『壹』 與我們生活相關現代科技發明有哪些
芭急~
姐姐我來了
吧唧吧唧~
基因工程genetic engineering
基因工程是以分子遺傳學為理論基礎, 以分子生物學和微生物學的現代方法為手段, 將不同來源的基因(DNA分子),按預先設計的藍圖, 在體外構建雜種DNA分子, 然後導入活細胞, 以改變生物原有的遺傳特性、獲得新品種、 生產新產品。基因工程技術為基因的結構和功能的研究提供了有力的手段。
什麼是基因工程?【簡介】
基因工程是生物工程的一個重要分支,它和細胞工程、酶工程、蛋白質工程和微生物工程共同組成了生物工程。 所謂基因工程(genetic engineering)是在分子水平上對基因進行操作的復雜技術,是將外源基因通過體外重組後導入受體細胞內,使這個基因能在受體細胞內復制、轉錄、翻譯表達的操作。它是用人為的方法將所需要的某一供體生物的遺傳物質——DNA大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的DNA分子連接起來,然後與載體一起導入某一更易生長、繁殖的受體細胞中,以讓外源物質在其中「安家落戶」,進行正常的復制和表達,從而獲得新物種的一種嶄新技術。
基因工程是在分子生物學和分子遺傳學綜合發展基礎上於本世紀70年代誕生的一門嶄新的生物技術科學。一般來說,基因工程是指在基因水平上的遺傳工程,它是用人為方法將所需要的某一供體生物的遺傳物質--DNA大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的DNA分子連接起來,然後與載體一起導入某一更易生長、繁殖的受體細胞中,以讓外源遺傳物質在其中"安家落戶",進行正常復制和表達,從而獲得新物種的一種嶄新的育種技術。 這個定義表明,基因工程具有以下幾個重要特徵:首先,外源核酸分子在不同的寄主生物中進行繁殖,能夠跨越天然物種屏障,把來自任何一種生物的基因放置到新的生物中,而這種生物可以與原來生物毫無親緣關系,這種能力是基因工程的第一個重要特徵。第二個特徵是,一種確定的DNA小片段在新的寄主細胞中進行擴增,這樣實現很少量DNA樣品"拷貝"出大量的DNA,而且是大量沒有污染任何其它DNA序列的、絕對純凈的DNA分子群體。科學家將改變人類生殖細胞DNA的技術稱為「基因系治療」(germlinetherapy),通常所說的「基因工程」則是針對改變動植物生殖細胞的。無論稱謂如何,改變個體生殖細胞的DNA都將可能使其後代發生同樣的改變。
迄今為止,基因工程還沒有用於人體,但已在從細菌到家畜的幾乎所有非人生命物體上做了實驗,並取得了成功。事實上,所有用於治療糖尿病的胰島素都來自一種細菌,其DNA中被插入人類可產生胰島素的基因,細菌便可自行復制胰島素。基因工程技術使得許多植物具有了抗病蟲害和抗除草劑的能力;在美國,大約有一半的大豆和四分之一的玉米都是轉基因的。目前,是否該在農業中採用轉基因動植物已成為人們爭論的焦點:支持者認為,轉基因的農產品更容易生長,也含有更多的營養(甚至葯物),有助於減緩世界范圍內的飢荒和疾病;而反對者則認為,在農產品中引入新的基因會產生副作用,尤其是會破壞環境。
誠然,仍有許多基因的功能及其協同工作的方式不為人類所知,但想到利用基因工程可使番茄具有抗癌作用、使鮭魚長得比自然界中的大幾倍、使寵物不再會引起過敏,許多人便希望也可以對人類基因做類似的修改。畢竟,胚胎遺傳病篩查、基因修復和基因工程等技術不僅可用於治療疾病,也為改變諸如眼睛的顏色、智力等其他人類特性提供了可能。目前我們還遠不能設計定做我們的後代,但已有藉助胚胎遺傳病篩查技術培育人們需求的身體特性的例子。比如,運用此技術,可使患兒的父母生一個和患兒骨髓匹配的孩子,然後再通過骨髓移植來治癒患兒。
