導航:首頁 > 創造發明 > 分析化學代表性發明

分析化學代表性發明

發布時間:2021-08-13 09:55:51

① 古代物理學時期的標志性事件

經典物理學發展史
古希臘時代的阿基米德已經在流體靜力學和固體的平衡方面取得輝煌成就,但當時將這些歸入應用數學,並沒有將他的成果特別是他的精確實驗和嚴格的數學論證方法汲入物理學中。從希臘、羅馬到漫長的中世紀,自然哲學始終是亞里士多德的一統天下。到了文藝復興時期,哥白尼、布魯諾、開普勒和伽利略不顧宗教的迫害,向舊傳統挑戰,其中伽利略把物理理論和定律建立在嚴格的實驗和科學的論證上,因此被尊稱為物理學或科學之父。

伽利略的成就是多方面的,僅就力學而言,他以物體從光滑斜面下滑將在另一斜面上升到同一高度,推論出如另一斜面的傾角極小,為達到同一高度,物體將以勻速運動趨於無限遠,從而得出如無外力作用,物體將運動不息的結論 。他精確地測定不同重量的物體以同一加速度沿光滑斜面下滑,並推論出物體自由下落時的加速度及其運動方程,駁倒了亞里士多德重物下落比輕物快的結論,並綜合水平方向的勻速運動和垂直地面方向的勻加速運動得出拋物線軌跡和45°的最大射程角,伽利略還分析「地常動移而人不知」,提出著名的「伽利略相對性原理」(中國的成書於1800年前的《尚書考靈曜》有類似結論)。但他對力和運動變化關系的分析仍是錯誤的。全面、正確地概括力和運動關系的是牛頓的三條運動定律,牛頓還把地面上的重力外推到月球和整個太陽系,建立了萬有引力定律。牛頓以上述的四條定律並運用他創造的「流數法」(即今微積分初步),解決了太陽系中的二體問題,推導出開普勒三定律,從理論上解決了地球上的潮汐問題。史稱牛頓是第一個綜合天上和地上的機械運動並取得偉大成就的物理學家。與此同時,幾何光學也有很大發展,在16世紀末或17世紀初,先後發明了顯微鏡和望遠鏡,開普勒、伽利略和牛頓都對望遠鏡作很大的改進。

法國在大革命的前後,人才輩出,以P.S.M.拉普拉斯為首的法國科學家(史稱拉普拉斯學派)將牛頓的力學理論發揚光大,把偏微分方程運用於天體力學,求出了太陽系內三體和多體問題的近似解,初步探討並解決了太陽系的起源和穩定性問題,使天體力學達到相當完善的境界。在牛頓和拉普拉斯的太陽系內,主宰天體運動的已經不是造物主,而是萬有引力,難怪拿破崙在聽完拉普拉斯的太陽系介紹後就問 :你把上帝放在什麼地位?無神論者拉普拉斯則直率地回答 :我不需要這個假設。

拉普拉斯學派還將力學規律廣泛用於剛體、流體和固體,加上W.R.哈密頓、G.G.斯托克斯等的共同努力,完善了分析力學,把經典力學推進到更高階段。該學派還將各種物理現象如熱、光、電、磁甚至化學作用都歸於粒子間的吸引和排斥,例如用光子受物質的排斥解釋反射,光微粒受物質的吸引解釋折射和衍射,用光子具有不同的外形以解釋偏振,以及用熱質粒子相互排斥來解釋熱膨脹、蒸發等等,都一度取得成功,從而使機械的唯物世界觀統治了數十年。正當這學派聲勢煊赫、如日中天時,受到英國物理學家T.楊和這個學派的後院法蘭西科學院及科學界的挑戰,J.B.V.傅里葉從熱傳導方面,T.楊、D.F.J.阿拉戈、A.-J.菲涅耳從光學方面,特別是光的波動說和粒子說(見光的二象性)的論爭在物理史上是一個重大的事件。為了駁倒微粒說,年輕的土木工程師菲涅耳在阿拉戈的支持下,製成了多種後以他的姓命名的干涉和衍射設備,並將光波的干涉性引入惠更斯的波陣面在介質中傳播的理論 ,形成惠更斯-菲涅耳原理,還大膽地提出光是橫波的假設,並用以研究各種光的偏振及偏振光的干涉,他創造了「菲涅耳波帶」法,完滿地說明了球面波的衍射,並假設光是以太的機械橫波解決了光在不同介質界面上反射、折射的強度和偏振問題,從而完成了經典的波動光學理論。菲涅耳還提出地球自轉使表面上的部分以太漂移的假設並給出曳引系數。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐測定光速在水中確比空氣中為小,從而確定了波動說的勝利,史稱這個實驗為光的判決性實驗。此後,光的波動說及以太論統治了19世紀的後半世紀,著名物理學家如法拉第、麥克斯韋、開爾文等都對以太論堅信不疑。另一方面,利用干涉儀內干涉條紋的移動,可以精確地測定長度、速度、曲率的極微細的變化;利用棱鏡和衍射光柵產生的光譜,可以確定地上和天上的物質的成分及原子內部的變化。因此這些光學儀器已成為物理學、分析化學、物理化學和天體物理學中的重要實驗手段。
蒸汽機的發明推動了熱學的發展 ,18世紀60年代在 J.瓦特改進蒸汽機的同時,他的摯友J.布萊克區分了溫度和熱量,建立了比熱容和潛熱概念,發展了量溫學和量熱學,所形成的熱質說和熱質守恆概念統治了80多年。在此期間,盡管發現了氣體定律,度量了不同物質的比熱容和各類潛熱 ,但對蒸汽機的改進幫助不大,蒸汽機始終以很低的效率運行。1755年法國科學院堅定地否決了永動機 。1807年T.楊以「能」代替萊布尼茲的「活力」 ,1826年 J. V. 彭賽列創造了「功」這個詞。1798年和1799年,朗福德和H.戴維分析了摩擦生熱,向熱質說挑戰;J.P.焦耳從 19 世紀 40 年代起到1878年,花了近40年時間,用電熱和機械功等各種方法精確地測定了熱功當量 ;生理學家 J.R.邁爾和H.von亥姆霍茲 ,更從機械能、電能、化學能、生物能和熱的轉換,全面地說明能量既不能產生也不會消失,確立了熱力學第一定律即能量守恆定律。在此前後,1824年,S.卡諾根據他對蒸汽機效率的調查,據熱質說推導出理想熱機效率由熱源和冷卻源的溫度確定的定律。文章發表後並未引起注意。後經R.克勞修斯和開爾文分別提出兩種表述後,才確認為熱力學第二定律。克勞修斯還引入新的態函數熵;以後,焓、亥姆霍茲函數、吉布斯函數 等態函數相繼引入 ,開創了物理 化學 中的重要分支——熱化學。熱力學指明了發明新熱機、提高熱機效率等的方向,開創了熱工學;而且在物理學、化學、機械工程、化學工程 、冶金學等方面也有廣泛的指向和推動作用。這些使物理化學開創人之一W.奧斯特瓦爾德曾一度否認原子和分子的存在 ,而宣揚「唯能論」,視能量為世界的最終存在 。但另一方面,J.C.麥克斯韋的分子速度分布率(見麥克斯韋分布)和L.玻耳茲曼的能量均分定理把熱學和力學綜合起來,並將概率規律引入物理學,用以研究大量分子的運動,創建了氣體分子動力論(現稱氣體動理論),確立了氣體的壓強、內能、比熱容等的統計性質,得到了與熱力學協調一致的結論。玻耳茲曼還進一步認為熱力學第二定律是統計規律,把熵同狀態的概率聯系起來,建立了統計熱力學。任何實際物理現象都不可避免地涉及能量的轉換和熱量的傳遞,熱力學定律就成為綜合一切物理現象的基本規律。經過20世紀的物理學革命,這些定律仍然成立。而且平衡和不平衡、可逆和不可逆、有序和無序乃至漲落和混沌等概念,已經從有關的自然科學分支中移植到社會科學中。

② 現代分析化學的前沿領域有哪些

現代分析化學的前沿領域有哪些
現代分析化學的前沿領域有:
化學計量學(metrology),感測器(sensor)過程式控制制,自動化(automatization)分析系統,生物技術和生物過程,微型化(micromation)分析
高靈敏度(達原子級、分子級)、高選擇性(復雜體系分析)、智能化(專家系統)、自動化(計算機技術)、聯用化(不同分析方法的聯用)並向實時、在線的動態分析方向縱身發展.
分析化學(analytical chemistry)已發展到分析科學階段.分析化學正在成長為一門建立在化學,物理學,數學,計算機科學,精密儀器製造科學等學科以上的綜合性的邊緣科學.

