Ⅰ 兀是誰發明的
圓周率(Pi)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學里,π可以嚴格地定義為滿足sin x = 0的最小正實數x。
圓周率用字母 (讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。
1965年,英國數學家約翰·沃利斯(John Wallis)出版了一本數學專著,其中他推導出一個公式,發現圓周率等於無窮個分數相乘的積。2015年,羅切斯特大學的科學家們在氫原子能級的量子力學計算中發現了圓周率相同的公式。
若有幫助 望採納謝謝
Ⅱ 數學中兀的發明者是誰
兀是否是派?
若是,則由中國數學家,天文學家祖沖之,世界第一位將圓周率值計算到小數第7位的科學家,
其圓周率即派=3.1415927……
但圓周率不是由祖沖之發明的,請看下面網址中的歷史發展:
http://ke..com/view/3287.htm?fr=aladdin
Ⅲ 圓周率是誰發明的 歷史上圓周率的發明人是誰
圓周率是一個概念,一個定義,不存在由誰發明的問題。 而對於圓周率精確計算,在各個時期達到如何的精度是有記錄的。數學家祖沖之為圓周率做出了巨大的貢獻。
中國古算書《周髀算經》(約公元前2世紀)的中有「徑一而周三」的記載,意即取π=3。漢朝時,張衡得出π²除以16約等於8分之5,即π約等於根號十(約為3.162)。這個值不太准確,但它簡單易理解。
中國數學家劉徽用「割圓術」計算圓周率,他先從圓內接正六邊形,逐次分割一直算到圓內接正192邊形。劉徽給出π=3.14的圓周率近似值,劉徽在得圓周率=3.14之後,繼續割圓到1536邊形,求出3072邊形的面積,得到令自己滿意的圓周率3927除以1250約等於3.1416。
數學家祖沖之進一步得出精確到小數點後7位的結果,給出不足近似值3.1415926和過剩近似值3.1415927,密率是個很好的分數近似值,要取到52163除以16604才能得出比355除以113略准確的近似,在之後的800年裡祖沖之計算出的π值都是最准確的。
(3)兀發明者擴展閱讀:
2011年,國際數學協會正式宣布,將每年的3月14日設為國際數學節,來源則是中國古代數學家祖沖之的圓周率。
1965年,英國數學家約翰·沃利斯(John Wallis)出版了一本數學專著,其中他推導出一個公式,發現圓周率等於無窮個分數相乘的積。2015年,羅切斯特大學的科學家們在氫原子能級的量子力學計算中發現了圓周率相同的公式 。
2019年3月14日,谷歌宣布圓周率現已到小數點後31.4萬億位。
Ⅳ 兀是用什麼東西發明的
圓周率(Pai)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。
第一個用科學方法尋求圓周率數值的人是阿基米德,在公元前三世紀,他用圓內接和外切正多邊形的周長確定圓周長的上下界,從正六邊形開始,逐次加倍計算到正96邊形,開創了圓周率計算的幾何方法,得出精確到小數點後兩位的π值。
公元263年魏晉時代的中國數學家劉徽在《九章算術》用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術。
而我們熟悉的南北朝時代中國科學家祖沖之並不是發現圓周率的科學家,但是他准確得到了小數點後7位的π值,輝煌成就比歐洲至少早了1000年,是我們中華民族的驕傲。
後來科學家又不斷突破,到了1948年英國的弗格森和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。2011年10月16日,日本長野縣飯田市公司職員近藤茂利用家中電腦和雲計算相結合,將圓周率計算到小數點後10萬億位,創造了新的吉尼斯世界記錄。
特別有意思的是過去圓周率並不叫π(pai),π是第十六個希臘字母,本來它是和圓周率沒有關系的,但大數學家歐拉從一七三六年開始,在書信和論文中都用π來表示圓周率。
Ⅳ 數學中π是誰發明的
巴比倫人定出π大概等於31/8(3.125),埃及人測量結果稍為遜色,是大概3.16。
在公元前三專世紀,希臘數學家屬阿基米德可可以是首個用科學方法計算π人,算出大概等於3.14。
祖沖之(429-500),字文遠。出生於建康(今南京),祖籍范陽郡遒縣(今河北淶水縣),中國南北朝時期傑出的數學家、天文學家。
祖沖之一生鑽研自然科學,其主要貢獻在數學、天文歷法和機械製造三方面。他在劉徽開創的探索圓周率的精確方法的基礎上,首次將「圓周率」精算到小數第七位,即在3.1415926和3.1415927之間,他提出的「祖率」對數學的研究有重大貢獻。直到16世紀,阿拉伯數學家阿爾·卡西才打破了這一紀錄。
由他撰寫的《大明歷》是當時最科學最進步的歷法,對後世的天文研究提供了正確的方法。其主要著作有《安邊論》《綴術》《述異記》《歷議》等。
Ⅵ π是誰發明出來的
秦漢以前,人們以徑一周三做為圓周率,這就是古率.後來發現古率誤差太大,圓周率應是圓徑一而周三有餘,不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--割圓術,用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.
