❶ 中國古代是如何計數的
中國數學發展史
中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」
和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。
宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。
就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。
(三)屬於幾何方面的材料
自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。
中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。
漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。
圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。
在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。
祖沖之所得的結果π=355/133要比歐洲早一千多年。
在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。
中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果.
正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。
(四)屬於三角方面的材料
三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。
劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。
在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。
十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。
在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。十八世紀以後,中國還出版了不少三角學方面的書籍。
❷ 問些關於三角函數的問題~~~~
加我我來告訴你,我也是程序員三角函數跟矩陣
都是非常重要的運算我是過來人分給我吧。上面的SB根本不知道你問的是什麼還些SB亂貼網路里的垃圾信息。
❸ 三角函數的發展史以及數學家和應用
三角學的起源與發展
三角學之英文名稱 Trigonometry ,約定名於公元1600年,實際導源於希臘文trigono (三角)和metrein (測量),其原義為三角形測量(解法),以研究平面三角形和球面三角形的邊和角的關系為基礎,達到測量上的應用為目的的一門學科。早期的三角學是天文學的一部份,後來研究范圍逐漸擴大,變成以三角函數為主要對象的學科。現在,三角學的研究范圍已不僅限於三角形,且為數理分析之基礎,研究實用科學所必需之工具。
(一) 西方的發展
三角學﹝Trigonometry﹞創始於公元前約150年,早在公元前300年,古代埃及人已有了一定的三角學知識,主要用於測量。例如建築金字塔、整理尼羅河泛濫後的耕地、通商航海和觀測天象等。公元前600年左右古希臘學者泰勒斯(p13)利用相似三角形的原理測出金字塔的高,成為西方三角測量的肇始。公元前2世紀後希臘天文學家希帕霍斯(Hipparchus of Nicaea)為了天文觀測的需要,作了一個和現在三角函數表相仿的「弦表」,即在固定的圓內,不同圓心角所對弦長的表,他成為西方三角學的最早奠基者,這個成就使他贏得了「三角學之父」的稱謂。
公元2世紀,希臘天文學家數學家托勒密(Ptolemy)(85-165)