③ 分析化學中為了獲取具有代表性的信息,如何科學取樣

要根據試樣狀態(即均勻程度)採用不同的采樣方式,假如是固體礦樣,則要求根據試樣的堆放情況、顆粒大小,從不同地點不同深度從多個取樣點取樣,混合後再制樣。

④ 現代分析化學的前沿領域有哪些

現代分析化學的前沿領域有:
化學計量學(metrology),感測器(sensor)過程式控制制,自動化(automatization)分析系統,生物技術和生物過程,微型化(micromation)分析
高靈敏度(達原子級、分子級)、高選擇性(復雜體系分析)、智能化(專家系統)、自動化(計算機技術)、聯用化(不同分析方法的聯用)並向實時、在線的動態分析方向縱身發展。
分析化學(analytical chemistry)已發展到分析科學階段。分析化學正在成長為一門建立在化學,物理學,數學,計算機科學,精密儀器製造科學等學科以上的綜合性的邊緣科學。

⑤ 急求有關分析化學的發展

分析化學這一名稱雖創自玻意耳,但其實踐運用與化學工藝的歷史同樣古老。古代冶煉、釀造等工藝的高度發展,都是與鑒定、分析、製作過程的控制等手段密切聯系在一起的。在東、西方興起的煉丹術、煉金術等都可視為分析化學的前驅。

公元前3000年,埃及人已經掌握了一些稱量的技術。最早出現的分析用儀器當屬等臂天平,它在公元前1300年的《莎草紙卷》上已有記載。巴比倫的祭司所保管的石制標准砝碼(約公元前2600)尚存於世。不過等臂天平用於化學分析,當始於中世紀的烤缽試金法中。

古代認識的元素,非金屬有碳和硫,金屬中有銅、銀、金、鐵、鉛、錫和汞。公元前四世紀已使用試金石以鑒定金的成色,公元前三世紀,阿基米德在解決敘拉古王喜朗二世的金冕的純度問題時,即利用了金、銀密度之差,這是無傷損分析的先驅。

公元60年左右,老普林尼將五倍子浸液塗在莎草紙上,用以檢出硫酸銅的摻雜物鐵,這是最早使用的有機試劑,也是最早的試紙。遲至1751年,埃勒爾·馮·布羅克豪森用同一方法檢出血渣(經灰化)中的含鐵量。

火試金法是一種古老的分析方法。遠在公元前13世紀,巴比倫王致書埃及法老阿門菲斯四世稱:「陛下送來之金經入爐後,重量減輕……」這說明3000多年前人們已知道「真金不怕火煉」這一事實。法國菲利普六世曾規定黃金檢驗的步驟,其中提出對所使用天平的構造要求和使用方法,如天平不應置於受風吹或寒冷之處,使用者的呼吸不得影響天平的稱量等。

18世紀的瑞典化學家貝格曼可稱為無機定性、定量分析的奠基人。他最先提出金屬元素除金屬態外,也可以其他形式離析和稱量,特別是以水中難溶的形式,這是重量分析中濕法的起源。

德國化學家克拉普羅特不僅改進了重量分析的步驟,還設計了多種非金屬元素測定步驟。他准確地測定了近200種礦物的成分及各種工業產品如玻璃、非鐵合金等的組分。

18世紀分析化學的代表人物首推貝采利烏斯。他引入了一些新試劑和一些新技巧,並使用無灰濾紙、低灰分濾紙和洗滌瓶。他是第一位把原子量測得比較精確的化學家。除無機物外,他還測定過有機物中元素的百分數。他對吹管分析尤為重視,即將少許樣品置於炭塊凹處,用氧化或還原焰加熱,以觀察其變化,從而獲得有關樣品的定性知識。此法一直沿用至19世紀,其優點是迅速、所需樣品量少,又可用於野外勘探和普查礦產資源等。

19世紀分析化學的傑出人物之一是弗雷澤紐斯,他創立一所分析化學專業學校(此校至今依然存在);並於1862年創辦德文的《分析化學》雜志,由其後人繼續任主編至今。他編寫的《定性分析》、《定量分析》兩書曾譯為多種文字,包括晚清時代出版的中譯本,分別定名為《化學考質》和《化學求數》。他將定性分析的陽離子硫化氫系統修訂為目前的五組,還注意到酸鹼度對金屬硫化物沉澱的影響。在容量分析中,他提出用二氯化錫滴定三價鐵至黃色消失。

1663年波義耳報道了用植物色素作酸鹼指示劑,這是容量分析的先驅。但真正的容量分析應歸功於法國蓋·呂薩克。1824年他發表漂白粉中有效氯的測定,用磺化靛青作指示劑。隨後他用硫酸滴定草木灰,又用氯化鈉滴定硝酸銀。這三項工作分別代表氧化還原滴定法、酸鹼滴定法和沉澱滴定法。絡合滴定法創自李比希,他用銀滴定氰離子。

另一位對容量分析作出卓越貢獻的是德國莫爾,他設計的可盛強鹼溶液的滴定管至今仍在沿用。他推薦草酸作鹼量法的基準物質,硫酸亞鐵銨(也稱莫爾鹽)作氧化還原滴定法的基準物質。

最早的微量分析是化學顯微術,即在顯微鏡下觀察樣品或反應物的晶態、光學性質、顆粒尺寸和圓球直徑等。17世紀中葉胡克從事顯微鏡術的研究,並於1665 年出版《顯微圖譜》。法國葯劑師德卡羅齊耶在1784年用顯微鏡以氯鉑酸鹽形式區別鉀、鈉。德意志化學家馬格拉夫在1747年用顯微鏡證實蔗糖和甜菜糖實為同一物質;在1756年用顯微鏡檢驗鉑族金屬。1891年,萊爾曼提出熱顯微術,即在顯微鏡下觀察晶體遇熱時的變化。科夫勒及其夫人設計了兩種顯微鏡加熱台,便於研究葯物及有機化合物的鑒定。後來又發展到電子顯微鏡,解析度可達1埃。

不用顯微鏡的最早的微量分析者應推德國德貝賴納。他從事濕法微量分析,還有吹管法和火焰反應,並發表了《微量化學實驗技術》一書。近代微量分析奠基人是埃米希,他設計和改進微量化學天平,使其靈敏度達到微量化學分析的要求;改進和提出新的操作方法,實現毫克級無機樣品的測定,並證實納克級樣品測定的精確度不亞於毫克級測定。

有機微量定量分析奠基人是普雷格爾,他曾從膽汁中離析出一種降解產物,其量尚不足作一次常量碳氫分析。在聽了埃米希於1909年所作有關微量定量分析的講演並參觀其實驗室後,他決意將常量燃燒法改為微量法(樣品數毫克),並獲得成功;1917年出版《有機微量定量分析》一書,並在1923年獲諾貝爾化學獎。