隨著DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,特別是當人們了解到遺傳密碼是由 RNA轉錄表達的以後,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性。 如果將一種生物的 DNA中的某個遺傳密碼片斷連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物類型,這與過去培育生物繁殖後代的傳統做法完全不同。 這種做法就像技術科學的工程設計,按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就稱為「基因工程」,或者說是「遺傳工程」。
【基因工程的基本操作步驟】
1.獲取目的基因是實施基因工程的第一步。
2.基因表達載體的構建是實施基因工程的第二步,也是基因工程的核心。
3.將目的基因導入受體細胞是實施基因工程的第三步。
4.目的基因導入受體細胞後,是否可以穩定維持和表達其遺傳特性,只有通過檢測與鑒定才能知道。這是基因工程的第四步工作。
基因工程的前景科學界預言,21世紀是一個基因工程世紀。基因工程是在分子水平對生物遺傳作人為干預,要認識它,我們先從生物工程談起:生物工程又稱生物技術,是一門應用現代生命科學原理和信息及化工等技術,利用活細胞或其產生的酶來對廉價原材料進行不同程度的加工,提供大量有用產品的綜合性工程技術。
生物工程的基礎是現代生命科學、技術科學和信息科學。生物工程的主要產品是為社會提供大量優質發酵產品,例如生化葯物、化工原料、能源、生物防治劑以及食品和飲料,還可以為人類提供治理環境、提取金屬、臨床診斷、基因治療和改良農作物品種等社會服務。
生物工程主要有基因工程、細胞工程、酶工程、蛋白質工程和微生物工程等5個部分。其中基因工程就是人們對生物基因進行改造,利用生物生產人們想要的特殊產品。隨著DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性。
美國的吉爾伯特是鹼基排列分析法的創始人,他率先支持人類基因組工程 如果將一種生物的DNA中的某個遺傳密碼片斷連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,不就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物類型嗎?這與過去培育生物繁殖後代的傳統做法完全不同,它很像技術科學的工程設計,即按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就被稱為「基因工程」,或者稱之為「遺傳工程」。
人類基因工程走過的主要歷程怎樣呢?1866年,奧地利遺傳學家孟德爾神父發現生物的遺傳基因規律;1868年,瑞士生物學家弗里德里希發現細胞核內存有酸性和蛋白質兩個部分。酸性部分就是後來的所謂的DNA;1882年,德國胚胎學家瓦爾特弗萊明在研究蠑螈細胞時發現細胞核內的包含有大量的分裂的線狀物體,也就是後來的染色體;1944年,美國科研人員證明DNA是大多數有機體的遺傳原料,而不是蛋白質;1953年,美國生化學家華森和英國物理學家克里克宣布他們發現了DNA的雙螺旋結果,奠下了基因工程的基礎;1980年,第一隻經過基因改造的老鼠誕生;1996年,第一隻克隆羊誕生;1999年,美國科學家破解了人類第 22組基因排序列圖;未來的計劃是可以根據基因圖有針對性地對有關病症下葯。
