來。宋朝人在一本書中說:「韃靼無文字,每調發軍馬,即結草為約,使人傳達,急於星火。」這是用結草來調發軍馬,傳達要調的人數。其他如藏族、彝族等,雖都有文字,但在一般不識字的人中間都還長期使用這種方法。中央民族大學就收藏著一副高山族的結繩,由兩條繩子組成:每條上有兩個結,再把兩條繩結在一起。 4. 刻痕記數:1937年在維斯托尼斯(摩拉維亞)發現一根40萬年前的幼狼前肢骨,7英寸長,上面有55道很深的刻痕。這是已發現的用刻痕方法計數的最早資料。直到今天,在歐、亞、非大陸的某些地方,仍然有一些牧人用在棒上刻痕的方法來計算他們的牲畜。 直到距今大約五千年前,終於出現了書寫記數以及相應的記數系統。我們介紹幾種古老文明的早期記數系統。(按時代順序) 1. 古埃及的象形數字(公元前3400年左右) 2. 巴比倫楔形文字(公元前2400年左右) 3. 中國甲骨文數字(公元前1600年左右) 4. 希臘阿提卡數字(公元前500年左右) 5. 中國籌算數碼(公元前500年左右) 6. 印度婆羅門數字(公元前300年左右) 7. 瑪雅數字(?) 而我們現代廣泛使用的是阿拉伯數字。其實,這些阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。與數的概念形成一樣,人類最初的幾何知識也是他們從對形的直覺中萌發出來的,例如,不同種族的人都注意到了圓月和挺拔的松樹在形象上的區別。幾何學便是建立在對這類從自然界提取出來的「形」的總結的基礎之上。例如,一個平面只不過是一片平地的表面,而一條直線則是拉緊了的一段繩子,來自希臘文的英文Hypotenuse(斜邊、弦)原先的意思就是「拉緊」。同樣,三角形、圓、正方形、長方形等一系列幾何形式的概念也來自於人們的觀察和實踐。在不同的地區,幾何學的這種實踐來源方向不盡相同。 1. 古埃及幾何學:正如古羅馬歷史學家希羅多德所指出的,埃及的幾何學是「尼羅河的饋贈」。一年一度的尼羅河洪水沖毀了某個人的土地,那麼他就必須向法老報告所受的損失。法老會派專人來測量所失去的土地,再按相應的比例減稅。這樣一來,幾何學就產生並發展起來了。這類專門負責測量事物的人有專門的名稱,叫做「司繩」。 2. 巴比倫人的幾何學:也是源於實際的測量,它的重要特徵是其算術性質,至少在公元前1600年,他們就已熟悉長方形、直角三角形和等腰三角形和某些梯形的面積計算。 3. 古印度幾何學:起源與宗教實踐密切相關,公元前8世紀至5世紀形成的所謂「繩法經」,便是關於祭壇與寺廟建造中的幾何問題及其求解法則的記載。 4. 古代中國幾何學:起源更多地與天文觀測相聯系。中國最早的數學經典《周髀算經》(至晚在公元前2世紀成書)事實上是一部討論西周初年天文測量中所用數學方法的著作。若滿意請採納!!謝謝
Ⅷ 幾何是誰發明的。。。
歐幾里德
Ⅸ 是誰發明了幾何
1637年,法國的哲學家和數學家笛卡爾發表了他的著作《方法論》,這本書的內後面有三篇附錄,一篇叫《折容光學》,一篇叫《流星學》,一篇叫《幾何學》。當時的這個「幾何學」實際上指的是數學,就像我國古代「算術」和「數學」是一個意思一樣。 笛卡爾的《幾何學》共分三卷,第一卷討論尺規作圖;第二卷是曲線的性質;第三卷是立體和「超立體」的作圖,但他實際是代數問題,探討方程的根的性質。後世的數學家和數學史學家都把笛卡爾的《幾何學》作為解析幾何的起點。 從笛卡爾的《幾何學》中可以看出,笛卡爾的中心思想是建立起一種「普遍」的數學,把算術、代數、幾何統一起來。他設想,把任何數學問題化為一個代數問題,在把任何代數問題歸結到去解一個方程式。 為了實現上述的設想,笛卡爾茨從天文和地理的經緯制度出發,指出平面上的點和實數對(x,y)的對應關系。x,y的不同數值可以確定平面上許多不同的點,這樣就可以用代數的方法研究曲線的性質。這就是解析幾何的基本思想。