德國化學家龍格在1850年將染料混合液滴在吸墨紙上使之分離,更早些時候他曾用染有澱粉和碘化鉀溶液的濾紙或花布塊作過漂白液的點滴試驗。他又用浸過硫酸鐵和銅溶液的紙,在其中部滴加黃血鹽,等每滴吸入後再加第二滴,因此獲得自行產生的美麗圖案。1861年出現舍恩拜因的毛細管分析,他將濾紙條浸入含數種無機鹽的水中,水攜帶鹽類沿紙條上升,以水升得最高,其他離子依其遷移率而分離成為連接的帶。這與紙層析極為相近。他的學生研究於濾紙上分離有機化合物獲得成功,能明顯而完全分離有機染料。

20世紀60年代,魏斯提出環爐技術。僅用微克量樣品置濾紙中,繼用溶劑淋洗,而後在濾紙外沿加熱以蒸發溶劑,遂分離為若干同心環。如離子無色可噴以靈敏的顯色劑或熒光劑,既能檢出,又能得半定量結果。

色譜法也稱層析法。1906年俄國茨維特將綠葉提取汁加在碳酸鈣沉澱柱頂部,繼用純溶劑淋洗,從而分離出葉綠素。此項研究發表在德國《植物學》雜志上,但未能引起人們注意。直到1931年德國的庫恩和萊德爾再次發現本法並顯示其效能,人們才從文獻中追溯到茨維特的研究和更早的有關研究,如1850年韋曾利用土壤柱進行分離;1893年裡德用高嶺土柱分離無機鹽和有機鹽等等。

氣體吸附層析始於20世紀30年代的舒夫坦和尤肯。40年代,德國黑塞利用氣體吸附以分離揮發性有機酸。英國格盧考夫也用同一原理在1946年分離空氣中的氫和氖,並在1951年製成氣相色譜儀。第一台現代氣相色譜儀研製成功應歸功於克里默。

氣體分配層析法根據液液分配原理,由英國馬丁和辛格於1941年提出。並因此而獲得1952年諾貝爾化學獎。戈萊提出用長毛細管柱,是另一創新。

色譜-質譜聯用法中將色譜法所得之淋出流體移入質譜儀,可使復雜的有機混合物在數小時內得到分離和鑒定,是最有效的分析方法之一。

希臘哲學家泰奧弗拉斯圖斯曾記錄各種岩石礦物及其他物質遇熱所發生的影響,這是熱分析技術的最早紀錄。法國勒夏忒列和英國羅伯茨·奧斯汀同稱為差熱分析的鼻祖。20世紀60年代又出現了精細的差熱分析儀和奧尼爾提出的差示掃描量熱法,它能測定化合物的純度及其他參數,如熔點和玻璃化、聚合、熱降解、氧化等溫度。

比色法以日光為光源,靠目視比較顏色深淺。最早的記錄是1838年蘭帕迪烏斯在玻璃量筒中測定鑽礦中的鐵和鎳,用標准參比溶液與試樣溶液相比較。1846 年雅克蘭提出根據銅氨溶液的藍色測定銅。隨後有赫羅帕思的硫氰酸根法測定鐵;奈斯勒法測定氨;苯酚二磷酸法制定硝酸根;過氧化氫法測定釷;亞甲基藍法測定硫化氫;磷硅酸法測定二氧化硅等。

最早研究化合物的紫外吸收光譜的是亨利,他繪制出摩爾吸光系數對波長的曲線。紅外光譜在20年代開始應用於汽油爆震研究,繼用於鑒定天然和合成橡膠以及其他有機化合物中的未知物和雜質。喇曼光譜是研究分子振動的另一種方法。喇曼光譜法的信號太弱,使用困難,直至用激光作為單色光源後,才促進其在分析化學中的應用。

而對於原子發射光譜法的應用可上溯至牛頓,他在暗室中用棱鏡將日光分解為七種顏色;1800年赫歇耳發現紅外線;次年裡特用氫化銀還原現象發現紫外區;次年,渥拉斯頓觀察到日光光譜中的暗線;15年後,夫琅和費經過研究,命名暗線為夫琅和費線。

本生發明了名為本生燈的煤氣燈,燈的火焰近於透明而不發光,便於光譜研究。1859年,本生和他的同事物理學家基爾霍夫研究各元素在火焰中呈示的特徵發射和吸收光譜,並指出日光光譜中的夫琅和費線是原子吸收線,因為太陽的大氣中存在各種元素。他們用的儀器已具備現代分光鏡的要素,他們可稱為發射光譜法的創始人。

能斯脫在1889 年提出了能斯脫公式,將電動勢與離子濃度、溫度聯系起來,奠定了電化學的理論基礎。隨後,電化學分析法有了發展,電沉積重量法、電位分析法、電導分析法、安培滴定法、庫侖滴定法、示波極譜法相繼出現。氫電極、玻璃電極和離子選擇性電極陸續製成,尤以極譜分析技術貢獻卓著。

還有一些方法對無機物質和有機物質同樣有效,如氣相色譜法便是其中之一。樣品中一氧化碳、二氧化碳、氫、氮、氧、甲烷、乙烯、水氣等在同一柱中,在選擇的條件下可逐一分離或分組分離。奧薩特氣體分析器也是如此,只是分離的原理不同。

痕量分析是指樣品所含的量極為微少。一般,在樣品中含量多的為主要成分,含量少的為次要成分。桑德爾認為含量在1%~0.01%的為次要成分。有人認為在 10%~0.01%的為次要成分。含量在萬分之一以下稱為痕量。痕量分析的動向趨於測定愈來愈低的含量,因此出現了超痕量分析,即含量接近或低於一般痕量下限。這名稱只是定性的。

微痕量分析尚另有一種意義,即使用微量分析的稱樣,而測定其中痕量元素。為與前述一詞區分,後一詞應稱為微樣痕量分析。

理想的化學分析方法應該具有這樣的一些特點:選擇性最高,這樣就可以減輕或省略分離步驟;精密度和准確度高;靈敏度高,從而少量或痕量組分即可檢定和測定;測定范圍廣,大量和痕量均能測定;能測定的元素種類和物種最多;方法簡便;經濟實惠。但匯集所有優點於一法是辦不到的,例如,在重量分析中,如要提高准確度,需要延長分析時間。因為化學法制定原子量要求准確到十萬分之一,所以最費時間。

分析方法要力求簡便,不僅野外工作需要簡便、有效的化學分析方法,室內例行分析工作也如此。因為在不損失所要求的准確度和精度的前提下,簡便方法步驟少,這就意味著節省時間、人力和費用。例如,金店收購金首飾時,是將其在試金石板上劃一道(科學名稱是條紋),然後從條紋的顏色來決定金的成色。這種條紋法在礦物鑒定中仍然採用。

分析化學所用的方法可分為化學分析法和儀器分析法,二者各有優缺點,相輔相成。分析化學者必須明確每一種方法的原理及其應用范圍和優缺點,這樣在解決分析問題時才能得心應手,選擇最適宜的方法。一般來說,化學法准確、精密、費用少而且容易掌握。儀器法迅速,能處理大批樣品,但大型儀器價格昂貴,幾年後又須更新儀器。

近來分析化學中的新技術有激光在分析化學中的應用、流動注射法、場流分級等。場流分級所用的場可以是重力、磁、電、熱等,樣品流經適當的場時能進行分級,故稱為場流分級。目前,該法已成功地用於有機大分子(如血球、高聚物等)之分級。可以預期它在無機物分離方面也將得到應用。