人類基因組研究是一項生命科學的基礎性研究。有科學家把基因組圖譜看成是指路圖,或化學中的元素周期表;也有科學家把基因組圖譜比作字典,但不論是從哪個角度去闡釋,破解人類自身基因密碼,以促進人類健康、預防疾病、延長壽命,其應用前景都是極其美好的。人類10萬個基因的信息以及相應的染色體位置被破譯後,破譯人類和動植物的基因密碼,為攻克疾病和提高農作物產量開拓了廣闊的前景。將成為醫學和生物制葯產業知識和技術創新的源泉。美國的貝克維茲正在觀察器皿中的菌落,他曾對人類基因組工程提出警告。
科學研究證明,一些困擾人類健康的主要疾病,例如心腦血管疾病、糖尿病、肝病、癌症等都與基因有關。依據已經破譯的基因序列和功能,找出這些基因並針對相應的病變區位進行葯物篩選,甚至基於已有的基因知識來設計新葯,就能「有的放矢」地修補或替換這些病變的基因,從而根治頑症。基因葯物將成為21世紀醫葯中的耀眼明星。基因研究不僅能夠為篩選和研製新葯提供基礎數據,也為利用基因進行檢測、預防和治療疾病提供了可能。比如,有同樣生活習慣和生活環境的人,由於具有不同基因序列,對同一種病的易感性就大不一樣。明顯的例子有,同為吸煙人群,有人就易患肺癌,有人則不然。醫生會根據各人不同的基因序列給予因人而異的指導,使其養成科學合理的生活習慣,最大可能地預防疾病。
『貳』 請舉出一個現代科學技術發現和發明的例子
中國葯學家屠呦呦在1971年發現青蒿素。青蒿素是繼乙氨嘧啶、氯喹、伯喹之後最有效的抗瘧特效葯,尤其是對於腦型瘧疾和抗氯喹瘧疾,具有速效和低毒的特點,曾被世界衛生組織稱做是「世界上唯一有效的瘧疾治療葯物」。
上個世紀60年代,瘧原蟲對奎寧類葯物已經產生了抗葯性,嚴重影響到治療效果。青蒿素及其衍生物能迅速消滅人體內瘧原蟲,對惡性瘧疾有很好的治療效果。屠呦呦受中國典籍《肘後備急方》啟發,成功提取出的青蒿素,被譽為"拯救2億人口"的發現。
2015年10月8日,中國科學家屠呦呦獲2015年諾貝爾生理學或醫學獎,成為第一個獲得諾貝爾自然學獎的中國人。多年從事中葯和中西葯結合研究的屠呦呦,創造性地研製出抗瘧新葯——青蒿素和雙氫青蒿素,獲得對瘧原蟲100%的抑制率,為中醫葯走向世界指明一條方向。
(2)與科技相關的最新發明擴展閱讀:
與以往的抗瘧葯物不同,青蒿素抗瘧機理的主要作用是通過對瘧原蟲表膜線粒體等的功能進行干擾,首先作用於食物泡膜、表膜、線粒體,其次作用於核膜、內質網,對核內染色質也有一定的影響,最終導致蟲體結構的全部瓦解,而不是藉助於干擾瘧原蟲的葉酸代謝。
其作用機制也可能主要是干擾表膜一線粒體的功能,作用於食物泡膜,阻斷營養攝取的最早階段,使瘧原蟲較快出現氨基酸飢餓,從而迅速形成自噬泡並不斷排出於蟲體外,瘧原蟲最終損失大量細胞質而死亡。
具體葯理作用分兩步:第一步是活化,青蒿素被瘧原蟲體內的鐵催化,其結構中的過氧橋裂解,產生自由基;第二步是烷基化,第一步所產生的自由基與瘧原蟲蛋白發生絡合,形成共價鍵,使瘧原蟲蛋白失去功能死亡 。
『叄』 我國發明了哪些新的科技成果以及相關它的知識
這個。。。太多了、
國家日益強盛。
身為中國人自豪吧
『肆』 最新的科技小發明設計
哈嘍,你可以去西安科技大市場的官網科技文獻版塊下載一些有關這方面的東西借鑒一下,先去注冊
『伍』 中國在科技方面有什麼發明