劉徽(約公元225年-295年),漢族,山東濱州鄒平縣人,魏晉期間偉大的數學家,中國古典數學理論的奠基人之一。是中國數學史上一個非常偉大的數學家,他的傑作《九章算術注》和《海島算經》,是中國最寶貴的數學遺產。劉徽思想敏捷,方法靈活,既提倡推理又主張直觀。他是中國最早明確主張用邏輯推理的方式來論證數學命題的人。
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.
Ⅶ π是誰發明出來的
圓周率,一般以π來表示,是一個在數學及物理學普遍存在的數學常數。它定義為圓形之周長與直徑之比值。它相關教學電子計算機的出現使π值計算有了突飛猛進的發展。1949年美國馬里蘭州阿伯丁的軍隊彈道研究實驗室首次用計算機(ENIAC)計算π值,一下子就算到2037位小數,突破了千位數。1989年美國哥倫比亞大學研究人員用克雷-2型和IBM-VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數,創下最新的紀錄。2010年1月7日——法國一工程師將圓周率算到小數點後27000億位。2010年8月30日——日本計算機奇才近藤茂利用家用計算機和雲計算相結合,計算出圓周率到小數點後5萬億位。
2011年10月16日,日本長野縣飯田市公司職員近藤茂利用家中電腦將圓周率計算到小數點後10萬億位,刷新了2010年8月由他自己創下的5萬億位吉尼斯世界紀錄。今年56歲近藤茂使用的是自己組裝的計算機,從去年10月起開始計算,花費約一年時間刷新了紀錄。
而如今計算機高速發展,人們雖然已經知道π是一個無理數,而且已經計算得越來越精準,而人們不管是工程測量、數學解題過程中,大部分都取前兩位數,就是π≈3.14,也產生了圓周率日(3月14日)。
折疊編輯本段各國發展
在歷史上,有不少數學家都對圓周率做出過研究,當中著名的有阿基米德(Archimedes ofSyracuse)、托勒密(Claudius Ptolemy)、張衡、祖沖之等。他們在自己的國家用各自的方法,辛辛苦苦地去計算圓周率的值。下面,就是世上各個地方對圓周率的研究成果。
折疊亞洲
中國,最初在《周髀算經》中就有「徑一周三」的記載,取π值為3。
魏晉時,劉徽曾用使正多邊形的邊數逐漸增加去逼近圓周的方法(即「割圓術」),求得π的近似值3.1416。
漢朝時,張衡得出π的平方除以16等於5/8,即π等於10的開方(約為3.162)。雖然這個值不太准確,但它簡單易理解,所以也在亞洲風行了一陣。 王蕃(229-267)發現了另一個圓周率值,這就是3.156,但沒有人知道他是如何求出來的。
公元5世紀,祖沖之和他的兒子以正24576邊形,求出圓周率約為355/113,和真正的值相比,誤差小於八億分之一。這個紀錄在一千年後才給打破。
印度,約在公元530年,數學大師阿耶波多利用384邊形的周長,算出圓周率約為√9.8684。
婆羅門笈多採用另一套方法,推論出圓周率等於10的算術平方根。
折疊歐洲
斐波那契算出圓周率約為3.1418。
韋達用阿基米德的方法,算出3.1415926535<π<3.1415926537
他還是第一個以無限乘積敘述圓周率的人。
(阿基米德,前287-212,古希臘數學家,從單位圓出發,先用內接六邊形求出圓周率的下界是3,再用外接六邊形結合勾股定理求出圓周率的上限為4,接著對內接和外界正多邊形的邊數加倍,分別變成了12邊型,直到內接和外接96邊型為止。最後他求出上界和下界分別為22╱7和223╱71,並取他們的平均值3.141851為近似值,用到了迭代演算法和兩數逼近的概念,稱得算是計算的鼻祖。
魯道夫萬科倫以邊數多過32000000000的多邊形算出有35個小數位的圓周率。
華理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
歐拉發現的e的iπ次方加1等於0,成為證明π是超越數的重要依據。
之後,不斷有人給出反正切公式或無窮級數來計算π,在這里就不多說了。
折疊
Ⅷ π是誰發明的
祖沖之發明的;祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以徑一周三做為圓周率,這就是古率.後來發現古率誤差太大,圓周率應是圓徑一而周三有餘,不過究竟余多少,意見不一。
直到三國時期,劉徽提出了計算圓周率的科學方法--割圓術,用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確。
祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數。
圓周率(Pai)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學里,π可以嚴格地定義為滿足sin x = 0的最小正實數x。
圓周率用字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。
在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。