加強對高靈敏度和高選擇性試劑的研究,對於隱蔽解蔽和分離、富集方法的研究,以及元素存在狀態的測定(與環境分析和地球化學的關系至為密切)都是重要的課題。將二三種各具優點的方法聯合使用,可使以前不能測定的項目變為可能,仍是發展的方向,氣相色譜法與質譜法的聯用便是明顯的例子。

分析化學有極高的實用價值,對人類的物質文明作出了重要貢獻,廣泛的應用於地質普查、礦產勘探、冶金、化學工業、能源、農業、醫葯、臨床化驗、環境保護、商品檢驗等領域。

⑥ 中國古代具有代表性的四項科技發明是什麼

事實上,出了造紙術、火葯、活字印刷、指南針四大發明以外,還有很多具代表性的發明。 魯班(建築)——春秋戰國時代魯國人,姓 公輸,名般,是中國古代著名的建築師。魯班他有很多發明創造,如木工用的 鋸子、曲尺、墨斗、刨子、鏟子、鋪首、鑽、鑿等,攻城用的可活動的雲梯。相傳,鎖也是魯班發明的。 喻皓(建築)——亦稱預浩,是中國五代末年,北宋初年的建築師。出生於杭州,他設計的最傑出的建築是北宋國都汴梁(今河南省開封市)安遠門內開寶寺中的靈感塔。他還寫了一部木工手藝的書《木經》,共 3 卷。他有造塔魯班之稱。 祖沖之(數學)——南朝的祖沖之利用劉微的割圖術提出了 л的更精確的上下界。 即3.1415926〈л〈3.1415927。 劉微(數學)——225-295年,魏晉時期的劉微,發明了割圖術的方法,他取л值3.14。他還發明了介線性方程組的新分法。提出了不定方程問題,建立了等差級數前幾項和公式。劉微應和歐幾里德、阿基米德相提並論。 朱世傑(數學)——中國元代數學家。1299 年編撰成中國第一本算學啟蒙,從四則運算到天元術,形成了較完整的體系。1303年,他又寫成了 《四元玉鑒》,把天元術推廣為「四元術」,這是一種高次方程的解法(最高可包括4個未知數)。歐洲到 1775 年才提出同樣的解法「消元法」。美國科學史家薩頓評價他所著的《四元玉鑒》是整個世界中最傑出的數學著作之一。 張衡(天文學)——是中國東漢時期的天文學家。對在宇宙結構的認識上,張衡是渾天說的代表人物之一。他認為:天像個雞蛋殼,地像雞蛋黃,天大地小,他認為天殼之外還有無限的宇宙。張衡設計和製造了漏水轉渾天儀、候風地動儀,並對日月星辰做了許多觀測和分析。他測量出了太陽和月亮的角直徑是周尺的1/736,即29'24'。他統計出在中國的中原地區能看到的恆星約有2500顆。國際天文學會為了紀念張衡對天文學的突出貢獻,將月球上的一個環形山命名為「張衡環形山」。 郭守敬(天文學)——是中國元代傑出的天文學家。他創制了高表、玲瓏儀、觀象台計 16 種儀表,儀器專門測量天體使用。還製作了簡儀,現存紫金山天文台。郭守敬測定了黃赤交角。法國科學家 Laplace 提出黃赤交角變小理論,引用的根據就是郭守敬的。丹麥天文學家第谷所做的同類測量比郭守敬晚300年。 石申(天文學)——戰國時期的天文學家,石申第一部天文巨著「天文」。西漢後,人們尊稱「天文」一書為「石氏星經」。書中標有 121 顆恆星的位置,書中還記有水、木、金、火、土五大行星的運行及交食等情況。石申編制了最早的星表。並稱之「少陽」已認識到能自身發光。 劉焯(天文學)——隋代天文學家。創制了《皇極歷》,他首先考慮到了日、月視運動的不均勻性,創立了等間距二次差內插法。計算日月視運動的速度。同時他把差歲改為 75 年差一度。 一行(天文學)——唐代天文學家。他編制出一部新的歷法《大衍歷》,它包括十篇歷議,是古代非常先進的歷法。早在公元前 13 世紀,中國人以太陽和月亮運動為依據,創立了一種陰陽歷法。 楊忠輔(文學家)——中國南宋時期天文學家。他創制了《統天歷》,他確定回歸年長度為 365.2425 日。並發現回歸年長度有消長現象。 洛下閎(天文學)——中國漢代天文學家。改創了赤道式儀器,定下了赤道式渾儀的基本結構。 蘇頌(天文學)——中國宋代天文學家。和韓公廉合作製成了天象儀及水運儀象台,是中國古代第一架天象儀。有 8 人高,每層有門,一到時間門開,木人出來報時(後面有漏壺和機械繫統)。 莘七娘(燈具)——在10世紀時發明了松脂燈(孔明燈)作為打仗時的信號燈,這是中國人最早利用熱氣球。同時發明了走馬燈,這是航空燃氣渦輪的始祖。 裴秀(平面繪圖)——224~271 在中國最早創立了繪制平面地圖的理論「制圖六體」。並繪制了《禹貢地域圖》。 馬鈞(機械設計)——三國時代魏國人,傑出機械設計和創造家。三國時代創制了龍骨水車(又叫翻車),他能連續提水,灌溉用的水機具——桔槔。結構非常巧妙,有天下之名巧之稱。馬鈞,字德衡,三國時曹魏人,是當時聞名的機械大師。他不僅製造了指南車、記里鼓車,而且改進了綾機,提高織造速度;創制翻車(即龍骨水車);設計並製造了以水力驅動大型歌舞木偶樂隊的機械等,可惜,他的生卒年並無詳盡記載,只知道他當過小官吏,並因不擅辭令,一生並不得志。到宋代,盧道隆於1027年製成記里鼓車,以及吳德仁於1107年同時製成指南車和記里鼓車的詳情,則被記載於《宋史?輿服志》中。記里鼓車又名記道車、大章車。它是利用車輪帶動大小不同的一組齒輪,使車輪走滿一里時,其中一個齒輪剛好轉動一圈,該輪軸撥動車上木人打鼓或擊鍾,報告行程,第一個在史書中留下姓名的記里車機械專家,是三國時代的馬鈞。記里鼓車是減速齒輪系的典型。它也是現代計程車、計速器的重要祖先。它的報告里數的設計,也是近代所有機械鍾表中報時木偶的始祖。 李春(橋梁設計)——605~617 年,首創了在主拱圖上設小腹拱的敞肩式拱橋。有名的趙州橋就是他設計的。 丁緩(發明家)——漢代,在 180 年生於長安。發明的物品有被中香爐、常滿燈、旋轉風扇,有長安巧工之稱。 沈括(科學家)——1031~1095 年,宋朝科學家,石油命名最早由他提出。 蔡倫(造紙)——62~121 年,蔡倫採用樹皮、麻頭、破布、舊魚網為原料造紙成功。 105 年將此發明報皇帝。於 114 年被皇帝封為龍亭侯。當時人稱紙為蔡侯紙。 12 世紀,造紙術間接傳到歐洲。 13 世紀,蒙古人用蔡侯紙在波斯發行第一批紙幣。 14 世紀,朝鮮、越南、日本也開始使用紙幣。紙牌然後經由阿拉伯國家再傳到歐洲。 畢升(活字印刷術)——1041~1048 年,中國北宋人。發明了活字印刷術。 杜詩(水力鼓風機)——91~不祥,河南人。首創了水力鼓風設備水排。即利用水力推動風扇鼓風。是世界上最早的水力鼓風機,比歐洲早了 1100 年。 浦元(淬火技術)——三國時期。首創淬火技術,使鋼刀堅而有彈性。 孫子(算經)——三國時期,乘余定理的起源一題為「物不知數」,寫了「孫子算經」一書系統論述了籌算記數制。 秦九韶(數學)——中國數學家。寫有《數書九章》,創立解一次同餘式的「大衍求一術」和求高次方程數值解的正負開方術。 李治(數學)——中國數學家,著有「測園海鏡」是中國第一本系統改述「天元術」的巨書。 沈括(發明家)——宋朝,沈括發現用細線系在磁針的中央(指南針),並將其懸掛起來。經過觀察、發現,寫進了他的著作《夢溪筆談》中。以後人們把用磁鐵製作的針成為指南針,還有指南桌。 13世紀到東方玩的義大利人馬可、波羅見到了指南針,並把它傳到了歐洲。 墨子(思想家)——公元前 400 年,墨子一書論述了杠桿平衡,提出光是直線傳播的論點。 《墨經》中記載的研究成果有:光的直線傳播、物影的生成、雙影的生成、光的反射現象、物象大小所關涉的條件、平面鏡成像、凹面鏡成像和凸透鏡成像等若干方面,其中最著名的是「小孔成像」理論。數學(已科學地論述了圓的定義)、力學(提出了力和重量的關系)等自然科學的探討,可惜的是,這一科學傳統也因此書在古代未得到重視而沒能結出碩果。