繼承希帕霍斯的成就,加以整理發揮,著成《天文學大成》13卷,包括從0°到90°每隔半度的弦表及若乾等價於三角函數性質的關系式,被認為是西方第一本系統論述三角學理論的著作。約同時代的梅內勞斯(Menelaus)寫了一本專門論述球三角學的著作《球面學》,內容包球面三角形的基本概念和許多平面三角形定理在球面上的推廣,以及球面三角形許多獨特性質。他的工作使希臘三角學達到全盛時期。
(二)中國的發展
我國古代沒有出現角的函數概念,只用勾股定理解決了一些三角學范圍內的實際問題。據《周髀算經》記載,約與泰勒斯同時代的陳子已利用勾股定理測量太陽的高度,其方法後來稱為「重差術」。1631西方三角學首次輸入,以德國傳教士鄧玉函、湯若望和我國學者徐光啟(p20)合編的《大測》為代表。同年徐光啟等人還編寫了《測量全義》,其中有平面三角和球面三角的論述。年薛風祚與波蘭傳教士穆尼閣合編《三角演算法》,以「三角」取代「大測」,確立了「三角」名稱。1877年華蘅煦等人對三角級數展開式等問題有過獨立的探討。
現代的三角學主要研究角的特殊函數及其在科學技術中的應用,如幾何計算等,多發展於20世紀中。
貳、三角函數的演進
正弦函數、餘弦函數、正切函數、餘切函數、 正割函數、餘割函數統稱為三角函數(Trigonometric function)。
盡管三角知識起源於遠古,但是用線段的比來定義三角函數,是歐拉(p16)(1707-1783)在《無窮小分析引論》一書中首次給出的。在歐拉之前,研究三角函數大都在一個確定半徑的圓內進行的。如古希臘的托勒密定半徑為60;印度 人阿耶波多(約476-550)定半徑為3438;德國數學家裡基奧蒙特納斯(1436-1476)為了精密地計算三角函數值曾定半徑600,000;後來為制訂更精密的正弦表又定半徑為107。因此,當時的三角函數實際上是定圓內的一些線段的長。
義大利數學家利提克斯(1514-1574)改變了前人的做法,即過去一般稱AB為 的正弦,把正弦與圓牢牢地連結在一起(如下頁圖), 而利提克斯卻把它稱為∠AOB的正弦,從而使正弦值直接與角掛勾,而使圓O成為從屬地位了。
】
到歐拉(Euler)時,才令圓的半徑為1,即置角於單位圓之中,從而使三角函數定義為相應的線段與圓半徑之比。
1. 正弦、餘弦
在△ABC中,a、b、c為角A、B、C的對邊,R為△ABC的外接圓半徑,則有
稱此定理為正弦定理。
正弦定理是由伊朗著名的天文學家阿布爾.威發(940-998)首先發現與證明的。中亞細亞人艾伯塔魯尼﹝973-1048﹞(p15)給三角形的正弦定理作出了一個證明。 也有說正弦定理的證明是13世紀的那希爾丁在《論完全四邊形》中第一次把三角學作為獨立的學科進行論述,首次清楚地論證了正弦定理。他還指出,由球面三角形的三個角,可以求得它的三個邊,或由三邊去求三個角。 這是區別球面三角與平面三角的重要標志。至此三角學開始脫離天文學,走上獨立發展的道路。
托勒密( Claudius Ptolemy )的《天文學大成》第一卷
除了一些初級的天文學數據之外,還包括了上面講的弦表:
它給出一個圓從 ( )° 到180°每隔半度的所有圓心
角所對的弦的長度。圓的半徑被分為60等分,弦長以每一等分為單位,以六十進制製表達。這樣,以符號 crd a 表示圓心角a所對的弦長, 例如 crd 36°=37p4'55",意思是:36° 圓心角的弦等於半徑的 (或37個小部分),加上一個小部分的 ,再加上一個小部分的 ,從下圖看出, 弦表等價於正弦函數表,因為
公元6世紀初,印度數學家阿耶波多製作了一個第一象限內間隔3°45'的正弦表,依照巴比倫人和希臘人的習慣,將圓周分為360度,每度為60分,整個圓周為21600份,然後據 2πr=216000,得出r=3438﹝近似值﹞,然後用勾股定理先算出30°、45°、90°的正弦之後,再用半形公式算出較小角的正弦值,從而獲得每隔3°45'的正弦長表;其中用同一單位度量半徑和圓周,孕育著最早的弧度制概念。他在計算正弦值的時候,取圓心角所對弧的半弦長,比起希臘人取全弦長更近於現代正弦概
念。印度人還用到正矢和餘弦,並給出一些三角函數的近似分
數式。
2.正切、餘切
著名的敘利亞天文學、數學家阿爾一巴坦尼﹝850-929﹞於920年左右,製成了自0°到90°相隔1°的餘切[cotangent]表。