1、神舟六號載人航天飛行圓滿成功 10月17日凌晨4時33分,在經過115小時32分鍾的太空飛行,完成我國真正意義上有人參與的空間科學實驗後,神舟六號載人飛船返回艙順利著陸,航天員費俊龍、聶海勝自主出艙。神舟六號載人航天飛行的成功,標志著我國在發展載人航天技術、進行有人參與的空間實驗活動方面取得了又一個具有里程碑意義的重大勝利,這對於進一步提升我國的國際地位,增強我國的經濟實力、科技實力、國防實力具有重大深遠的意義。 2、青藏鐵路全線鋪通 青藏鐵路工程技術人員和建設者按照建設世界一流高原鐵路的目標,在素有「生命禁區」之稱的雪域高原上,克服許多難以想像的困難,攻克「多年凍土、高寒缺氧、生態脆弱」三大世界性難題,優質高效地完成了青藏鐵路全線鋪通任務,這是世界鐵路建設史上的輝煌壯舉。裝載著大批援藏物資的列車10月15日陸續抵達拉薩。 3、我國首款64位高性能通用CPU晶元問世 中科院計算所研製的龍芯2號,其單精度峰值浮點運算速度為每秒20億次,雙精度浮點運算速度為每秒10億次,最高頻率為500MHz,功耗為3瓦至5瓦,遠遠低於國外同類晶元,其標准測試程序的實測性能是1.3GHz的威盛處理器的2倍至3倍 。信息產業部、科技部、中科院和江蘇省合作,建立「中科夢龍」龍芯產業化基地,一條以龍芯產業化為目標的高科技產業鏈已經初步形成。 4、中國科考隊首次登上南極冰蓋最高點 北京時間1月18日3時16分,在挺進南極內陸冰蓋1200多公里後,中國南極內陸冰蓋昆侖科考隊登上了南極內陸冰蓋的最高點:南緯80度22分00秒,東經77度21分11秒,海拔4093米。按照計劃,冰蓋科考隊將在最高點建立科學觀測站,開展氣候環境監測,進行冰雷達測厚、高精度GPS定位和綜合氣象觀測。我國科考隊成功登上冰蓋最高點,是人類南極考察歷史上的一次壯舉,表明我國南極事業發展又上了一個新台階。 5、全球記載種類最多的《中國植物志》全部出版 與世界上同類著作相比,126卷冊的《中國植物志》收載植物種類和所含卷冊最多,總體編研水平高,是我國近百年來第一部最全面、最系統的全國植物志。《中國植物志》是關於中國維管束植物(包括蕨類植物與種子植物)的全面、系統、科學的總結,它記載了中國3萬多種植物(301科3408屬31142種),共5000多萬字,9000多幅圖版。 6、我國科學家成功實現首次單分子自旋態控制 中國科學技術大學科研人員利用低溫超高真空掃描隧道顯微鏡,巧妙地對吸附於金屬表面的鈷酞菁分子進行「單分子手術」,成功實現了單分子自旋態的控制。這是世界上首次實現了單個分子內部的化學反應,並利用局域的化學反應來改變和控制分子的物理性質,從而實現重要的物理效應,為單分子功能器件的制備提供了一個極為重要的新方法,揭示了單分子科學研究的廣闊前景。《科學》雜志發表了這項研究的論文,並在同期的「透視」欄目中對該成果進行了評價。 7、我國測定珠峰新「身高」8844.43米 國家測繪局宣布了2005年珠穆朗瑪峰高程測量獲得的新數據:珠峰峰頂岩石面海拔高程8844.43米,高程測量精度±0.21米,峰頂冰雪深度3.50米。這組數據是迄今為止國內乃至國際上歷次珠峰高程測量中最為詳盡、精確的數據。與1975年所測得的珠峰高度相比,最新公布的珠峰高度降低了約3.7米。此次精確測定珠峰高程的活動,反映了我國測量珠峰高程的技術水平和權威性,對於體現國家綜合國力和測繪科技水平、促進地球科學研究等具有重要的作用。 8、中國大陸科學鑽探深入地下5158米 經過近4年努力 ,中國大陸科學鑽探工程「科鑽一井」勝利竣工,在江蘇省東海縣毛北村成功深入地下5158米,並在此基礎上取得了一系列科研成果,這標志著我國「入地」計劃獲得重大突破。