⑦ 分析化學三次變革的代表技術

第一次變革:1920s~1930s----溶液四大平衡理論的建立;分析化學由技術→ 獨立的科學;代表技術:四大滴定。
第二次變革:1940s~1960s----物理方法的發展; 經典分析化學(化學分析)→ 現代分析化學(儀器分析為主);代表技術:分光光度法、液相色譜法、薄層色譜法等
第三次變革:1970s末至今----計算機的發展與應用現代分析化學能提供組成、結構、含量、分布、形態等全面信息,為當代最富活力的學科之一。同時也把化學與數學、物理學、計算機科學、生物學、精密儀器製造科學等學科結合起來,發展成為一門多學科性的綜合性科學。代表技術:掃描電鏡、透射電鏡、X射線衍射、熱重、核磁、質譜。

⑧ 目前分析化學的研究熱點有哪些

現代分析化學的前沿領域有:
化學計量學(metrology),感測器(sensor)過程式控制制,自動化(automatization)分析系統,生物技術和生物過程,微型化(micromation)分析
高靈敏度(達原子級、分子級)、高選擇性(復雜體系分析)、智能化(專家系統)、自動化(計算機技術)、聯用化(不同分析方法的聯用)並向實時、在線的動態分析方向縱身發展.
分析化學(analytical chemistry)已發展到分析科學階段.分析化學正在成長為一門建立在化學,物理學,數學,計算機科學,精密儀器製造科學等學科以上的綜合性的邊緣科學.