公元727年,僧一行受唐玄宗之命撰成《大行歷》。為了求得全國任何一地方一年中各節氣的日影長度 ,一行編出了太陽天頂距和八尺之竿的日影長度對應表, 而太陽天頂距和日影長度的關系即為正切﹝tangent﹞函數 。而巴坦尼編制的是餘切函數表, 而太陽高度﹝角﹞和太陽天頂距﹝角﹞互為餘角,這樣兩人的發現實際上是一回事,但巴坦尼比一行要晚近200年。
14世紀中葉,中亞細亞的阿魯伯﹝1393-1449﹞,原是成吉思汗的後裔,他組織了大規模的天文觀測和數學用表的計算。他的正弦表精確到小數9位。他還製造了30°到45°之間相隔為1',45°到90°的相隔為5'的正切表。
在歐洲,英國數學家、坎特伯雷大主教布拉瓦丁﹝1290?-1349﹞首先把正切、餘切引入他的三角計算之中。
3.正割、餘割
正割﹝secant﹞及餘割﹝cosecant﹞這兩個概念由阿布爾
─威發首先引入。sec這個略號是1626年荷蘭數基拉德
﹝1595-1630﹞在他的《三角學》中首先使用,後經歐拉採用
才得以通行。正割、餘割函數的現代定義亦是由歐拉給出的。
歐洲的「文藝復興時期」,﹝14世紀-16世紀﹞偉大的天文學家哥白尼﹝1473-1543﹞提倡地動學說,他的學生利提克斯見到當時天文觀測日益精密,認為推算更精確的三角函數值表刻不容緩。於是他定圓的半徑為1015,以製作每隔10"的正弦、正切及正割值表。當時還沒有對數,更沒有計算器。全靠筆算,任務十分繁重。利提克斯和他的助手們以堅毅不拔的意志,勤奮工作達12年之久,遺憾的是,他生前沒能完成這項工作,直到1596年,才由他的學生鄂圖﹝1550-1605﹞完成並公布於世,1613年海得堡的彼提克斯﹝1561-1613﹞又修訂了利提克斯的三角函數表,重新再版。後來英國數學家納皮爾發現了對數,這就大大地簡化了三角計算,為進一步造出更精確的三角函數表創造了條件。
4.三角函數符號
毛羅利科早於1558年已採用三角函數符號, 但當時並無
函數概念,於是只稱作三角線( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示餘弦。
而首個真正使用簡化符號表示三角線的人是T.芬克。他於1583年創立以「tangent」(正切)及「secant」(正割)表示相應之概念,其後他分別以符號「sin.」,「tan. 」, 「sec. 」,「sin. com」,「tan. com」,「 sec. com」表示正弦,正切,正割,餘弦,餘切,餘割,首三個符號與現代之符號相同。後來的符號多有變化,下列的表便顯示了它們之發展變化。
使用者 年代 正弦 餘弦 正切 餘切 正割 餘割 備注
羅格蒙格斯 1622 S.R. T. (Tang) T. c pl
Sec Sec.Compl
吉拉爾 1626 tan sec.
傑克 1696 s. cos. t. cot. sec. cosec.
歐拉 1753 sin. cos. tag(tg). cot. sec. cosec
謝格內 1767 sin. cos. tan. cot. Ⅰ
巴洛 1814 sin cos. tan. cot. sec cosec Ⅰ
施泰納 1827 tg Ⅱ
皮爾斯 1861 sin cos. tan. cotall sec cosec
奧萊沃爾 1881 sin cos tan cot sec csc Ⅰ
申弗利斯 1886 tg ctg Ⅱ
萬特沃斯 1897 sin cos tan cot sec csc Ⅰ
舍費爾斯 1921 sin cos tg ctg sec csc Ⅱ
註:Ⅰ-現代(歐洲)大陸派三角函數符 Ⅱ-現代英美派三角函數符號
我國現正採用Ⅰ類三角函數符號。
1729年,丹尼爾.伯努利是先以符號表示反三角函數,如以AS表示反正弦。1736年歐拉以At 表示反正切,一年後又以Asin 表示 於單位圓上正弦值相等於 的弧。
1772年,C.申費爾以arc. tang. 表示反正切;同年,拉格朗日采以 表示反正弦函數。1776年,蘭伯特則以arc. sin表示同樣意思。1794年,鮑利以Arc.sin表示反正弦函數。其後這些記法逐漸得到普及,去掉符號中之小點,便成現今通用之符號,如arc sin x,arc cos x 等。於三角函數前加arc表示反三角函數,而有時則改以於三角函數前加大寫字母開頭Arc,以表示反三角函數之主值。