這也是當前正在實施的國際大陸科學鑽探計劃20多個項目中最深的科學鑽井。 9、能在血管中通行的「葯物分子運輸車」研製成功 中科院上海硅酸鹽研究所研製的「納米葯物分子運輸車」,直徑只有200納米,裝載的葯物在沿途不會泄漏,直到引導到了某一個特定的疾病靶點、在人們需要的時候才釋放出來,對疾病產生治療作用。研究人員已經成功完成用「運輸車」裝載消炎、止痛、抗癌葯物的裝載控制釋放和定向傳輸的實驗。這項成果發表在《美國化學學會會志》和德國《應用化學》上。 10、最高解析度「中國數字人男1號」誕生 南方醫科大學構建完成的「中國數字人男1號」,高效數碼相機像素達2200萬,圖像解析度為4040×5880,是目前世界上0.2毫米虛擬人切削中解析度最高的數據集。此外,按60兆一幀釋放,該數據集的數據量超過540千兆,為世界之最。「數字人」在醫學、航天、航空、影視製作乃至軍事等領域都有著廣泛的應用價值。
『陸』 關於科技小發明
好像是專利之家網站上,太多有趣的小發明了,可以去學習下,自己搜下。
『柒』 高科技領域都有哪些研究發明
半導體產業上游是IC設計,中游是IC製造、晶圓製造、光罩,下游是封裝測試。
設計大致分為模擬、數字和模數混合,以及EDA的軟體設計:晶圓製造就是將多晶硅製成晶圓;IC製造就是將設計好的電路圖做到晶圓上;完成好後就是封裝測試的環節。
從設計上看國內最缺的是EDA的軟體這需要無比扎實的理論基礎和很強的編程技巧,其次是模擬電路設計工程師,然後是數字電路設計工程師,但數字電路的重要程度又是僅次於EDA。個人認為EDA是最重要的基礎,設計電路的時候沒有EDA就好比是作家沒有筆和紙,即便你有再精妙的電路也無法讓製作IC的人做出來。
IC製造大概就是提問中的晶元製造了,簡單來說IC製造所做的事情就是將光罩的電路轉移到晶圓上,這個過程與相片的製造很像。IC製造的過程就是薄膜-光阻-曝光顯影-蝕刻-去光阻然後不斷重復。光罩就是將電路圖做到光罩上,有點像相機的底片,製作相冊的時候你想讓照片上有底片的影像就需要做遮光對應光阻的作用然後曝光蝕刻後就會留下底片上的映像,我們在做相片的時候底片比較小,相片比較大而IC製造相反,光罩大而IC小,電路做到晶圓上後再切成IC,晶圓與IC的關系就是一顆晶圓上有很多片小IC,在這個過程中涉及的技術太多了,有興趣就自己查查看吧。
接下來是問題所在:我們的技術卡在哪裡,為什麼做不下去?
說起IC製造的問題就不得不提摩爾定律:在集成電路中IC大小不變可容納的晶體管數目約每兩年增加一倍。也就是說數目以2的次方增長,長度大概是根號2的次方縮小。這就好比是你要將一段長1米的木棍每隔一段時間切半,那麼問題來了木棍會越切越小,他的長度剛開始還是以米為單位接下來是厘米然後是毫米然後越切越小來到了微米級,你想要繼續切就要改善自己的刀,先是菜刀然後要更鋒利更薄的刀再然後激光刀。在線寬還沒那麼小時製造公司都是工藝不變單純依靠製造技術的進步來縮小線寬,製造公司簡單來說就是將代工的錢拿去提升製造技術,研發總是有成本研發不出來就意味著著被對手超越,輸了兩年的生意,第一次輸了可能大公司還能經得起,接下來又研發不出來可能就危險了接下來公司慢慢就虧空了,日本的製造公司就是這樣被拖死的。然而在縮到更小線寬時就需要改良工藝了。這個時候門檻就更高,許多公司都被攔在外面,中興之前停在22奈米線寬,因為各種原因才得到技術支持進入22奈米。除此之外,IC製造不同於傳統製造業,製造完全是機器在做