⑨ 分析化學的發展

古代人認識的元素,非金屬元素有碳和硫,金屬元素中有銅、銀、金、鐵、鉛、錫和汞。
分析化學這一名稱雖創自R.玻意耳,但其實踐應與化學工藝同樣古老。不能想像古代冶煉、釀造等工藝的高度發展,沒有簡單的鑒定、分析、製作過程的控制等手段。隨後在東、西方興起的煉丹術、煉金術可視為分析化學的前驅。
公元前3000年,埃及人已知稱量的技術。最早出現的分析用儀器當推等臂天平,它記載在《莎草紙卷》(公元前1300)上。巴比倫的祭司所保管的石制標准砝碼(約公元前2600)尚存於世。不過等臂天平用於分析,當在中世紀用於烤缽試金法(火試金法之一)中。
公元前4世紀,已知使用試金石以鑒定金的成色。
公元前3世紀,阿基米德在解決敘拉古王喜朗二世的金冕的純度問題時,即利用了金和銀密度之差,這是無傷損分析之先驅。
公元60年左右,老普林尼將五倍子浸液塗在莎草紙上,用以檢出硫酸銅的摻雜物鐵(Ⅲ),這是最早使用的有機試劑,也是最早的試紙。
1751年,J.T.埃勒爾·馮·布羅克豪森用同一方法檢出血渣(經灰化)中的含鐵量。 1663年,玻意耳報道了用植物色素作酸鹼指示劑。但真正的容量分析應歸功於法國J.-L.蓋-呂薩克。
1824年,他發表漂白粉中有效氯的測定,用磺化靛青作指示劑。隨後他用硫酸滴定草木灰,又用氯化鈉滴定硝酸銀。這三項工作分別代表氧化還原滴定法、酸鹼滴定法和沉澱滴定法。絡合滴定法創自J.von李比希,他用銀(Ⅰ)滴定氰離子。另一位對容量分析作出卓越貢獻的是德國K.F.莫爾,他設計的可盛強鹼溶液的滴定管至今仍在沿用。他推薦草酸作鹼量法的基準物質,硫酸亞鐵銨(也稱莫爾鹽)作氧化還原滴定法的基準物質。 最早的微量分析是化學顯微術,即在顯微鏡下觀察樣品或反應物的晶態、光學性質、顆粒尺寸和圓球直徑等。
17世紀中葉,R.胡克從事顯微鏡術的研究,並於1665年出版《顯微圖譜》。法國葯劑師F.A.H.德卡羅齊耶在1784年用顯微鏡以氯鉑酸鹽形式區別鉀、鈉。
1747年,德意志化學家A.S.馬格拉夫用顯微鏡證實蔗糖和甜菜糖實為同一物質;
1756年,用顯微鏡檢驗鉑族金屬。
1865年,A.黑爾維希著《毒物學中之顯微鏡》。
1877年,S.A.博里基著《以化學/顯微鏡法作礦物與岩石分析》,並使用氣體試劑(如氟化氫、氯)、氟硅酸和硫化銨與礦物及其切片作用。T.H.貝侖斯不僅從事無機物的晶體檢驗,還擴充到有機晶體。
1891年,O.萊爾曼提出熱顯微術,即在顯微鏡下觀察晶體遇熱時的變化。L.科夫勒及其夫人設計了兩種顯微鏡加熱台,便於研究葯物及有機化合物的鑒定。熱顯微術只需一粒晶體。後來又發展到電子顯微鏡,解析度可達1埃。
不用顯微鏡的最早的微量分析者應推德國J.W.德貝賴納。他從事濕法微量分析,還有吹管法和火焰反應,並發表了《微量化學實驗技術》一書。公認的近代微量分析奠基人是F.埃米希。他設計和改進微量化學天平,使其靈敏度達到微量化學分析的要求,改進和提出新的操作方法,實現毫克級無機樣品的測定,並證實納克級樣品測定的精確度不亞於毫克級測定。有機微量定量分析奠基人是F.普雷格爾,他曾從膽汁中離析一降解產物,其量尚不足作一次常量碳氫分析,在聽了埃米希於1909年所作的有關微量定量分析的講演並參觀其實驗室後,他決意將常量燃燒法改為微量法(樣品數毫克),並獲得成功;1917年出版《有機微量定量分析》一書,並在1923年獲諾貝爾化學獎。
常量操作如不適用於微量分析則需改進。例如,常量過濾是將沉澱定量移入濾紙錐中或過濾坩堝中。若用此法於微量沉澱過濾,則在原進行沉澱的燒杯壁所粘附的物質就不能再忽略不計了,所以必須改變辦法。微量過濾採用濾棒吸出母液,而留全部沉澱於容器中。容器可用25毫升瓷坩堝,它兼用作稱量器皿;還可在其內洗滌沉澱,然後再用濾棒吸出洗液。這樣既可避免沉澱損失,又可簡化操作手續。
無機化合物在濾紙上的行為在19世紀中已引起注意。德意志化學家F.F.龍格在1850年將染料混合液滴在吸墨紙上使之分離。更早些時候他用染有澱粉和碘化鉀溶液的濾紙或花布塊作漂白液的點滴試驗。他又用浸過硫酸鐵(Ⅲ)和銅(Ⅱ)溶液的紙,在其中部滴加黃血鹽,等每滴吸入後再加第二滴,因此獲得自行產生的美麗圖案。1861年出現C.F.舍恩拜因的毛細管分析,他將濾紙條浸入含數種無機鹽的水中,水攜帶「鹽類」沿紙條上升,以水升得最高,其他離子依其「遷移率」而分離成為連接的帶。這與「紙層析」極為相近。他的學生研究於「濾紙上分離有機化合物」獲得成功,能明顯而完全分離「有機染料」。
用濾紙或瓷板進行無機、有機物的檢出是普雷格爾的貢獻。方法簡單而易行,選擇性和靈敏度均高,點滴試驗屬微量分析范圍。所著《點滴試驗》和《專一、選擇和靈敏反應的化學》兩書,為從事分析者所必讀。1921年後奧地利F.法伊格爾系統地發展了點滴試驗法。
20世紀60年代,H.魏斯提出環爐技術。僅用微克量樣品置濾紙中心,繼用溶劑淋洗,而在濾紙外沿加熱以蒸發溶劑,遂分離為若干同心環。如離子無色可噴以靈敏的顯色劑或熒光劑。既能檢出,又能得半定量結果。 色譜法也稱層析法,基本上是分離方法。
1906年,俄國М.С.茨維特將綠葉提取汁加在碳酸鈣沉澱柱頂部,繼用純溶劑淋洗,從而分離了葉綠素。此項研究發表在德國《植物學》雜志上,故未能引起人們注意。
1931年,德國R.庫恩和E.萊德爾再次發現本法並顯示其效能,人們才從文獻中追溯到茨維特的研究和更早的有關研究,如1850年J.T.韋曾利用土壤柱進行分離;1893年L.里德用高嶺土柱分離無機鹽和有機鹽。四年後D.T.戴用漂白土分離石油。
氣體吸附層析始於20世紀30年代的P.舒夫坦和A.尤肯。40年代,德國Y.黑塞利用氣體吸附以分離揮發性有機酸。英國E.格盧考夫也用同一原理在1946年分離空氣中的氦和氖,並在1951年製成氣相色譜儀(見氣相色譜法)。第一台現代氣相色譜儀研製成功應歸功於E.克里默。
氣體分配層析法根據液液分配原理,由英國A.J.P.馬丁和R.L.M.辛格於1941年提出。由於此工作之重要,他們獲得1952年諾貝爾化學獎。M.J.E.戈萊提出用長毛細管柱,是另一創新。
色譜-質譜聯用法中將色譜法所得之淋出流體移入質譜儀,可使復雜的有機混合物在數小時內得到分離和鑒定,是最有效的分析方法之一。
液相色譜法包括液-液和液-固色譜,後兩個名稱之第一物態代表流動相,第二物態代表固定相。在大氣壓力下,液相色譜流速太低,因此須增加壓強。這方面的先驅工作是P.B.哈密頓在1960年用高壓液相色譜分離氨基酸。
1963年,J.C.吉丁斯指出,液相色譜法的柱效要趕上氣相色譜法,則前者填充物顆粒應小於後者顆粒甚多,因此需要大壓強,所用的泵應無脈沖。
1966年,R.詹特福特和T.H.高製成這種無脈沖泵。
1969年,J.J.柯克蘭改進填充物,使之具有規定的表面孔度,再將固定相(如正十六烷基)鍵合在載體上,使之能抗熱和抗溶劑分解。載體可用二氧化硅,鍵合通過Si-O-C或Si-C鍵。 薄層層析採用薄層硅膠等代替濾紙進行層析。由於硅膠顆粒均勻而細微,分離的速度和程度一般優於紙層析,分離無機物和有機物時與紙層析一樣有效。
荷蘭生物學家M.W.拜爾因克在1889年滴一滴鹽酸和硫酸的混合液於動物膠薄層中部,鹽酸擴散遠些,在硫酸環之外另成一環,相繼用硝酸銀和氯化鋇顯示這兩個環的存在。
9年後H.P.維伊斯曼用同樣方法證明麥芽的澱粉酶中實含兩種酶。
直至1956年聯邦德國E.施塔爾改善塗布方法和操作,採用細顆粒(0.5~5微米)硅膠等措施,才使該法得到廣泛使用。定量薄層層析始於J.G.基施納等(1954)。他們最先測定橙柑屬及其加工品中的聯苯(見薄層層析)。 希臘哲學家泰奧弗拉斯圖斯曾記錄各種岩石礦物及其他物質遇熱所發生的影響。法國H.-L.勒夏忒列和英國W.C.羅伯茨-奧斯汀同稱為差熱分析的鼻祖。
20世紀60年代,出現精細的差熱分析儀和M.J.奧尼爾提出的差示掃描量熱法,它能測定化合物的純度及其他參數,如熔點和玻璃化、聚合、熱降解、氧化等溫度(見熱分析)。