另一較常用之反三角函數符號如sin-1x ,tan-1x等,是赫謝爾於1813年開始採用的,把反三角函數符號與反函數符號統一起來,至今亦有應用。
參、三角函數的和差化積公式
下列公式
稱為三角函數的和差化積公式。
法國著名數學家韋達﹝1540-1603﹞(p18)在他的著名的三角學著作《標准數學》中收集並整理了有關三角公式並給予補充,其中就有他給出的恆等式:
【後記】三角函數名稱的由來和補充
想知道為何三角函數要叫做sin,cos 這些名字嗎?經過了多方的查取資料,找到了下圖:
上面這個圖稱為三角圓(半徑=1),是用圖形的方式表達各函數。其中我們可以看到,sinθ為PM線段,也就是圓中一條弦(對2θ圓周角)的一半,所以稱為「正弦」。而cosθ是OM線段,但OM=NP,故我們也可以將cosθ視為NOP(90°-θ)的正弦值,也就是θ的餘角的正弦值,故稱之為「餘弦」。其餘類推。
另外,除了課本中教的六種三角函數外,我們還查到了其他的三角函數,如上圖中的versθ、coversθ和exsecθ。事實上,在歷史上曾出現過的三角函數種類超過十種呢!但最後只剩下這六種常用的。其他的還有如半正矢(havθ)、古德曼函數和反古德曼函數等。
【補充:小歷史】
大部分的三角函數一開始都是由於天文上的需要而造出來的。在三角函數傳入中國時,正、余矢函數還未廢棄,故徐光啟將八種三角函數稱為「八線」。後來因為矢類函數廢棄不用,故八線之名漸被「三角」取代,但統一的名稱還是到了民國以後才確立的。
參考數據:
1. 梁宗巨(1995),《數學歷史典故》(九章出版社)
2. 王懷權《幾何發展史》(凡異出版社)
參考網站:
1. http://www.edp.ust.hk/math/history/
2. http://home.ecities.e.tw/sanchiang/
3. http://archives.math.utk.e/topics/history.html
4. http://dir.yahoo.com/Science/Mathematics/History/
泰勒斯﹝Tales of Miletus﹞
約公元前625-前547,古希臘
古希臘哲學家、自然科學家。生於小亞細亞西南海岸米利都,早年是商人,曾游歷巴比倫、埃及等地。泰勒斯是希臘最早的哲學學派──伊奧尼亞學派的創始人,他幾乎涉獵了當時人類的全部思想和活動領域,被尊為『希臘七賢』之首。而他更是以數學上的發現而出名的第一人。他認為處處有生命和運動,並以水為萬物的本源。
泰勒斯在數學方面的劃時代貢獻是開始引入了命題證明的思想,它標志著人們對客觀事物的認識從經驗上升到理論。這在數學史上是一次不尋常的飛躍,其重要意義在於:
1. 保證命題的正確性,使理論立於不敗之地;
2. 揭露各定理之間的內在聯系,使數學構成一個嚴密的體系,為進一步發展打下基礎;
3. 使數學命題具有充份的說服力,令人深信不疑。
數學自此從具體的、實驗的階段過渡到抽象的、理論的階段,逐漸形成一門獨立的、演譯的科學。
證明命題是希臘幾何學的基本精神,而泰勒斯是希臘幾何學的先驅。在幾何學中,下列的基本成果歸功於他:
1. 圓被任一直徑所平分;
2. 等腰三角形的兩底角相等;
3. 兩條直線相交,對頂角相等;
4. 已知三角形兩角和夾邊,三角形即已確定;
5. 對半圓的圓周角是直角;
6. 相似三角形對應邊成比例等等。
泰勒斯在埃及時還曾利用日影及比例關系算出金字塔的高,說明相似形已有初步認識。在天文學中他曾精確地預測了公元前585年5月28
日發生的日食,還可能寫過《航海天文學》一書,並已知按春分、夏至、秋分、冬至劃分四季是不等長的。
阿爾-比魯尼al-Biruni﹝973-1050﹞
比魯尼生於今烏茲別克的一個城市,畢生從事科學研究和寫作,共寫了大約146部著作,但留傳至今的只有22部。按已知其頁數的著作估算,比魯尼寫出的手稿當有13000頁之多,當中幾乎涉及到當時所有科學領域,如天文學、歷史學、地理學、數學、力學、醫學、葯物學、氣象學等。比魯尼特別偏重於那些易受數學影響的學科,其大部份之著作均是天文學和占星術有關。他在數學的應用,尤其在數學的傳播、東西方數學的交流方面,做出了突出的貢獻。