20世紀初,提出的熱重量法是研究物質,如鋼鐵、沉澱等遇熱時重量之變化。本多光太郎創制第一架熱天平,它最初只用於解決冶金方面的問題。將它用於分析方面的當推 C.杜瓦爾。他曾研究過 1000多種沉澱的熱行為。例如草酸鈣用高溫可灼燒為氧化鈣,也可在約550°C灼燒為碳酸鈣。二者作為稱量形式,則以後者為佳,因灼燒時既省能量,換算因子值較大(因此誤差較小),又免氧化鈣在稱量時吸潮。
電解時,銅(Ⅱ)在陰極還原而以單質(零價)析出,再進行稱量,應歸入重量法。此時可認為電子是沉澱劑。還有鉛(Ⅱ)在陽極氧化,以二氧化鉛形式附於陽極。前法在19世紀60年代分別由德意志C.盧科和美國J.W.吉布斯獨立提出。 19世紀初,用於無機重量分析的有機試劑只有草酸及其銨鹽和琥珀酸銨兩種。前者用於鈣、鎂分離和鈣的測定。後者用於沉澱三價鐵使它與二價金屬離子分離。
1885年,M.A.伊林斯基和G.von克諾雷提出1-亞硝基-2-萘酚作為鎳存在時鈷的沉澱劑,同時也是第一個螯合劑。至於陰離子測定,在20世紀初,W.米勒提出4,4-聯苯胺作為硫酸根的沉澱劑。
1950年,中國梁樹權等將有機試劑用於重量分析,測定鎢酸根。
1950年,M.布希引入4,5-二氫-1,4-二苯基-3,5-苯亞氨基-1,2,4-三氮雜茂(簡稱硝酸根試劑)作為硝酸根沉澱劑。1975年後,它又成為高錸酸根的良好沉澱劑。
1950年,Л.A.楚加耶夫合成了丁二肟,並觀察到它與鎳(Ⅱ)形成紅色沉澱。兩年後,聯邦德國O.E.布龍克把丁二肟試劑應用於鋼中鎳的測定。嗣後靈敏的和選擇性高的新有機試劑不斷出現。中國曾雲鶚等合成3-(2-胂酸基苯偶氮)-6-(2,6-二溴-4-氯苯偶氮)-4,5-二羥基-2,7-萘二磺酸,用此試劑時,稀土元素的摩爾吸光系數可以高達0.98~1.2×10升/(摩·厘米)。 它是基於被測物質的分子對光具有選擇性吸收的特性而建立起來的分析方法。包括比色分析法和紫外、可見分光光度法。測量某溶液對不同波長單色光的吸收程度,以波長為橫坐標,吸光度為縱坐標作圖,可得到吸收光譜。根據各種物質所有的特殊吸收光譜,可進行定性分析和定量分析。
比色法以日光為光源,靠目視比較顏色深淺。最早的記錄是1838年W.A.蘭帕迪烏斯在玻璃量筒中測定鈷礦中的鐵和鎳,用標准參比溶液與試樣溶液相比較。
1846年,A.雅克蘭提出根據銅氨溶液的藍色測定銅。隨後有T.J.赫羅帕思的硫氰酸根法測定鐵(1852);奈斯勒法測定氨;苯酚二磺酸法測定硝酸根(1864);過氧化氫法測定鈦(1870);亞甲基藍法測定硫化氫(1883);磷硅酸法測定二氧化硅(1898)。分光光度計使用單色光和光電倍增管,波長范圍為 220~1000納米,比目視范圍(400~700納米)更寬。
用光照射懸浮液,從頂部觀察,當視線與光線成直角時,稱為比霧法;如果視線與光線在一條直線上時,稱為比濁法。
18世紀50年代,G.J.馬爾德在原子量測定中,利用了目測上層液體中氯化銀懸浮液的亮度。隨後,J.-S.斯塔改用一標准懸浮液作參比。
1894年,美國T.W.理查茲設計出第一台比霧計。比霧法最初用於觀測原子量測定中母液中的氯(或溴)離子和銀離子濃度是否達到當量。隨後此法用於定量測定,其靈敏度很高,可測定一升水所含的3微克磷,或一升水所含的10微克丙酮。 紅外光譜是有機化學家鑒別未知化合物的有力手段。紅外光譜在20年代開始應用於汽油爆震研究,繼用於鑒定天然和合成橡膠以及其他有機化合物中的未知物和雜質。70 年代,在電子計算機蓬勃發展的基礎上,傅立葉變換紅外光譜 (FTIR) 實驗技術進入現代化學家的實驗室,成為結構分析的重要工具。遠紅外光譜(200~10厘米)和微波譜(10~0.1厘米)是研究分子旋轉的光譜法。
拉曼光譜(見拉曼光譜學是研究分子振動的另一種方法。早期拉曼光譜的信號太弱,使用困難,直至用激光作為單色光源後,才促進其在分析化學中的應用。拉曼光譜發展到現今已有採用傅立葉變換技術的FT-Raman光譜分析技術,共聚焦顯微拉曼光譜分析技術,表面增強拉曼效應分析技術等,在生物醫學分析、 文物分析、寶石鑒定、礦物分析等領域有重要的作用。 1672年,I.牛頓在暗室中用棱鏡分日光為七色,這就是原子發射光譜法的始祖。
1800年,F.W.赫歇耳發現紅外線。次年J.W.里特用氯化銀還原現象發現紫外區。又次年W.H.渥拉斯頓觀察到日光光譜的暗線。
1815年, J.von夫琅和費經過研究,命名暗線為夫琅和費線。文獻中稱鈉線為D線,也是夫琅和費規定的。R.W.本生發明了名為本生燈的煤氣燈,燈的火焰近於透明而不發光,便於光譜研究。
1859年,本生和他的同事物理學家G.R.基爾霍夫研究各元素在火焰中呈示的特徵發射和吸收光譜,並指出日光光譜中的夫琅和費線是原子吸收線,因為太陽的大氣中存在各種元素。他們用的儀器已具備現代分光鏡的要素。他們可稱為發射光譜法的創始人。 化學分析包括滴定分析和稱量分析,它是根據物質的化學性質來測定物質的組成及相對含量。
光譜學
質譜學
分光度和比色法
層析和電泳法
結晶學
顯微術
電化學分析
古典分析
雖說當代分析方法絕大部分為儀器分析,但有些儀器最初的設計目的,是為了簡化古典方法的不便,基本原理仍來自於古典分析。另外,樣品配置等前置處理,仍需要藉由古典分析手法的協助。以下舉一些古典分析方法:
滴定法
重量分析
無機定性分析 分析儀器:當代分析化學著重儀器分析,常用的分析儀器有幾大類,包括原子與分子光譜儀,電化學分析儀器,核磁共振,X光,以及質譜儀。儀器分析之外的分析化學方法,統稱為古典分析化學。
分析化學是化學的一個重要分支,它主要研究物質中有哪些元素或基團(定性分析);每種成分的數量或物質純度如何(定量分析);原子如何聯結成分子,以及在空間如何排列等等。
儀器分析的方法:它是根據物質的物理性質或物質的物理化學性質來測定物質的組成及相對含量。儀器分析根據測定的方法原理不同,可分為電化學分析、光學分析、色譜分析、其他分析法等4大類。如右圖。
主要分析儀器:
原子吸收光譜法(Atomic absorption spectros, AAS)
原子熒光光譜法(Atomic fluorescence spectros, AFS)
α質子-X射線光譜儀(Alpha particle X-ray spectrometer, APXS)
毛細管電泳分析儀(Capillary electrophoresis, CE)
色譜法(Chromatography)
比色法(Colorimetry)
循環伏安法(Cyclic Voltammetry, CV)
差示掃描量熱法(Differential scanning calorimetry, DSC)
電子順旋共振儀(Electron paramagnetic resonance, EPR)
電子自旋共振(Electron spin resonance, ESR)
橢圓偏振技術(Ellipsometry)
場流分離法(Field flow fractionation, FFF)
傳式轉換紅外線光譜術(Fourier Transform Infrared Spectros, FTIR)
氣相色譜法(Gas chromatography, GC)
氣相色譜-質譜法(Gas chromatography-mass spectrometry, GC-MS)
高效液相色譜法(High Performance Liquid Chromatography, HPLC)
離子微探針(Ion Microprobe, IM)
感應耦合電漿(Inctively coupled plasma, ICP)
Instrumental mass fractionation (IMF)
選擇性電極(Ion selective electrode, ISE)
激光誘導擊穿光譜儀(Laser Inced Breakdown Spectros, LIBS)
質譜儀(Mass spectrometry, MS)
穆斯堡爾光譜儀系統(Mossbauer spectros)
核磁共振(Nuclear magnetic resonance, NMR)
粒子誘發X-射線產生(Particle inced X-ray emission spectros,PIXE)
熱裂解-氣相色譜-質譜儀(Pyrolysis-Gas Chromatography-Mass Spectrometry, PY-GC-MS)
拉曼光譜(Raman spectros)
折射率
共振增強多光子電離譜(Resonance enhanced multi-photon ionization, REMPI)
掃瞄穿透X射線顯微鏡(Scanning transmission X-ray micros,STXM)
薄板層析(Thin layer chromatography,TLC)
穿透式電子顯微鏡(Transmission electron micros,TEM)
X射線熒光光譜儀(X-ray fluorescence spectros,XRF)
X射線顯微鏡(X-ray micros,XRM) 化學分析和儀器分析
凡主要利用化學原理進行分析的方法稱為化學分析法;而主要利用物理學原理進行分析的方法則稱為儀器分析法。當然這兩者的界限難以截然劃清,也有介乎二者之間的方法。
儀器一般指大型儀器,如核磁共振儀(見核磁共振譜)、X射線熒光儀 (見X射線熒光光譜分析法)、X射線衍射儀、質譜儀(見質譜法)、電子能譜儀等。原子發射光譜法和原子吸收光譜法基本上採用濕法預處理,然後在相應儀器中測定,可認為是介於二者之間的方法,也可看作是化學法與儀器法的聯合使用。不能認為用到儀器就是儀器分析。例如,重量分析開始於用天平稱量樣品,末一步再用天平稱沉澱重量。
天平是物理儀器,稱量是物理過程,但重量分析卻是公認的典型化學分析法,原因是重量分析主要靠欲測離子與沉澱劑作用而定量析出沉澱。至於經典法一詞,專指重量分析法和容量分析。其范圍遠狹於化學法。所以經典法僅是化學分析法的一部分,而不是全部。 粗分為無機分析和有機分析兩大類
天然產物和工業製品中的無機物,如岩石、礦物、陶瓷、鋼鐵、合金、礦物酸、燒鹼等的分析屬無機分析;石油、染料、塑料、食品、合成葯物、中草葯等的分析屬有機分析。簡言之,凡碳氫化合物及其衍生物的分析屬有機分析,而除上述物質外的分析統屬無機分析。不過,無機物中有時夾雜一些有機物質,而有機物也含有無機物質。例如,河水、海水中含有有機物,有些錳礦夾雜有機物,煤含有灰分,石油含有以絡合物形式存在的金屬,紙張中有無機填充物等。這類物品既用到無機分析,也用到有機分析。
還有一些方法對無機物質和有機物質同樣有效,如氣相色譜法便是其中之一。樣品中一氧化碳、二氧化碳、氫、氮、氧、甲烷、乙烯、水氣等在同一柱中,在選擇的條件下可逐一分離或分組分離。奧薩特氣體分析器也是如此,只是分離的原理不同。
痕量分析是指樣品所含的量極為微少。一般在樣品中含量多的為主要成分,含量少的為次要成分。E.B.桑德爾認為含量在1%~0.01%的為次要成分。有人認為在10%~0.01%的為次要成分。含量在萬分之一(0.01%)以下稱為痕量。痕量分析的動向趨於測定愈來愈低的含量,因此出現了超痕量分析,即含量接近或低於一般痕量下限。這名稱只是定性的。定量或更明確的名稱見下列規定:
痕量 10~10微克/克
微痕量10~10微克/克
納痕量 10~10微克/克
沙痕量 10~10
微克/克微痕量分析尚另有一種意義,即使用微量分析的稱樣,而測定其中痕量元素(例如<10微克/克)。為與前述一詞區分,後一詞應稱為微樣痕量分析。 ①選擇性最高,以至具有專一性,即干擾極少,這樣就可以減少或省略分離步驟;
②精密度和准確度最高;
③靈敏度最高,從而少量或痕量組分即可檢定和測定;
④測定范圍最廣,大量和痕量均能測定;
⑤能測定的元素種類和物種最多;
⑥方法簡便,即最易操作而不需高度技巧;
⑦經濟實惠,即要求費用少而收益大。但匯集所有優點於一法是辦不到的,例如,在重量分析中,如要提高准確度,需要延長分析時間(如用重沉澱法純化沉澱)。因為化學法測定原子量要求准確到十萬分之一,所以最費時間。 分析方法要力求簡便,不僅野外工作(諸如地質普查、化學探礦、環境監測、土壤檢測等)需要簡便、有效的化學分析方法,室內例行分析工作也如此。
因為在不損失所要求之准確度和精密度的前提下,方法簡便,步驟少,這就意味著節省時間、人力和費用。例如,金店收購金首飾時,是將其在試金石板上劃一道(科學名稱是條紋),然後從條紋的顏色來鑒定金的成色。這種條紋法在礦物鑒定中仍然採用。
當然,該法不及火試金法或原子吸收光譜法准確,但已能達到鑒定金器之目的。又如,糖尿病人的尿糖量可用特製的含酶試紙進行檢驗,從試紙的顏色變化估計含糖量的多寡,其方法之簡便連患者本人也會使用。另一方面,用原子吸收光譜法雖然也能間接測定尿樣中含糖量,但因為不經濟而沒有被採用。 雖然有不少靈敏的和選擇性強(甚至專一)的方法,但是如果欲測元素的濃度接近或低於方法的測定下限,則富集仍不可避免。富集方法很多,如升華、揮發、蒸餾、泡沫浮選(見痕量富集)、吸附(用分子篩、活性炭等)、色譜法、共沉澱、共結晶、汞齊作用、選擇溶解、溶劑萃取、離子交換等。
在檢出或測定之前,常常需要使欲測(或檢出)物質與干擾物質彼此分離。重要的分離方法有蒸餾、溶劑萃取、離子交換、電滲析、沉澱、電泳等,大都與富集方法相同。富集可認為是提高濃度的分離方法。
隱蔽作用(見隱蔽和解蔽)雖不是分離,但其作用使離子失去其正常性質,即令該離子以另一形式存於反應體系中。然而在分析化學中分離之目的無非使干擾離子不再干擾,因此就廣義而言,隱蔽及其相反作用解蔽應包括在分離范疇中。在分析化學中採用隱蔽和解蔽作用由來已久。重量分析、光度法、極譜法中均已應用,特別在點滴試驗和絡合滴定法中使用得更頻繁。 取樣最重要的要求是有代表性,即取來欲分析的樣品須能代表全體。均勻或容易混勻的物質取樣自不成問題,氣態和液態樣品屬於這一類。不均勻的固態物質,如礦石和煤炭等應按規定手續取樣。否則,分析結果不能代表原物質,徒然浪費人力物力。野外礦石取樣多由地質人員進行。所得大樣在試驗室中由分析人員按一定手續粉碎和縮分到小樣。另一方面,有機元素燃燒法分析合成的純樣品則無此問題。
樣品溶熔是第二步。溶熔包括溶解和熔融,也稱分解。有些樣品能溶解於水、酸或混合酸、鹼,以及有機溶劑中。上述辦法不能溶解的,可改用熔劑熔融。熔劑可分鹼性(如碳酸鈉)、酸性(如硫酸氫鉀)、氧化性(如過氧化鈉)和還原性的(如硫代硫酸鈉)。如果欲分析的成分較易揮發或熔融溫度高,對坩堝腐蝕嚴重,則可改用燒結,即將顆粒表面部分熔化。史密斯法用氯化銨和碳酸鈣(1:8~12)與硅酸鹽岩石混合和燒結,以測定其中的鹼金屬便是一例。有機化合物和生物樣品可採用干法或濕法灰化。干法灰化為在充分氧氣存在下加熱至炭化並逐漸燃燒,或在較低溫度用原子氧氧化(低溫灰化)。濕法灰化利用氧化性酸(如硝酸、高氯酸、濃硫酸)氧化樣品。干法、濕法各有其優缺點,須視樣品而定。

閱讀全文

與分析化學代表性發明相關的資料

熱點內容
西安私人二手挖機轉讓 瀏覽:698
債務股權轉讓 瀏覽:441
食堂轉讓合同範本 瀏覽:335
廣西華航投資糾紛 瀏覽:902
萌分期投訴 瀏覽:832
金軟pdf期限破解 瀏覽:730
馬鞍山學化妝 瀏覽:41
膠州工商局姜志剛 瀏覽:786
了解到的發明創造的事例 瀏覽:391
2012年中國知識產權發展狀況 瀏覽:773
合肥徽之皇知識產權代理有限公司 瀏覽:636
天津企興知識產權待遇 瀏覽:31
二項基本公共衛生服務項目試題 瀏覽:305
基本公共衛生服務考核標准 瀏覽:543
公共衛生服務考核評估辦法 瀏覽:677
上海工商局咨詢熱線 瀏覽:177
馬鞍山二中葉張平 瀏覽:214
機動車交通事故責任糾紛被告代理詞 瀏覽:603
醫院固定資產折舊年限 瀏覽:702
商標注冊網先咨政岳知識產權放心 瀏覽:658