歐拉(Euler Leonhard,1707-1783)
歐拉,瑞士數學家及自然科學家。在1707年4月15日出生於瑞士的巴塞爾,1783年9月18日於俄國的彼得堡去逝。 歐拉出生於牧師家庭,自幼已受到父親的教育。13歲時入讀巴塞爾大學,15歲大學畢業,16歲獲得碩士學位。
歐拉的父親希望他學習神學,但他最感興趣的是數學。在上大學時,他已受到約翰第一.伯努利的特別指導,專心 研究數學,直至18歲,他徹底的放棄當牧師的想法而專攻數學,於19歲時(1726年)開始創作文章,並獲得巴黎科學院獎金。
1727年,在丹尼爾.伯努利的推薦下,到俄國的彼得堡科學院從事研究工作。並在1731年接替丹尼爾第一.伯努利 ,成為物理學教授。
1735 年,他因工作過度以致右眼失明。在1741年,他受到普魯士 腓特烈大帝的邀請到德國科學院擔任物理數學所所長一職。他在柏林期間,大大的擴展了研究的內容,如行星運動、剛 體運動、熱力學、彈道學、人口學等,這些工作與他的數學研究互相推動著。與此同時,他在微分方程、曲面微分幾何 及其他數學領域均有開創性的發現。
1766年,他應俄國沙皇喀德林二世敦聘重回彼得堡。在 1771年,一場重病使他的左眼亦完全失明。但他以其驚人的 記憶力和心算技巧繼續從事科學創作。他通過與助手們的討論以及直介面授等方式完成了大量的科學著作,直至生命的 最後一刻。
歐拉是數學史上最多產的數學家,我們現在習以為常的數學符號很多都是歐拉所發明介紹的,例如:函數符號 f(x)、圓周率π、自然對數的底 e、求和符號 Σ、log x、sin x、cos x以及虛數單位 i 等。喬治西蒙曾稱他為數學界的莎士比亞。
韋達Francois Viè te(1540-1603)
法國數學家。亦譯維埃特。因其著作均用拉丁文 發表,故名字當用拉丁文拼法,譯為韋達(Vi ta)。1540年生於普瓦圖地區豐特奈-勒孔特,1603年12 月13日卒於巴黎。早年在普瓦捷大學學習法律,1560 年畢業後成為律師,後任過巴黎行政法院審查官,皇家私人律師和最高法院律師。1595-1598年對西班牙戰爭期間破譯截獲的西班牙密碼,卓有成效。他業余研究數學,並自籌資金印刷和發行自己的著作。
主要著作有:《應用三角形的數學定律》(1579 ),給出精確到5位和10位小數的6種三角函數表及造表方法,發現正切定律、和差化積等三角公式,給出球面三角形的完整公式及記憶法則:《截角術》( 1615年出版),給出sinnx和cosnx的 展開式;《分析術入門》(1591),創設大量代數符號,引入未知量的運算,是最早的符號代數專著;《 論方程的識別與訂正》(1615年出版),改進了三、四次方程的解法,給出三次方程不可約情形的三角解法,記載了著名的韋達定理(方程根與系數的關系式);《各種數學解答》(1593)中給出圓周率π值的 第一個解析表達式,還得到π的10位精確值等等。
徐光啟﹝公元1562-1633年﹞
徐光啟,字子先,號玄扈,生於上海,於1604年考中進士,相繼任禮部右侍郎、尚書、翰林院學士、東閣學士等,最後官至文淵閣大學士,他畢生致力於介紹西方科學,同時注意總結中國的固有科學遺產,編成巨著《農政全書》,成為我國近代科學的啟蒙大師。
徐光啟除與利瑪竇合譯《幾何原本》前六卷外,還有《測量全義》﹝公元1631年﹞,這是西方三角學及測量術傳入我國之始。公元1629年﹝崇禎二年﹞,徐光啟首次應用西方天文學和數學正確推算日蝕。同年七月,禮部決定開設歷局,由徐光啟組建,於是,一些西方傳教士如龍華尼﹝義大利人﹞、鄭玉函﹝瑞士人﹞、湯若望﹝德國人﹞、羅雅谷﹝義大利人﹞先後參與了中國的歷法改革工作。從公元1629至1643年,明亡止,共完成了《崇禎歷書》137卷,主要介紹當時歐洲天文學家第谷﹝Tycho. Brahe﹞的地心學說,數學方面則以平面幾何與球面三角據多。
❹ 反正切函數的連分數數學家怎麼得到的
y=tanx x=arctany 這是兩個式子,同一關系,在第一個式子中,當 x < π/2 且趨於 π/2 時,y 趨於 +∞,因此在第二個式子中,當 y 趨於 +∞ 時,x 趨於 π/2 。